1
|
Pons-Escoda A, Garcia-Ruiz A, Naval-Baudin P, Grussu F, Fernandez JJS, Simo AC, Sarro NV, Fernandez-Coello A, Bruna J, Cos M, Perez-Lopez R, Majos C. Voxel-level analysis of normalized DSC-PWI time-intensity curves: a potential generalizable approach and its proof of concept in discriminating glioblastoma and metastasis. Eur Radiol 2022; 32:3705-3715. [PMID: 35103827 DOI: 10.1007/s00330-021-08498-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Standard DSC-PWI analyses are based on concrete parameters and values, but an approach that contemplates all points in the time-intensity curves and all voxels in the region-of-interest may provide improved information, and more generalizable models. Therefore, a method of DSC-PWI analysis by means of normalized time-intensity curves point-by-point and voxel-by-voxel is constructed, and its feasibility and performance are tested in presurgical discrimination of glioblastoma and metastasis. METHODS In this retrospective study, patients with histologically confirmed glioblastoma or solitary-brain-metastases and presurgical-MR with DSC-PWI (August 2007-March 2020) were retrieved. The enhancing tumor and immediate peritumoral region were segmented on CE-T1wi and coregistered to DSC-PWI. Time-intensity curves of the segmentations were normalized to normal-appearing white matter. For each participant, average and all-voxel-matrix of normalized-curves were obtained. The 10 best discriminatory time-points between each type of tumor were selected. Then, an intensity-histogram analysis on each of these 10 time-points allowed the selection of the best discriminatory voxel-percentile for each. Separate classifier models were trained for enhancing tumor and peritumoral region using binary logistic regressions. RESULTS A total of 428 patients (321 glioblastomas, 107 metastases) fulfilled the inclusion criteria (256 men; mean age, 60 years; range, 20-86 years). Satisfactory results were obtained to segregate glioblastoma and metastases in training and test sets with AUCs 0.71-0.83, independent accuracies 65-79%, and combined accuracies up to 81-88%. CONCLUSION This proof-of-concept study presents a different perspective on brain MR DSC-PWI evaluation by the inclusion of all time-points of the curves and all voxels of segmentations to generate robust diagnostic models of special interest in heterogeneous diseases and populations. The method allows satisfactory presurgical segregation of glioblastoma and metastases. KEY POINTS • An original approach to brain MR DSC-PWI analysis, based on a point-by-point and voxel-by-voxel assessment of normalized time-intensity curves, is presented. • The method intends to extract optimized information from MR DSC-PWI sequences by impeding the potential loss of information that may represent the standard evaluation of single concrete perfusion parameters (cerebral blood volume, percentage of signal recovery, or peak height) and values (mean, maximum, or minimum). • The presented approach may be of special interest in technically heterogeneous samples, and intrinsically heterogeneous diseases. Its application enables satisfactory presurgical differentiation of GB and metastases, a usual but difficult diagnostic challenge for neuroradiologist with vital implications in patient management.
Collapse
Affiliation(s)
- Albert Pons-Escoda
- Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain. .,Neurooncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Alonso Garcia-Ruiz
- Radiomics Groups, Vall d'Hebron Institut d'Oncologia- VHIO, Barcelona, Spain
| | - Pablo Naval-Baudin
- Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesco Grussu
- Radiomics Groups, Vall d'Hebron Institut d'Oncologia- VHIO, Barcelona, Spain
| | - Juan Jose Sanchez Fernandez
- Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Angels Camins Simo
- Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Noemi Vidal Sarro
- Neurooncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Pathology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alejandro Fernandez-Coello
- Neurosurgery Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.,Pathology and Experimental Therapeutics Department, Anatomy Unit, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centers of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jordi Bruna
- Neurooncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Monica Cos
- Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Raquel Perez-Lopez
- Radiomics Groups, Vall d'Hebron Institut d'Oncologia- VHIO, Barcelona, Spain.,Radiology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Carles Majos
- Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.,Neurooncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
2
|
Hutóczki G, Virga J, Birkó Z, Klekner A. Novel Concepts of Glioblastoma Therapy Concerning Its Heterogeneity. Int J Mol Sci 2021; 22:ijms221810005. [PMID: 34576168 PMCID: PMC8470251 DOI: 10.3390/ijms221810005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Although treatment outcomes of glioblastoma, the most malignant central nervous system (CNS) tumor, has improved in the past decades, it is still incurable, and survival has only slightly improved. Advances in molecular biology and genetics have completely transformed our understanding of glioblastoma. Multiple classifications and different diagnostic methods were made according to novel molecular markers. Discovering tumor heterogeneity only partially explains the ineffectiveness of current anti-proliferative therapies. Dynamic heterogeneity secures resistance to combined oncotherapy. As tumor growth proceeds, new therapy-resistant sub clones emerge. Liquid biopsy is a new and promising diagnostic tool that can step up with the dynamic genetic change. Getting a 'real-time' picture of a specific tumor, anti-invasion and multi-target treatment can be designed. During invasion to the peri-tumoral brain tissue, glioma cells interact with the extracellular matrix components. The expressional levels of these matrix molecules give a characteristic pattern, the invasion spectrum, which possess vast diagnostical, predictive and prognostic information. It is a huge leap forward combating tumor heterogeneity and searching for novel therapies. Using the invasion spectrum of a tumor sample is a novel tool to distinguish between histological subtypes, specifying the tumor grades or different prognostic groups. Moreover, new therapeutic methods and their combinations are under trial. These are crucial steps towards personalized oncotherapy.
