1
|
Nishiyama A, Niihori T, Suzuki N, Izumi R, Akiyama T, Kato M, Funayama R, Nakayama K, Warita H, Aoki Y, Aoki M. Updated Genetic Analysis of Japanese Familial ALS Patients Carrying SOD1 Variants Revealed Phenotypic Differences for Common Variants. Neurol Genet 2024; 10:e200196. [PMID: 39502740 PMCID: PMC11537459 DOI: 10.1212/nxg.0000000000200196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/14/2024] [Indexed: 11/08/2024]
Abstract
Background and Objectives Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disease. Approximately 10% of ALS cases are familial, and more than 20 causative genes have been identified. As we have previously reported, SOD1 variants are the most common causes of familial ALS in Japan. Because antisense oligonucleotides for SOD1-linked ALS are being used in practical applications, the types of variants and the clinical features of patients need to be updated. Methods We consecutively recruited 160 families with familial ALS in Japan. We performed genetic analyses, focusing on SOD1-linked ALS as the most common in our cohort, updated their genotypes, and characterized clinical phenotypes. Results A total of 26 SOD1 variants in 56 patients and 49 families (30.6%) were collected, with the 3 most common (p.His47Arg [the conventional numbering; H46R], p.Leu127Ser [L126S], p.Asn87Ser [N86S]) accounting for 38.8% of all families. We also identified 2 novel variants (p.Ile36Phe [I35F] and p.Asn132Argfs*3 [N131Rfs*3]). The mean age at onset was 48.9 ± 12.2 (mean ± SD) years for all patients with SOD1-linked ALS. Lower limb onset comprised 70% of cases. The mean disease duration was 64.7 ± 82 months, and the median survival was 71.5 months. Some variants led to a relatively homogeneous phenotype, although clinical characteristics differed among types of variants and families. Patients with p.His47Arg (H46R) showed slower progression with lower limb onset and a predominance of lower motor neuron involvement. The p.Leu127Ser (L126S) variant led to varying degrees of progression in heterozygous or homozygous states and presented incomplete penetrance. Intrafamilial phenotypic differences were observed in families carrying p.Asn87Ser (N86S). Four variants (p.Cys7Gly [C6G], p.His44Arg [H43R], p.Leu85Val [L84V], and p.Cys147Arg [C146R]) were found to be associated with rapid disease progression. Discussion The genetic basis of familial ALS, at least for SOD1 variants, still differed by geographic and ethnic background. Understanding these clinical profiles will help optimize evaluation in targeted gene therapy worldwide and benefit efficient diagnosis, leading to precise application in clinical practice.
Collapse
Affiliation(s)
- Ayumi Nishiyama
- From the Departments of Neurology (A.N., N.S., R.I., T.A., M.K., H.W., M.A.), and Medical Genetics (T.N., R.I., Y.A.), Tohoku University School of Medicine; and Division of Cell Proliferation (R.F., K.N.), United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- From the Departments of Neurology (A.N., N.S., R.I., T.A., M.K., H.W., M.A.), and Medical Genetics (T.N., R.I., Y.A.), Tohoku University School of Medicine; and Division of Cell Proliferation (R.F., K.N.), United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Suzuki
- From the Departments of Neurology (A.N., N.S., R.I., T.A., M.K., H.W., M.A.), and Medical Genetics (T.N., R.I., Y.A.), Tohoku University School of Medicine; and Division of Cell Proliferation (R.F., K.N.), United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rumiko Izumi
- From the Departments of Neurology (A.N., N.S., R.I., T.A., M.K., H.W., M.A.), and Medical Genetics (T.N., R.I., Y.A.), Tohoku University School of Medicine; and Division of Cell Proliferation (R.F., K.N.), United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Akiyama
- From the Departments of Neurology (A.N., N.S., R.I., T.A., M.K., H.W., M.A.), and Medical Genetics (T.N., R.I., Y.A.), Tohoku University School of Medicine; and Division of Cell Proliferation (R.F., K.N.), United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaaki Kato
- From the Departments of Neurology (A.N., N.S., R.I., T.A., M.K., H.W., M.A.), and Medical Genetics (T.N., R.I., Y.A.), Tohoku University School of Medicine; and Division of Cell Proliferation (R.F., K.N.), United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Funayama
- From the Departments of Neurology (A.N., N.S., R.I., T.A., M.K., H.W., M.A.), and Medical Genetics (T.N., R.I., Y.A.), Tohoku University School of Medicine; and Division of Cell Proliferation (R.F., K.N.), United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Nakayama
- From the Departments of Neurology (A.N., N.S., R.I., T.A., M.K., H.W., M.A.), and Medical Genetics (T.N., R.I., Y.A.), Tohoku University School of Medicine; and Division of Cell Proliferation (R.F., K.N.), United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Warita
- From the Departments of Neurology (A.N., N.S., R.I., T.A., M.K., H.W., M.A.), and Medical Genetics (T.N., R.I., Y.A.), Tohoku University School of Medicine; and Division of Cell Proliferation (R.F., K.N.), United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Aoki
