1
|
Silva RPDS, Monteiro LN, Dias LDS, Haddad JOD, Souza VBD, Oliveira VFLD, Fernandes AS, Olivera MFD, Rotta JM. Role of Neural Plasticity of Motor Cortex in Gliomas Evaluated by Brain Imaging and Mapping Techniques in Pre- and Postoperative Period: A Systematic Review. J Neurol Surg A Cent Eur Neurosurg 2024; 85:396-404. [PMID: 36808404 DOI: 10.1055/a-2037-5993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND Resection of infiltrative neuroepithelial primary brain tumors, such as low-grade gliomas (LGGs) remains a neurosurgical challenge. Usual lack of clinical deficit despite LGGs growing in eloquent brain areas may be explained by reshaping and reorganization of functional networks. The development of modern diagnostic imaging techniques could disclose better understanding of the rearrangement of the brain cortex; however, mechanisms underlying such compensation and how it occurs in the motor cortex remain unclear. This systematic review aims to analyze the neuroplasticity of motor cortex in patients with LGGs, as determined by neuroimaging and functional techniques. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, medical subject headings (MeSH) and the following terms related to neuroimaging, LGGs and neuroplasticity were used with the Boolean operators AND and OR to synonymous terms in the PubMed database. Among the 118 results, 19 studies were included in the systematic review. RESULTS Motor function in patients with LGG was characterized by a compensation in the contralateral and supplementary motor areas and premotor functional networks. Furthermore, ipsilateral activation in these types of gliomas was rarely described. Moreover, some studies did not reveal statistical significance in association between functional reorganization and the postoperative period, which can be explained by the low number of patients. CONCLUSION Our findings suggest a high pattern of reorganization per different eloquent motor areas and gliomas diagnosis. Understanding this process is useful to guide safe surgical resection and to develop protocols that assess the plasticity, even though functional network rearrangement needs to be better characterized by more studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jose Marcus Rotta
- Neurosurgery Department, Hospital do Servidor Público Estadual de São Paulo, Brazil
| |
Collapse
|
2
|
Sollmann N, Zhang H, Kloth C, Zimmer C, Wiestler B, Rosskopf J, Kreiser K, Schmitz B, Beer M, Krieg SM. Modern preoperative imaging and functional mapping in patients with intracranial glioma. ROFO-FORTSCHR RONTG 2023; 195:989-1000. [PMID: 37224867 DOI: 10.1055/a-2083-8717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Magnetic resonance imaging (MRI) in therapy-naïve intracranial glioma is paramount for neuro-oncological diagnostics, and it provides images that are helpful for surgery planning and intraoperative guidance during tumor resection, including assessment of the involvement of functionally eloquent brain structures. This study reviews emerging MRI techniques to depict structural information, diffusion characteristics, perfusion alterations, and metabolism changes for advanced neuro-oncological imaging. In addition, it reflects current methods to map brain function close to a tumor, including functional MRI and navigated transcranial magnetic stimulation with derived function-based tractography of subcortical white matter pathways. We conclude that modern preoperative MRI in neuro-oncology offers a multitude of possibilities tailored to clinical needs, and advancements in scanner technology (e. g., parallel imaging for acceleration of acquisitions) make multi-sequence protocols increasingly feasible. Specifically, advanced MRI using a multi-sequence protocol enables noninvasive, image-based tumor grading and phenotyping in patients with glioma. Furthermore, the add-on use of preoperatively acquired MRI data in combination with functional mapping and tractography facilitates risk stratification and helps to avoid perioperative functional decline by providing individual information about the spatial location of functionally eloquent tissue in relation to the tumor mass. KEY POINTS:: · Advanced preoperative MRI allows for image-based tumor grading and phenotyping in glioma.. · Multi-sequence MRI protocols nowadays make it possible to assess various tumor characteristics (incl. perfusion, diffusion, and metabolism).. · Presurgical MRI in glioma is increasingly combined with functional mapping to identify and enclose individual functional areas.. · Advancements in scanner technology (e. g., parallel imaging) facilitate increasing application of dedicated multi-sequence imaging protocols.. CITATION FORMAT: · Sollmann N, Zhang H, Kloth C et al. Modern preoperative imaging and functional mapping in patients with intracranial glioma. Fortschr Röntgenstr 2023; 195: 989 - 1000.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, United States
| | - Haosu Zhang
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Johannes Rosskopf
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Kornelia Kreiser
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Radiology and Neuroradiology, Universitäts- und Rehabilitationskliniken Ulm, Ulm, Germany
| | - Bernd Schmitz
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Sandro M Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| |
Collapse
|
3
|
Arora S, Vani K. Translocation of Broca’s area in a case of low-grade glioma: reinforcing the importance of preoperative functional magnetic resonance imaging. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Functional MRI has enabled us to map the anatomical location of functional areas of brain including language centers and thus provides useful insights in preoperative planning and assessment for neurosurgeons. In recent years, fMRI has also provided evidence for neuroplasticity which implies that brain pathways have an ability to reorganize in response to any injury.
Case presentation
We present a case of a 27-year-old male, postoperative case of left frontotemporal glioma (WHO grade II) with residual tumor in inferior frontal, temporal and insular lobe in whom functional magnetic resonance imaging was carried out to elicit language centers. fMRI revealed activation of Wernicke’s area in left cerebral hemisphere in the right-handed patient, while Broca’s area was activated in right cerebral hemisphere, thus eliciting the translocation of Broca’s area in response to low-grade glioma.