Collapse
Affiliation(s)
- Gábor Hutóczki
- Department of Neurosurgery, University of Debrecen, H-4032 Debrecen, Hungary;
- Correspondence:
| | - József Virga
- Department of Oncology, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Zsuzsanna Birkó
- Department of Human Genetics, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, H-4032 Debrecen, Hungary;
| |
Collapse
|
3
|
Moriconi C, Civita P, Neto C, Pilkington GJ, Gumbleton M. Caveolin-1, a Key Mediator Across Multiple Pathways in Glioblastoma and an Independent Negative Biomarker of Patient Survival. Front Oncol 2021; 11:701933. [PMID: 34490102 PMCID: PMC8417742 DOI: 10.3389/fonc.2021.701933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GB) remains an aggressive malignancy with an extremely poor prognosis. Discovering new candidate drug targets for GB remains an unmet medical need. Caveolin-1 (Cav-1) has been shown to act variously as both a tumour suppressor and tumour promoter in many cancers. The implications of Cav-1 expression in GB remains poorly understood. Using clinical and genomic databases we examined the relationship between tumour Cav-1 gene expression (including its spatial distribution) and clinical pathological parameters of the GB tumour and survival probability in a TCGA cohort (n=155) and CGGA cohort (n=220) of GB patients. High expression of Cav-1 represented a significant independent predictor of shortened survival (HR = 2.985, 5.1 vs 14.9 months) with a greater statistically significant impact in female patients and in the Proneural and Mesenchymal GB subtypes. High Cav-1 expression correlated with other factors associated with poor prognosis: IDH w/t status, high histological tumour grade and low KPS score. A total of 4879 differentially expressed genes (DEGs) in the GB tumour were found to correlate with Cav-1 expression (either positively or negatively). Pathway enrichment analysis highlighted an over-representation of these DEGs to certain biological pathways. Focusing on those that lie within a framework of epithelial to mesenchymal transition and tumour cell migration and invasion we identified 27 of these DEGs. We then examined the prognostic value of Cav-1 when used in combination with any of these 27 genes and identified a subset of combinations (with Cav-1) indicative of co-operative synergistic mechanisms of action. Overall, the work has confirmed Cav-1 can serve as an independent prognostic marker in GB, but also augment prognosis when used in combination with a panel of biomarkers or clinicopathologic parameters. Moreover, Cav-1 appears to be linked to many signalling entities within the GB tumour and as such this work begins to substantiate Cav-1 or its associated signalling partners as candidate target for GB new drug discovery.