- From the Departments of Neurology (A.N., N.S., R.I., T.A., M.K., H.W., M.A.), and Medical Genetics (T.N., R.I., Y.A.), Tohoku University School of Medicine; and Division of Cell Proliferation (R.F., K.N.), United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- From the Departments of Neurology (A.N., N.S., R.I., T.A., M.K., H.W., M.A.), and Medical Genetics (T.N., R.I., Y.A.), Tohoku University School of Medicine; and Division of Cell Proliferation (R.F., K.N.), United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Bombaci A, Lupica A, Pozzi FE, Remoli G, Manera U, Di Stefano V. Sensory neuropathy in amyotrophic lateral sclerosis: a systematic review. J Neurol 2023; 270:5677-5691. [PMID: 37610446 PMCID: PMC10632209 DOI: 10.1007/s00415-023-11954-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the degeneration of both upper and lower motoneurons, leading to motor and non-motor symptoms. Recent evidence suggests that ALS is indeed a multisystem disorder, associated with cognitive impairment, dysautonomia, pain and fatigue, excess of secretions, and sensory symptoms. To evaluate whether sensory neuropathy could broaden its spectrum, we systematically reviewed its presence and characteristics in ALS, extracting data on epidemiological, clinical, neurophysiological, neuropathological, and genetic features. Sensory neuropathy can be found in up to 20% of ALS patients, affecting both large and small fibers, although there is a great heterogeneity related to different techniques used for its detection (electromyography vs skin biopsy vs nerve biopsy). Moreover, the association between CIDP-like neuropathy and ALS needs to be better explored, although it could be interpreted as part of the neuroinflammatory process in the latter disease. Sensory neuropathy in ALS may be associated with a spinal onset and might be more frequent in SOD1 patients. Moreover, it seems mutually exclusive with cognitive impairment. No associations with sex and other genetic mutation were observed. All these data in the literature reveal the importance of actively looking for sensory neuropathy in ALS patients, and suggest including sensory neuropathy among ALS non-motor features, as it may explain sensory symptoms frequently reported throughout the course of the disease. Its early identification could help avoid diagnostic delays and improve patients' treatment and quality of life.
Collapse
Affiliation(s)
- Alessandro Bombaci
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, UK
| | - Antonino Lupica
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127, Palermo, Italy
| | - Federico Emanuele Pozzi
- Neuroscience, University of Milano-Bicocca, Milan, Italy.
- Neurology Department, Fondazione IRCCS San Gerardo, Monza, Italy.
| | - Giulia Remoli
- Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Umberto Manera
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- SC Neurologia 1U, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127, Palermo, Italy
| |
Collapse
|
3
|
Liu P, Tang Y, Li W, Liu Z, Zhou M, Li J, Yuan Y, Fang L, Guo J, Shen L, Jiang H, Tang B, Hu S, Wang J. Brain metabolic signatures in patients with genetic and nongenetic amyotrophic lateral sclerosis. CNS Neurosci Ther 2023. [PMID: 36971206 PMCID: PMC10401109 DOI: 10.1111/cns.14193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
AIMS To study the brain metabolic signature in Chinese amyotrophic lateral sclerosis (ALS) patients and compare the difference in brain metabolic patterns between ALS with and without genetic variants. METHODS We included 146 patients with ALS and 128 healthy controls (HCs). All patients with ALS underwent genetic testing to screen for ALS related genetic variants and were then divided into genetic (n = 22) and nongenetic ALS (n = 93) subgroups. All participants underwent brain 18 F-FDG-PET scans. Group comparisons were performed using the two-sample t-test model of SPM12. RESULTS We identified a large of hypometabolic clusters in ALS patients as compared with HCs, especially in the bilateral basal ganglia, midbrain, and cerebellum. Moreover, hypometabolism in the bilateral temporal lobe, precentral gyrus and hypermetabolism in the left anterior cingulate, occipital lobe, and bilateral frontal lobe were also found in ALS patients as compared with HCs. Compared with nongenetic ALS patients, genetic ALS patients showed hypometabolism in the right postcentral gyrus, precuneus, and middle occipital gyrus. The incidence of sensory disturbance in patients with genetic ALS was higher than that in patients with nongenetic ALS (5 of 22 [22.72%] vs. 7 of 93 [7.52%], p = 0.036). CONCLUSIONS Our investigation provided unprecedented evidence of relative hypometabolism in the midbrain and cerebellum in ALS patients. Genetic ALS patients showed a specific signature of brain metabolism and a higher incidence of sensory disturbance, indicating that genetic factors may be an underlying cause affecting the brain metabolism and increasing the risk of sensory disturbance in ALS.