Conclusions
This case provided an example of the ability of brain to reorganize pathways in response to injury or insult. The routine use of preoperative fMRI in such cases will help in better planning and lead to an improved postoperative outcome.
Collapse
|
4
|
Contralesional Cortical and Network Features Associated with Preoperative Language Deficit in Glioma Patients. Cancers (Basel) 2022; 14:cancers14184469. [PMID: 36139629 PMCID: PMC9496725 DOI: 10.3390/cancers14184469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Gliomas that infiltrate eloquent areas can damage the corresponding cortical or subcortical structures, leading to language dysfunction. A total of 20–40% of eloquent area glioma patients have language deficits. Gliomas anchored in eloquent areas cause varying degrees of language impairment. A tumor’s size, grade, location, and contralesional compensation may explain these differences. This study aimed to retrospectively explore gray and white matter plasticity in the contralesional hemisphere of patients with gliomas in the eloquent area using VBM and DTI network analysis. Abstract Lower-grade Gliomas anchored in eloquent areas cause varying degrees of language impairment. Except for a tumor’s features, contralesional compensation may explain these differences. Therefore, studying changes in the contralateral hemisphere can provide insights into the underlying mechanisms of language function compensation in patients with gliomas. This study included 60 patients with eloquent-area or near-eloquent-area gliomas. The participants were grouped according to the degree of language defect. T1 and diffusion tensor imaging were obtained. The contralesional cortical volume and the subcortical network were compared between groups. Patients with unimpaired language function showed elevated cortical volume in the midline areas of the frontal and temporal lobes. In subcortical networks, the group also had the highest global efficiency and shortest global path length. Ten nodes had intergroup differences in nodal efficiency, among which four nodes were in the motor area and four nodes were in the language area. Linear correlation was observed between the efficiency of the two nodes and the patient’s language function score. Functional compensation in the contralesional hemisphere may alleviate language deficits in patients with gliomas. Structural compensation mainly occurs in the contralesional midline area in the frontal and temporal lobes, and manifests as an increase in cortical volume and subcortical network efficiency.
Collapse
|
5
|
Luna LP, Sherbaf FG, Sair HI, Mukherjee D, Oliveira IB, Köhler CA. Can Preoperative Mapping with Functional MRI Reduce Morbidity in Brain Tumor Resection? A Systematic Review and Meta-Analysis of 68 Observational Studies. Radiology 2021; 300:338-349. [PMID: 34060940 DOI: 10.1148/radiol.2021204723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Preoperative functional MRI (fMRI) is one of several techniques developed to localize critical brain structures and brain tumors. However, the usefulness of fMRI for preoperative surgical planning and its potential effect on neurologic outcomes remain unclear. Purpose To assess the overall postoperative morbidity among patients with brain tumors by using preoperative fMRI versus surgery without this tool or with use of standard (nonfunctional) neuronavigation. Materials and Methods A systematic review and meta-analysis of studies across major databases from 1946 to June 20, 2020, were conducted. Inclusion criteria were original studies that (a) included patients with brain tumors, (b) performed preoperative neuroimaging workup with fMRI, (c) investigated the usefulness of a preoperative or intraoperative functional neuroimaging technique and used that technique to resect cerebral tumors, and (d) reported postoperative clinical measures. Pooled estimates for adverse event rate (ER) effect size (log ER, log odds ratio, or Hedges g) with 95% CIs were computed by using a random-effects model. Results Sixty-eight studies met eligibility criteria (3280 participants; 58.9% men [1555 of 2641]; mean age, 46 years ± 8 [standard deviation]). Functional deterioration after surgical procedure was less likely to occur when fMRI mapping was performed before the operation (odds ratio, 0.25; 95% CI: 0.12, 0.53; P < .001]), and postsurgical Karnofsky performance status scores were higher in patients who underwent fMRI mapping (Hedges g, 0.66; 95% CI: 0.21, 1.11; P = .004]). Craniotomies for tumor resection performed with preoperative fMRI were associated with a pooled adverse ER of 11% (95% CI: 8.4, 13.1), compared with a 21.0% ER (95% CI: 12.2, 33.5) in patients who did not undergo fMRI mapping. Conclusion From the currently available data, the benefit of preoperative functional MRI planning for the resection of brain tumors appears to reduce postsurgical morbidity, especially when used with other advanced imaging techniques, such as diffusion-tensor imaging, intraoperative MRI, or cortical stimulation. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Licia P Luna
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, 600 N Wolfe St, Phipps B100F, Baltimore, MD 21287 (L.P.L., F.G.S., H.I.S.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Md (D.M.); Department of Radiology, Hospital Geral de Fortaleza, Fortaleza, Brazil (I.B.O.); and Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Brazil (C.A.K.)
| | - Farzaneh Ghazi Sherbaf
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, 600 N Wolfe St, Phipps B100F, Baltimore, MD 21287 (L.P.L., F.G.S., H.I.S.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Md (D.M.); Department of Radiology, Hospital Geral de Fortaleza, Fortaleza, Brazil (I.B.O.); and Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Brazil (C.A.K.)