Collapse
Affiliation(s)
- Chiara Moriconi
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
- Department of Pathology and Cell Biology, Columbia University, New York Presbyterian Hospital, New York, NY, United States
| | - Prospero Civita
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
- Brain Tumour Research Centre, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Catia Neto
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Geoffrey J. Pilkington
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
- Brain Tumour Research Centre, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Department of Basic and Clinical Neuroscience, Division of Neuroscience, Institute of Psychiatry & Neurology, King’s College London, London, United Kingdom
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Lin JC, Tsai JT, Chao TY, Ma HI, Liu WH. Musashi-1 Enhances Glioblastoma Migration by Promoting ICAM1 Translation. Neoplasia 2019; 21:459-468. [PMID: 30959276 PMCID: PMC6453839 DOI: 10.1016/j.neo.2019.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal brain tumor with a mean survival time of 1 year. One major reason for therapeutic failure is that GBM cells have an extraordinary capacity to invade normal brain tissue beyond the surgical margin, accounting for the lack of treatment efficacy. GBM cells that can infiltrate into the healthy brain possess tumor properties of stemness and invasion, and previous studies demonstrate that Musashi-1 (MSI1), a neural stem cell marker, plays an important role in the maintenance of stem cell status, cellular differentiation, and tumorigenesis in cancers. By analyzing neuronal progenitor cell markers and stemness genes, we predicted that MSI1 might be an important factor in GBM pathogenesis. Because inflammation aids in the proliferation and survival of malignant cells, the inflammatory microenvironment also promotes GBM invasion, and intercellular adhesion molecule-1 (ICAM1), a member of the immunoglobulin superfamily, is involved in inflammation. Our results indicate that the above phenomena are likely due to MSI1 upregulation, which occurred simultaneously with higher expression of ICAM1 in GBM cells. Indeed, MSI1 knockdown effectively suppressed ICAM1 expression and blocked GBM cell motility and invasion, whereas overexpressing ICAM1 reversed these effects. According to RNA immunoprecipitation assays, MSI1-mediated mRNA interactions promote ICAM1 translation. Finally, immunohistochemical analysis showed MSI1 and ICAM-1 to be coexpressed at high levels in GBM tissues. Thus, the MSI1/ICAM1 pathway plays an important role in oncogenic resistance, including increased tumor invasion, and MSI1/ICAM1 may be a target for GBM treatment.
Collapse
Affiliation(s)
- Jang-Chun Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC; Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, ROC; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, ROC; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Tsu-Yi Chao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC; Division of Hematology/Oncology, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, No.325, Sec. 2, Cheng-Kung Road, Taipei 11490, Taiwan; Department of Surgery, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Hsiu Liu
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, No.325, Sec. 2, Cheng-Kung Road, Taipei 11490, Taiwan; Department of Surgery, School of Medicine, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
5
|
Virga J, Bognár L, Hortobágyi T, Csősz É, Kalló G, Zahuczki G, Steiner L, Hutóczki G, Reményi-Puskár J, Klekner A. The Expressional Pattern of Invasion-Related Extracellular Matrix Molecules in CNS Tumors. Cancer Invest 2018; 36:492-503. [PMID: 30501525 DOI: 10.1080/07357907.2018.1545855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aim of the study: Astrocytomas are primary CNS malignancies which infiltrate the peritumoral tissue, even when they are low-grade. Schwannomas are also primary CNS tumors, however, they do not show peritumoral infiltration similarly to brain metastases which almost never invade the neighboring parts of brain. Extracellular matrix is altered in composition in various cancer types and is proposed to play an important role in the development of invasiveness of astrocytic tumors. This study aims to identify differences in the ECM composition of CNS tumors with different invasiveness.Materials and methods: The mRNA and protein levels of ECM components were measured by QRT-PCR and mass-spectrometry, respectively, in grade II astrocytoma, NSCLC brain metastasis, schwannomas, and non-tumor brain control samples. Expressional data was analyzed statistically with ANOVA and nearest neighbor search.Results: There is a significant difference in the expressional pattern of invasion-related ECM components among various CNS tumors, especially among those of different embryonic origin. Non-invasive tumors show only slight differences in the expressional pattern of ECM molecules. Tumor samples can be separated based on their expressional pattern using statistical classifiers, therefore the ECM composition seems to be typical of various cancer types.Conclusions: Differences in the expressional pattern of the ECM could be responsible for the different invasiveness of various CNS tumors.
Collapse
Affiliation(s)
- József Virga
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Tibor Hortobágyi
- Department of Neuropathology, University of Debrecen, Debrecen, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Gergő Kalló
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Gábor Zahuczki
- UD-GenoMed Medical Genomic Technologies Research & Development Services Ltd., Debrecen, Hungary
| | - László Steiner
- UD-GenoMed Medical Genomic Technologies Research & Development Services Ltd., Debrecen, Hungary
| | - Gábor Hutóczki
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | | | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Hortobágyi T, Bencze J, Murnyák B, Kouhsari MC, Bognár L, Marko-Varga G. Pathophysiology of Meningioma Growth in Pregnancy. Open Med (Wars) 2017; 12:195-200. [PMID: 28744488 PMCID: PMC5518713 DOI: 10.1515/med-2017-0029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/19/2017] [Indexed: 12/15/2022] Open
Abstract
Meningioma is among the most frequent brain tumours predominantly affecting elderly women. Epidemiological studies have shown that at the age of fertility the incidence is relatively low. The biological behaviour of meningioma in pregnancy is different from other meningiomas. The possible explanation is rooted in the complex physiological changes and hormonal differences during pregnancy. The increased meningioma growth observed in pregnancy is presumably the result of endocrine mechanisms. These include increase in progesterone, human placental lactogen (hPL) and prolactin (PRL) serum levels. In contrast, levels of pituitary hormones such as follicle stimulating hormone (FSH), luteinizing hormone (LH) and human chorionic gonadotropin (hCG) produced by the placenta are decreasing in the mother prior to childbirth. Besides, vascular factors also play a crucial role. Peritumoral brain edema (PTBE), with well-known causative association with vascular endothelial growth factor (VEGF), can often be seen both with imaging and in the surgical specimens. Our aim is to assess published research on this topic including diagnostic and therapeutic guidelines, and to provide a clinically useful overview on the pathophysiology and biological behaviour of this rare complication of pregnancy.