Collapse
|
4
|
Suzuki N, Nishiyama A, Warita H, Aoki M. Genetics of amyotrophic lateral sclerosis: seeking therapeutic targets in the era of gene therapy. J Hum Genet 2023; 68:131-152. [PMID: 35691950 PMCID: PMC9968660 DOI: 10.1038/s10038-022-01055-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable disease that causes respiratory failure leading to mortality. The main locus of ALS is motor neurons. The success of antisense oligonucleotide (ASO) therapy in spinal muscular atrophy (SMA), a motor neuron disease, has triggered a paradigm shift in developing ALS therapies. The causative genes of ALS and disease-modifying genes, including those of sporadic ALS, have been identified one after another. Thus, the freedom of target choice for gene therapy has expanded by ASO strategy, leading to new avenues for therapeutic development. Tofersen for superoxide dismutase 1 (SOD1) was a pioneer in developing ASO for ALS. Improving protocols and devising early interventions for the disease are vital. In this review, we updated the knowledge of causative genes in ALS. We summarized the genetic mutations identified in familial ALS and their clinical features, focusing on SOD1, fused in sarcoma (FUS), and transacting response DNA-binding protein. The frequency of the C9ORF72 mutation is low in Japan, unlike in Europe and the United States, while SOD1 and FUS are more common, indicating that the target mutations for gene therapy vary by ethnicity. A genome-wide association study has revealed disease-modifying genes, which could be the novel target of gene therapy. The current status and prospects of gene therapy development were discussed, including ethical issues. Furthermore, we discussed the potential of axonal pathology as new therapeutic targets of ALS from the perspective of early intervention, including intra-axonal transcription factors, neuromuscular junction disconnection, dysregulated local translation, abnormal protein degradation, mitochondrial pathology, impaired axonal transport, aberrant cytoskeleton, and axon branching. We simultaneously discuss important pathological states of cell bodies: persistent stress granules, disrupted nucleocytoplasmic transport, and cryptic splicing. The development of gene therapy based on the elucidation of disease-modifying genes and early intervention in molecular pathology is expected to become an important therapeutic strategy in ALS.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| |
Collapse
|
5
|
Behl T, Kaur G, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bungau SG, Munteanu MA, Brisc MC, Andronie-Cioara FL, Brisc C. Elucidating the Multi-Targeted Role of Nutraceuticals: A Complementary Therapy to Starve Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4045. [PMID: 33919895 PMCID: PMC8070907 DOI: 10.3390/ijms22084045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying multifactorial diseases are always complex and challenging. Neurodegenerative disorders (NDs) are common around the globe, posing a critical healthcare issue and financial burden to the country. However, integrative evidence implies some common shared mechanisms and pathways in NDs, which include mitochondrial dysfunction, neuroinflammation, oxidative stress, intracellular calcium overload, protein aggregates, oxidative stress (OS), and neuronal destruction in specific regions of the brain, owing to multifaceted pathologies. The co-existence of these multiple pathways often limits the advantages of available therapies. The nutraceutical-based approach has opened the doors to target these common multifaceted pathways in a slow and more physiological manner to starve the NDs. Peer-reviewed articles were searched via MEDLINE and PubMed published to date for in-depth research and database collection. Considered to be complementary therapy with current clinical management and common drug therapy, the intake of nutraceuticals is considered safe to target multiple mechanisms of action in NDs. The current review summarizes the popular nutraceuticals showing different effects (anti-inflammatory, antioxidant, neuro-protectant, mitochondrial homeostasis, neurogenesis promotion, and autophagy regulation) on vital molecular mechanisms involved in NDs, which can be considered as complementary therapy to first-line treatment. Moreover, owing to its natural source, lower toxicity, therapeutic interventions, biocompatibility, potential nutritional effects, and presence of various anti-oxidative and neuroprotective constituents, the nutraceuticals serve as an attractive option to tackle NDs.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| |