| | - Haris I Sair
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, 600 N Wolfe St, Phipps B100F, Baltimore, MD 21287 (L.P.L., F.G.S., H.I.S.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Md (D.M.); Department of Radiology, Hospital Geral de Fortaleza, Fortaleza, Brazil (I.B.O.); and Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Brazil (C.A.K.)
| | - Debraj Mukherjee
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, 600 N Wolfe St, Phipps B100F, Baltimore, MD 21287 (L.P.L., F.G.S., H.I.S.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Md (D.M.); Department of Radiology, Hospital Geral de Fortaleza, Fortaleza, Brazil (I.B.O.); and Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Brazil (C.A.K.)
| | - Isabella Bezerra Oliveira
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, 600 N Wolfe St, Phipps B100F, Baltimore, MD 21287 (L.P.L., F.G.S., H.I.S.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Md (D.M.); Department of Radiology, Hospital Geral de Fortaleza, Fortaleza, Brazil (I.B.O.); and Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Brazil (C.A.K.)
| | - Cristiano André Köhler
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, 600 N Wolfe St, Phipps B100F, Baltimore, MD 21287 (L.P.L., F.G.S., H.I.S.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Md (D.M.); Department of Radiology, Hospital Geral de Fortaleza, Fortaleza, Brazil (I.B.O.); and Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Brazil (C.A.K.)
| |
Collapse
|
6
|
Direct Evidence of Plasticity within Human Primary Motor and Somatosensory Cortices of Patients with Glioblastoma. Neural Plast 2020; 2020:8893708. [PMID: 33029127 PMCID: PMC7527884 DOI: 10.1155/2020/8893708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating disease without cure. It is also the most common primary brain tumor in adults. Although aggressive surgical resection is standard of care, these operations are limited by tumor infiltration of critical cortical and subcortical regions. A better understanding of how the brain can recover and reorganize function in response to GBM would provide valuable clinical data. This ability, termed neuroplasticity, is not well understood in the adult human brain. A better understanding of neuroplasticity in GBM could allow for improved extent of resection, even in areas classically thought to have critical, static function. The best evidence to date has demonstrated neuroplasticity only in slower growing tumors or through indirect measures such as functional MRI or transcranial magnetic stimulation. In this novel study, we utilize a unique experimental paradigm to show direct evidence of plasticity via serial direct electrocortical stimulation (DES) within primary motor (M1) and somatosensory (S1) cortices in GBM patients. Six patients with glioblastoma multiforme in or near the primary motor or somatosensory cortex were included in this retrospective observational study. These patients had two awake craniotomies with DES to map cortical motor and sensory sites in M1 and S1. Five of six patients exhibited at least one site of neuroplasticity within M1 or S1. Out of the 51 total sites stimulated, 32 (62.7%) demonstrated plasticity. Of these sites, 14 (43.7%) were in M1 and 18 (56.3%) were in S1. These data suggest that even in patients with GBM in or near primary brain regions, significant functional reorganization is possible. This is a new finding which may lead to a better understanding of the fundamental factors promoting or inhibiting plasticity. Further exploration may aid in treatment of patients with brain tumors and other neurologic disorders.
Collapse
|
7
|
Cargnelutti E, Ius T, Skrap M, Tomasino B. What do we know about pre- and postoperative plasticity in patients with glioma? A review of neuroimaging and intraoperative mapping studies. NEUROIMAGE-CLINICAL 2020; 28:102435. [PMID: 32980599 PMCID: PMC7522801 DOI: 10.1016/j.nicl.2020.102435] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Brain reorganization can take place before and after surgery of low- and high-grade gliomas. Plasticity is observed for low-grade but also for high-grade gliomas. The contralesional hemisphere can be vital for successful compensation. There is evidence of plasticity for both the language system and the sensorimotor system. Partial compensation can also occur at the white-matter level. Subcortical connectivity is crucial for brain reorganization.
Brain plasticity potential is a central theme in neuro-oncology and is currently receiving increased attention. Advances in treatment have prolonged life expectancy in neuro-oncological patients and the long-term preservation of their quality of life is, therefore, a new challenge. To this end, a better understanding of brain plasticity mechanisms is vital as it can help prevent permanent deficits following neurosurgery. Indeed, reorganization processes can be fundamental to prevent or recover neurological and cognitive deficits by reallocating brain functions outside the lesioned areas. According to more recent studies in the literature, brain reorganization taking place following neurosurgery is associated with good neurofunctioning at follow-up. Interestingly, in the last few years, the number of reports on plasticity has notably increased. Aim of the current review was to provide a comprehensive overview of pre- and postoperative neuroplasticity patterns. Within this framework, we aimed to shed light on some tricky issues, including i) involvement of the contralateral healthy hemisphere, ii) role and potential changes of white matter and connectivity patterns, and iii) reorganization in low- versus high-grade gliomas. We finally discussed the practical implications of these aspects and role of additional potentially relevant factors to be explored. Final purpose was to provide a guideline helpful in promoting increase in the extent of tumor resection while preserving the patients’ neurological and cognitive functioning.