Collapse
Affiliation(s)
- Tibor Hortobágyi
- Division of Neuropathology, Institute of Pathology, University of Debrecen, Debrecen, Nagyerdei krt. 98., H-4032, Hungary
| | - János Bencze
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Murnyák
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mahan C Kouhsari
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, University of Debrecen Clinical Center, Debrecen, Hungary
| | - György Marko-Varga
- Division of Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Clinical Applications of Contrast-Enhanced Perfusion MRI Techniques in Gliomas: Recent Advances and Current Challenges. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:7064120. [PMID: 29097933 PMCID: PMC5612612 DOI: 10.1155/2017/7064120] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/23/2017] [Indexed: 01/12/2023]
Abstract
Gliomas possess complex and heterogeneous vasculatures with abnormal hemodynamics. Despite considerable advances in diagnostic and therapeutic techniques for improving tumor management and patient care in recent years, the prognosis of malignant gliomas remains dismal. Perfusion-weighted magnetic resonance imaging techniques that could noninvasively provide superior information on vascular functionality have attracted much attention for evaluating brain tumors. However, nonconsensus imaging protocols and postprocessing analysis among different institutions impede their integration into standard-of-care imaging in clinic. And there have been very few studies providing a comprehensive evidence-based and systematic summary. This review first outlines the status of glioma theranostics and tumor-associated vascular pathology and then presents an overview of the principles of dynamic contrast-enhanced MRI (DCE-MRI) and dynamic susceptibility contrast-MRI (DSC-MRI), with emphasis on their recent clinical applications in gliomas including tumor grading, identification of molecular characteristics, differentiation of glioma from other brain tumors, treatment response assessment, and predicting prognosis. Current challenges and future perspectives are also highlighted.
Collapse
|
8
|
Vittori M, Breznik B, Gredar T, Hrovat K, Bizjak Mali L, Lah TT. Imaging of human glioblastoma cells and their interactions with mesenchymal stem cells in the zebrafish (Danio rerio) embryonic brain. Radiol Oncol 2016; 50:159-67. [PMID: 27247548 PMCID: PMC4852964 DOI: 10.1515/raon-2016-0017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/07/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND An attractive approach in the study of human cancers is the use of transparent zebrafish (Danio rerio) embryos, which enable the visualization of cancer progression in a living animal. MATERIALS AND METHODS We implanted mixtures of fluorescently labeled glioblastoma (GBM) cells and bonemarrow-derived mesenchymal stem cells (MSCs) into zebrafish embryos to study the cellular pathways of their invasion and the interactions between these cells in vivo. RESULTS By developing and applying a carbocyanine-dye-compatible clearing protocol for observation of cells in deep tissues, we showed that U87 and U373 GBM cells rapidly aggregated into tumor masses in the ventricles and midbrain hemispheres of the zebrafish embryo brain, and invaded the central nervous system, often using the ventricular system and the central canal of the spinal cord. However, the GBM cells did not leave the central nervous system. With co-injection of differentially labeled cultured GBM cells and MSCs, the implanted cells formed mixed tumor masses in the brain. We observed tight associations between GBM cells and MSCs, and possible cell-fusion events. GBM cells and MSCs used similar invasion routes in the central nervous system. CONCLUSIONS This simple model can be used to study the molecular pathways of cellular processes in GBM cell invasion, and their interactions with various types of stromal cells in double or triple cell co-cultures, to design anti-GBM cell therapies that use MSCs as vectors.
Collapse
Affiliation(s)
- Milos Vittori
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Tajda Gredar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Lilijana Bizjak Mali
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|