Collapse
|
6
|
Lin HX, Tao QQ, Wei Q, Chen CX, Chen YC, Li HF, Gitler AD, Wu ZY. Identification and functional analysis of novel mutations in the SOD1 gene in Chinese patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:222-228. [PMID: 30887850 DOI: 10.1080/21678421.2019.1582668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective involvement of motor neurons in the central nervous system (CNS). The most common causative gene of ALS in the Chinese population is the Cu/Zn superoxide dismutase 1 (SOD1) gene, which accounts for 20-42.9% of familial ALS (FALS) and 1-2% of sporadic ALS (SALS) cases. In this study, we identify three novel SOD1 mutations, Gly17Cys, Pro75Ser, and His121Gln, in four ALS pedigrees. A functional analysis was performed, and the results showed that all three mutations could lead to the formation of misfolded proteins. In addition, genotype-phenotype correlations in these patients are also described. Our study helps to characterize the genotype and phenotype of ALS with SOD1 mutations.
Collapse
Affiliation(s)
- Hui-Xia Lin
- a Department of Neurology and Institute of Neurology , First Affiliated Hospital Fujian Medical University , Fuzhou , China
| | - Qing-Qing Tao
- b Department of Neurology and Research Centre of Neurology, Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province , Zhejiang University School of Medicine , Hangzhou , China , and
| | - Qiao Wei
- b Department of Neurology and Research Centre of Neurology, Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province , Zhejiang University School of Medicine , Hangzhou , China , and
| | - Cong-Xin Chen
- a Department of Neurology and Institute of Neurology , First Affiliated Hospital Fujian Medical University , Fuzhou , China
| | - Yu-Chao Chen
- b Department of Neurology and Research Centre of Neurology, Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province , Zhejiang University School of Medicine , Hangzhou , China , and
| | - Hong-Fu Li
- b Department of Neurology and Research Centre of Neurology, Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province , Zhejiang University School of Medicine , Hangzhou , China , and
| | - Aaron D Gitler
- c Department of Genetics , Stanford University School of Medicine , Stanford , CA , USA
| | - Zhi-Ying Wu
- a Department of Neurology and Institute of Neurology , First Affiliated Hospital Fujian Medical University , Fuzhou , China.,b Department of Neurology and Research Centre of Neurology, Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province , Zhejiang University School of Medicine , Hangzhou , China , and
| |
Collapse
|
7
|
Lenglet T, Camdessanché JP. Amyotrophic lateral sclerosis or not: Keys for the diagnosis. Rev Neurol (Paris) 2017; 173:280-287. [PMID: 28461025 DOI: 10.1016/j.neurol.2017.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease (MND) which prognosis is poor. Early diagnosis permit to set up immediately adapted treatment and cares. Available diagnostic criteria are based on the detection of both central and peripheral motor neuron injury in bulbar, cervical, thoracic and lumbar regions. Electrodiagnostic (EDX) tests are the key tools to identify peripheral motor neuron involvement. Needle examination records abnormal activities at rest, and looks for neurogenic pattern during muscle contraction. Motor unit potentials morphology is modified primary to recruitment. Motor evoked potentials remain the test of choice to identify impairment of central motor neurons. In the absence of diagnostic biomarker of ALS and among essential investigations of suspected MND, a careful clinical and neurophysiological work-up is essential to rule out the differential diagnosis.
Collapse
Affiliation(s)
- T Lenglet
- Département de neurophysiologie clinique, Hôpital de la Salpêtrière, Assistance Publique-Hôpitaux de Paris, France; Centre Référent Maladies du Motoneurone et SLA, Hôpital de la Salpêtrière, Assistance Publique-Hôpitaux de Paris, France
| | - J-P Camdessanché
- Service de Neurologie, Hôpital Nord, CHU de Saint-Etienne, France; Centre Référent Maladies du Motoneurone et SLA, CHU de Saint-Etienne, France.
| |
Collapse
|