Collapse
Affiliation(s)
- Elisa Cargnelutti
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy
| | - Tamara Ius
- SOC Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Miran Skrap
- SOC Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy.
| |
Collapse
|
8
|
Duffau H. Functional Mapping before and after Low-Grade Glioma Surgery: A New Way to Decipher Various Spatiotemporal Patterns of Individual Neuroplastic Potential in Brain Tumor Patients. Cancers (Basel) 2020; 12:E2611. [PMID: 32933174 PMCID: PMC7565450 DOI: 10.3390/cancers12092611] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Intraoperative direct electrostimulation mapping (DEM) is currently the gold-standard for glioma surgery, since functional-based resection allows an optimization of the onco-functional balance (increased resection with preserved quality of life). Besides intrasurgical awake mapping of conation, cognition, and behavior, preoperative mapping by means of functional neuroimaging (FNI) and transcranial magnetic stimulation (TMS) has increasingly been utilized for surgical selection and planning. However, because these techniques suffer from several limitations, particularly for direct functional mapping of subcortical white matter pathways, DEM remains crucial to map neural connectivity. On the other hand, non-invasive FNI and TMS can be repeated before and after surgical resection(s), enabling longitudinal investigation of brain reorganization, especially in slow-growing tumors like low-grade gliomas. Indeed, these neoplasms generate neuroplastic phenomena in patients with usually no or only slight neurological deficits at diagnosis, despite gliomas involving the so-called "eloquent" structures. Here, data gained from perioperative FNI/TMS mapping methods are reviewed, in order to decipher mechanisms underpinning functional cerebral reshaping induced by the tumor and its possible relapse, (re)operation(s), and postoperative rehabilitation. Heterogeneous spatiotemporal patterns of rearrangement across patients and in a single patient over time have been evidenced, with structural changes as well as modifications of intra-hemispheric (in the ipsi-lesional and/or contra-lesional hemisphere) and inter-hemispheric functional connectivity. Such various fingerprints of neural reconfiguration were correlated to different levels of cognitive compensation. Serial multimodal studies exploring neuroplasticity might lead to new management strategies based upon multistage therapeutic approaches adapted to the individual profile of functional reallocation.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, 34295 Montpellier, France; ; Tel.: +33-4-67-33-66-12; Fax: +33-4-67-33-69-12
- Institute of Functional Genomics, INSERM U-1191, University of Montpellier, 34298 Montpellier, France
| |
Collapse
|
9
|
Plasticity of the Primary Motor Cortex in Patients with Primary Brain Tumors. Neural Plast 2020; 2020:3648517. [PMID: 32714384 PMCID: PMC7354670 DOI: 10.1155/2020/3648517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
There are two neuron-level mechanisms proposed to underlie neural plasticity: recruiting neurons nearby to support the lost function (ipsilesional plasticity) and uncovering latent pathways that can assume the function that was lost (contralesional plasticity). While both patterns have been demonstrated in patient groups following injury, the specific mechanisms underlying each mode of plasticity are poorly understood. In a retrospective case series of 13 patients, we utilize a novel paradigm that analyzes serial fMRI scans in patients harboring intrinsic brain tumors that vary in location and growth kinetics to better understand the mechanisms underlying these two modes of plasticity in the human primary motor cortex. Twelve patients in our series had some degree of primary motor cortex plasticity, an area previously thought to have limited plasticity. Patients harboring smaller lesions with slower growth kinetics and increasing distance from the primary motor region demonstrated recruitment of ipsilateral motor regions. Conversely, larger, faster-growing lesions in close proximity to the primary motor region were associated with activation of the contralesional primary motor cortex, along with increased activation of the supplementary motor area. These data increase our understanding of the adaptive abilities of the brain and may lead to improved treatment strategies for those suffering from motor loss secondary to brain injuries.
Collapse
|
10
|
Role of Functional Imaging Techniques to Assess Motor and Language Cortical Plasticity in Glioma Patients: A Systematic Review. Neural Plast 2019; 2019:4056436. [PMID: 31814822 PMCID: PMC6878806 DOI: 10.1155/2019/4056436] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/05/2019] [Indexed: 01/19/2023] Open
Abstract
Cerebral plasticity is the ability of the central nervous system to reorganize itself in response to different injuries. The reshaping of functional areas is a crucial mechanism to compensate for damaged function. It is acknowledged that functional remodeling of cortical areas may occur also in glioma patients. Principal limits of previous investigations on cortical plasticity of motor and language functions included scarce reports of longitudinal evaluations and limited sample sizes. This systematic review is aimed at elucidating cortical brain plasticity for motor and language functions, in adult glioma patients, by means of preoperative and intraoperative mapping techniques. We systematically reviewed the literature for prospective studies, assessing cortical plasticity of motor and language functions in low-grade and high-grade gliomas. Eight longitudinal studies investigated cortical plasticity, evaluated by motor and language task-based functional MRI (fMRI), motor navigated transcranial magnetic stimulation (n-TMS), and intraoperative mapping with cortical direct electrocortical stimulation (DES) of language and motor function. Motor function reorganization appeared relatively limited and mostly characterized by intrahemispheric functional changes, including secondary motor cortices. On the other hand, a high level of functional reshaping was found for language function in DES studies. Occurrence of cortical functional reorganization of language function was described focusing on the intrahemispheric recruitment of perilesional areas. However, the association between these functional patterns and recovery of motor and language deficits still remains partially clear. A number of relevant methodological issues possibly affecting the finding generalization emerged, such as the complexity of plasticity outcome measures and the lack of large longitudinal studies. Future studies are required to further confirm these evidences on cortical plasticity in larger samples, combining both functional imaging and intraoperative mapping techniques in longitudinally evaluations.
Collapse
|
11
|
Midazolam Sedation Induces Upper Limb Coordination Deficits That Are Reversed by Flumazenil in Patients with Eloquent Area Gliomas. Anesthesiology 2019; 131:36-45. [DOI: 10.1097/aln.0000000000002726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Background
Midazolam has been found to exacerbate or unmask limb motor dysfunction in patients with brain tumors. This study aimed to determine whether the exacerbated upper limb motor-sensory deficits are mediated through benzodiazepine sites by demonstrating reversibility by flumazenil in patients with gliomas in eloquent areas.
Methods
This was an interventional, parallel assignment, nonrandomized trial. Study subjects were admitted in the operating room. Patients with supratentorial eloquent area gliomas and volunteers of similar age without neurologic disease were sedated with midazolam, but still responsive and cooperative. Motor and sensory functions for upper extremities were evaluated by the Nine-Hole Peg Test before and after midazolam, as well as after flumazenil reversal.
Results
Thirty-two cases were included: 15 in the glioma group and 17 in the control group. The total dose of midazolam and flumazenil were comparable between the groups. In the glioma group, the times to task completion after midazolam in the contralateral hand (P = 0.001) and ipsilateral hand (P = 0.002) were 26.5 (95% CI, 11.3 to 41.7) and 13.7 (95% CI, 5.0 to 22.4) seconds slower than baseline, respectively. After flumazenil reversal, the contralateral hand (P = 0.99) and ipsilateral hand (P = 0.187) performed 1.2 (95% CI, −3.3 to 5.8) and 1.5 (95% CI, −0.5 to 3.5) seconds slower than baseline, respectively. In the control group, the dominant (P < 0.001) and nondominant hand (P = 0.006) were 2.9 (95% CI, 1.4 to 4.3) and 1.7 (95% CI, 0.5 to 2.9) seconds slower than baseline, respectively. After flumazenil, the dominant hand (P = 0.99) and nondominant hand (P = 0.019) performed 0.2 (95% CI, −0.7 to 1.0) and 1.3 (95% CI, −0.2 to 2.4) seconds faster than baseline, respectively.
Conclusions
In patients with eloquent area gliomas, mild sedation with midazolam induced motor coordination deficits in upper limbs. This deficit was almost completely reversed by the benzodiazepine antagonist flumazenil, suggesting that this is a reversible abnormality linked to occupation of the receptor by midazolam.
Collapse
|
12
|
Ng JCH, See AAQ, Ang TY, Tan LYR, Ang BT, King NKK. Effects of surgery on neurocognitive function in patients with glioma: a meta-analysis of immediate post-operative and long-term follow-up neurocognitive outcomes. J Neurooncol 2018; 141:167-182. [PMID: 30446902 DOI: 10.1007/s11060-018-03023-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/01/2018] [Indexed: 01/04/2023]
Abstract
PURPOSE This study aims to identify the neuropsychological tests commonly used for assessment in each neurocognitive domain, and quantify the post-operative changes in neurocognitive function in the immediate post-operation and follow-up. METHODS With the use of the PubMed, a comprehensive search of the English literature was performed following PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines. There were 1021 publications identified for screening. Standardized mean differences (SMD) in neuropsychological task performance were calculated both for immediate post-operation (up to 1 week) and follow-up (up to 6 months). RESULTS Out of 12 studies which met the inclusion criteria, 11 studies were analyzed in this meta-analysis, with a total of 313 patients (age range 18-82, 50% males) with intracranial gliomas (45% high-grade, 55% low-grade). Complex attention, language and executive function were the most frequently tested neurocognitive domains. Surgery had a positive impact in the domains of complex attention, language, learning and memory tasks in the immediate post-operative period and sustained improvement at follow-up. In contrast, surgery was found to negatively impact performance for executive function in the immediate post-operative period with sustained decline in performance in the long term. CONCLUSIONS This meta-analysis suggests that surgery for glioma confers a benefit for the domains of complex attention, language, learning and memory, while negatively affecting executive function, in the periods immediately after surgery and at 6 months follow-up. In addition, awake surgery seemed to confer a beneficial effect on neurocognitive functions. Future research should attempt to standardize a battery of neuropsychological tests for patients undergoing surgical resection for glioma, perhaps with a particular focus on executive function.
Collapse
Affiliation(s)
- Justin Choon Hwee Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Angela An Qi See
- Department of Neurosurgery, Singapore General Hospital, Singapore, Singapore.,Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Ting Yao Ang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lysia Yan Rong Tan
- Department of Neurosurgery, Singapore General Hospital, Singapore, Singapore
| | - Beng Ti Ang
- Department of Neurosurgery, Singapore General Hospital, Singapore, Singapore.,Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Nicolas Kon Kam King
- Department of Neurosurgery, Singapore General Hospital, Singapore, Singapore. .,Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
13
|
Gould L, Ekstrand C, Fourney DR, Mickleborough MJ, Ellchuk T, Borowsky R. The Effect of Tumor Neovasculature on Functional Magnetic Resonance Imaging Blood Oxygen Level–Dependent Activation. World Neurosurg 2018; 115:373-383. [DOI: 10.1016/j.wneu.2018.04.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/16/2022]
|
14
|
Gębska-Kośla K, Bryszewski B, Jaskólski DJ, Fortuniak J, Niewodniczy M, Stefańczyk L, Majos A. Reorganization of language centers in patients with brain tumors located in eloquent speech areas - A pre- and postoperative preliminary fMRI study. Neurol Neurochir Pol 2017; 51:403-410. [PMID: 28780063 DOI: 10.1016/j.pjnns.2017.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 03/06/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The aim of this study was to determine in pre- and postsurgical fMRI studies the rearrangement of the Broca's and Wernicke's areas and the lateralization index for these areas in patients with brain tumors located near speech centers. Impact of the surgical treatment on the brain plasticity was evaluated. MATERIALS AND METHODS Pre- and postoperative fMRI examinations were performed in 10 patients with low grade glial, left-sided brain tumors located close to the Broca's (5 patients) or Wernicke's area (5 patients). BOLD signal was recorded in regions of interest: Broca's and Wernicke's areas, and their anatomic right-sided homologues. RESULTS In the preoperative fMRI study the left Broca's area was activated in all cases. The right Broca's area was activated in all the patients with no speech disorders. In the postoperative fMRI the activation of both Broca's areas increased in two cases. In other two cases activation of one of the Broca's area increased along with the decrease in the contralateral hemisphere. In all patients with temporal lobe tumors, the right Wernicke's area was activated in the pre- and postsurgical fMRI. After the operation, in two patients with speech disorder, the activation of both Broca's areas decreased and the activation of one of the Wernicke's areas increased. CONCLUSIONS In the cases of tumors localized near the left Broca's area, a transfer of the function to the healthy hemisphere seems to take place. Resection of tumors located near Broca's or Wernicke's areas may lead to relocation of the brain language centers.
Collapse
Affiliation(s)
- Katarzyna Gębska-Kośla
- Department of Radiological and Isotopic Diagnosis and Therapy, Medical University of Lodz, Central Clinical Hospital, Czechoslowacka 8/10, 92-216 Lodz, Poland.
| | - Bartosz Bryszewski
- Department of Neurosurgery, Medical University of Łódź, Kopcińskiego 22, 90-153 Łódź, Poland.
| | - Dariusz J Jaskólski
- Department of Neurosurgery, Medical University of Łódź, Kopcińskiego 22, 90-153 Łódź, Poland.
| | - Jan Fortuniak
- Department of Neurosurgery, Medical University of Łódź, Kopcińskiego 22, 90-153 Łódź, Poland.
| | - Maciej Niewodniczy
- Institute of Health Sciences, University of Social Sciences, Gdańska 121, 90-508 Łódź, Poland.
| | - Ludomir Stefańczyk
- Department of Radiology and Diagnostic Imaging, Medical University of Łódź, Kopcińskiego 22, 90-153 Łódź, Poland.
| | - Agata Majos
- Department of Radiological and Isotopic Diagnosis and Therapy, Medical University of Lodz, Central Clinical Hospital, Czechoslowacka 8/10, 92-216 Lodz, Poland.
| |
Collapse
|
15
|
van Kessel E, Baumfalk AE, van Zandvoort MJE, Robe PA, Snijders TJ. Tumor-related neurocognitive dysfunction in patients with diffuse glioma: a systematic review of neurocognitive functioning prior to anti-tumor treatment. J Neurooncol 2017; 134:9-18. [PMID: 28567586 PMCID: PMC5543199 DOI: 10.1007/s11060-017-2503-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/20/2017] [Indexed: 11/25/2022]
Abstract
Deficits in neurocognitive functioning (NCF) frequently occur in glioma patients. Both treatment and the tumor itself contribute to these deficits. Data about the role of the tumor are scarce, because NCF has mostly been studied postoperatively. We aimed to summarize data on pre-treatment NCF in glioma patients and to determine the overall and domain-specific prevalence of neurocognitive dysfunction. We searched PubMed and Embase according to PRISMA-P protocol for studies that evaluated pre-treatment NCF in glioma patients (1995-November 2016) and extracted information about NCF. We performed analysis of data for two main outcome measures; mean cognitive functioning of the study sample (at group level) and the percentage of impaired patients (at individual level). We included 23 studies. Most studies were small observational prospective cohort studies. In 11 (47.5%) studies, patient selection was based on tumor location. NCF was analyzed at the group level in 14 studies, of which 13 (92.9%) found decreased NCF at group level, compared to normative data or matched controls. The proportion of individuals with decreased NCF was reported in 15 studies. NCF was impaired (in any domain) in 62.6% of the individuals (median; interquartile range 31.0–79.0). Cognitive impairments were more common in patients with high-grade glioma than with low-grade glioma (OR 2.50; 95% CI 1.71–3.66). Cognitive impairment occurs in the majority of treatment-naive glioma patients, suggesting that neurocognitive dysfunction is related to the tumor. However, the literature about pre-treatment NCF in glioma patients is characterized by small-scale studies and strong heterogeneity in patient selection, resulting in high risk of bias.
Collapse
Affiliation(s)
- Emma van Kessel
- Department of Neurology & Neurosurgery, University Medical Center Utrecht/Brain Center Rudolf Magnus, G03.232, PO Box 85500, 3508 XC, Utrecht, The Netherlands.
| | - Anniek E Baumfalk
- Department of Neurology & Neurosurgery, University Medical Center Utrecht/Brain Center Rudolf Magnus, G03.232, PO Box 85500, 3508 XC, Utrecht, The Netherlands
| | - Martine J E van Zandvoort
- Department of Neurology & Neurosurgery, University Medical Center Utrecht/Brain Center Rudolf Magnus, G03.232, PO Box 85500, 3508 XC, Utrecht, The Netherlands
- Helmhotz Institute, Utrecht University, Room 1715, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Pierre A Robe
- Department of Neurology & Neurosurgery, University Medical Center Utrecht/Brain Center Rudolf Magnus, G03.232, PO Box 85500, 3508 XC, Utrecht, The Netherlands
| | - Tom J Snijders
- Department of Neurology & Neurosurgery, University Medical Center Utrecht/Brain Center Rudolf Magnus, G03.232, PO Box 85500, 3508 XC, Utrecht, The Netherlands
| |
Collapse
|
16
|
Conway N, Wildschuetz N, Moser T, Bulubas L, Sollmann N, Tanigawa N, Meyer B, Krieg SM. Cortical plasticity of motor-eloquent areas measured by navigated transcranial magnetic stimulation in patients with glioma. J Neurosurg 2017; 127:981-991. [PMID: 28106500 DOI: 10.3171/2016.9.jns161595] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The goal of this study was to obtain a better understanding of the mechanisms underlying cerebral plasticity. Coupled with noninvasive detection of its occurrence, such an understanding has huge potential to improve glioma therapy. The authors aimed to demonstrate the frequency of plastic reshaping, find clues to the patterns behind it, and prove that it can be recognized noninvasively using navigated transcranial magnetic stimulation (nTMS). METHODS The authors used nTMS to map cortical motor representation in 22 patients with gliomas affecting the precentral gyrus, preoperatively and 3-42 months postoperatively. Location changes of the primary motor area, defined as hotspots and map centers of gravity, were measured. RESULTS Spatial normalization and analysis of hotspots showed an average shift of 5.1 ± 0.9 mm (mean ± SEM) on the mediolateral axis, and 10.7 ± 1.6 mm on the anteroposterior axis. Map centers of gravity were found to have shifted by 4.6 ± 0.8 mm on the mediolateral, and 8.7 ± 1.5 mm on the anteroposterior axis. Motor-eloquent points tended to shift toward the tumor by 4.5 ± 3.6 mm if the lesion was anterior to the rolandic region and by 2.6 ± 3.3 mm if it was located posterior to the rolandic region. Overall, 9 of 16 (56%) patients with high-grade glioma and 3 of 6 (50%) patients with low-grade glioma showed a functional shift > 10 mm at the cortical level. CONCLUSIONS Despite the small size of this series, analysis of these data showed that cortical functional reorganization occurs quite frequently. Moreover, nTMS was shown to detect such plastic reorganization noninvasively.
Collapse
Affiliation(s)
- Neal Conway
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Noémie Wildschuetz
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Tobias Moser
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Lucia Bulubas
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Nico Sollmann
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Noriko Tanigawa
- Faculty of Linguistics, Philology, & Phonetics, University of Oxford, United Kingdom
| | - Bernhard Meyer
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| | - Sandro M Krieg
- Department of Neurosurgery and.,Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Germany; and
| |
Collapse
|
17
|
Neuroplasticity: Insights from Patients Harboring Gliomas. Neural Plast 2016; 2016:2365063. [PMID: 27478645 PMCID: PMC4949342 DOI: 10.1155/2016/2365063] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022] Open
Abstract
Neuroplasticity is the ability of the brain to reorganize itself during normal development and in response to illness. Recent advances in neuroimaging and direct cortical stimulation in human subjects have given neuroscientists a window into the timing and functional anatomy of brain networks underlying this dynamic process. This review will discuss the current knowledge about the mechanisms underlying neuroplasticity, with a particular emphasis on reorganization following CNS pathology. First, traditional mechanisms of neuroplasticity, most relevant to learning and memory, will be addressed, followed by a review of adaptive mechanisms in response to pathology, particularly the recruitment of perilesional cortical regions and unmasking of latent connections. Next, we discuss the utility and limitations of various investigative techniques, such as direct electrocortical stimulation (DES), functional magnetic resonance imaging (fMRI), corticocortical evoked potential (CCEP), and diffusion tensor imaging (DTI). Finally, the clinical utility of these results will be highlighted as well as possible future studies aimed at better understanding of the plastic potential of the brain with the ultimate goal of improving quality of life for patients with neurologic injury.
Collapse
|
18
|
Kurabe S, Itoh K, Nakada T, Fujii Y. Evidence for cerebellar motor functional reorganization in brain tumor patients: An fMRI study. Neurosci Lett 2016; 622:45-8. [PMID: 27102144 DOI: 10.1016/j.neulet.2016.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/23/2016] [Accepted: 04/15/2016] [Indexed: 12/01/2022]
Abstract
Functional reorganization of the motor system following brain damage has been studied extensively in stroke patients, in which not only the cerebrum but also the cerebellum (Cbll) undergoes substantial reorganization. However, the role of Cbll in motor functional reorganization in brain tumor patients remains poorly investigated. Because brain damages in brain tumor patients occur much more slowly than in stroke patients, the neural mechanisms for motor functional reorganization might differ between these two disease conditions. This functional magnetic resonance imaging (fMRI) study investigated whether Cbll constitutes the neural substrates for motor functional reorganization in eighteen supratentorial brain tumor patients who exhibited no clinical signs of paresis. The patients and normal volunteers underwent a unilateral hand movement task. In the patients, the locus of primary sensory motor (SM1) activation during contralesional hand movement was significantly displaced by the tumor, suggesting functional compromise and/or reorganization in the central sulcus region. In addition, their contralesional Cbll activation during contralesional hand movement was substantially increased as compared to normal controls. The finding represents the first conclusive evidence that Cbll is involved in the motor-related functional reorganization in patients with brain tumor.
Collapse
Affiliation(s)
- Satoshi Kurabe
- Department of Neurosurgery, Brain Research Institute, University of Niigata, Japan
| | - Kosuke Itoh
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Japan
| | - Tsutomu Nakada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Japan
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, University of Niigata, Japan.
| |
Collapse
|
19
|
Cordier D, Gozé C, Schädelin S, Rigau V, Mariani L, Duffau H. A better surgical resectability of WHO grade II gliomas is independent of favorable molecular markers. J Neurooncol 2014; 121:185-93. [PMID: 25261925 DOI: 10.1007/s11060-014-1623-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/21/2014] [Indexed: 12/23/2022]
Abstract
A higher extent of resection (EOR) in WHO grade II gliomas (GIIG) is correlated with longer survival. However, the molecular markers also feature prognostic relevance. Here, we examined whether maximal EOR was related to the genetic profile. We retrospectively investigated the predictive value of 1p19q, IDH1, 53 expression and Ki67 index for the EOR in 200 consecutive GIIGs (2007-2013). Data were modeled in a linear model. The analysis was performed with two statistical methods (arcsin-sqrt and Beta-regression model with logit link). There was no deletion 1p19q in 118 cases, codeletion 1p19q (57 cases), single deletion 1p (4 cases) or19q (16 cases). 155 patients had a mutation of IDH1. p53 was graded in 4 degrees (0:92 cases, 1:52 cases, 2:31 cases, 3:8 cases). Mean Ki67 index was 5.2 % (range 1-20 %). Mean preoperative tumor volume was 60.8 cm(3) (range 3.3-250 cm(3)) and mean EOR was 0.917 (range 0.574-1). The statistical analysis was significant for a lower EOR in patients with codeletion 1p19q (OR 0.738, p = 0.0463) and with a single deletion 19q (OR 0.641, p = 0.0168). There was no significant correlation between IDH1 or p53 and the EOR. Higher Ki67 was marginally associated with higher EOR (p = 0.0603). The study demonstrates in a large cohort of GIIG that a higher EOR is not attributable to favorable genetic markers. This original result supports maximal surgical resection as an important therapeutic factor per se to optimize prognosis, independently of the molecular pattern.
Collapse
Affiliation(s)
- Dominik Cordier
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France
| | | | | | | | | | | |
Collapse
|
20
|
Furuta T, Nakada M, Ueda F, Watanabe T, Arakawa Y, Higashi R, Hashimoto M, Nitta H, Hayashi Y, Hamada JI. Prognostic paradox: brain damage around the glioblastoma resection cavity. J Neurooncol 2014; 118:187-92. [PMID: 24604751 DOI: 10.1007/s11060-014-1418-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/25/2014] [Indexed: 11/26/2022]
Abstract
Hyperintense lesions around the resection cavity on magnetic resonance diffusion-weighted imaging (MR-DWI) frequently appear after brain tumor surgery due to the damage of surrounding brain. The putative connection between the lesion and the prognosis for patients with glioblastoma (GBM) was explored. This retrospective study reviewed consecutive sixty-one patients with newly diagnosed GBM. Postoperative MRI was performed within 2 weeks after the initial surgery. We classified the cases into two groups depending on whether DWI hyperintense lesions were observed or not [DWI(+) group and DWI(-) group]. Progression-free survival (PFS) and overall survival (OS) were compared between the two groups. Forty-two patients were identified. The various extents of hyperintense lesions around the resection cavity were observed in 28/42 (66.7%) cases. In the DWI(+) and DWI(-) groups, median PFS was 10.0 [95% confidence interval (CI) 8.4-11.5] and 6.7 (95% CI 4.9-8.5) months, respectively (p = 0.042), and median OS was 18.0 (95% CI 12.2-23.8) and 17.0 (95% CI 15.7-18.3) months, respectively (p = 0.254). On multivariate analysis, the presence of DWI hyperintense lesion was more likely to be an independent predictor for 6-month PFS (p = 0.019; HR, 0.038; 95% CI 0.002-0.582). Tumor recurrence appeared outside the former DWI hyperintense lesion. Hyperintense lesions surrounding the resected GBM on MR-DWI might be a favorable prognostic factor in patients with GBM.
Collapse
Affiliation(s)
- Takuya Furuta
- Division of Neuroscience, Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|