1
|
Bartolomei F. The epileptogenic network concept: Applications in the SEEG exploration of lesional focal epilepsies. Neurophysiol Clin 2024; 54:103023. [PMID: 39481212 DOI: 10.1016/j.neucli.2024.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
The advent of advanced brain imaging techniques has significantly enhanced the understanding and treatment of focal epilepsies, with identifiable brain lesions present in 80 % of cases. Despite this, surgical outcomes remain varied, often influenced by lesion type and location. Traditional lesion-centric approaches may overlook the complex organization of the epileptogenic zone (EZ), which often extends beyond the visible lesion, emphasizing the need for comprehensive presurgical evaluations like stereo-electroencephalography (SEEG) in some cases. This article delves into the concept of epileptogenic networks, moving beyond the notion of a lesional epileptic focus. Through SEEG, three primary network types have been identified: the Epileptogenic Zone Network (EZN), characterized by regions with heightened epileptogenicity and seizure initiation; the Propagation Zone Network (PZN), involving regions with delayed and less intense epileptic activity; and Non-Involved networks (NI). Quantitative measures, such as the epileptogenicity index (EI), aid in delineating these networks, revealing that EZN can be focal or networked, with the latter being more prevalent. The relationship between epilepsy-associated lesions and network organization is complex. Intrinsically epileptogenic lesions, like focal cortical dysplasia and periventricular nodular heterotopias, often generate epileptiform activities but may still involve broader epileptogenic networks. Non-intrinsically epileptogenic lesions, such as cavernomas and post-stroke lesions, typically lack inherent neuronal activity but can facilitate the development of extensive epileptogenic networks. Understanding the intricacies of these networks is crucial for optimizing surgical interventions. Recognizing that lesions may represent just one node within a broader epileptogenic network underscores the importance of comprehensive SEEG evaluations to achieve better surgical outcomes.
Collapse
Affiliation(s)
- Fabrice Bartolomei
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France.
| |
Collapse
|
2
|
Huang Q, Xie P, Zhou J, Ding H, Liu Z, Li T, Guan Y, Wang M, Wang J, Teng P, Zhu M, Ma K, Wu H, Luan G, Zhai F. Predictors of seizure outcomes in stereo-electroencephalography-guided radio-frequency thermocoagulation for MRI-negative epilepsy. Ther Adv Chronic Dis 2024; 15:20406223241236258. [PMID: 38496233 PMCID: PMC10943718 DOI: 10.1177/20406223241236258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Background One-third of intractable epilepsy patients have no visually identifiable focus for neurosurgery based on imaging tests [magnetic resonance imaging (MRI)-negative cases]. Stereo-electroencephalography-guided radio-frequency thermocoagulation (SEEG-guided RF-TC) is utilized in the clinical treatment of epilepsy to lower the incidence of complications post-open surgery. Objective This study aimed to identify prognostic factors and long-term seizure outcomes in SEEG-guided RF-TC for patients with MRI-negative epilepsy. Design This was a single-center retrospective cohort study. Methods We included 30 patients who had undergone SEEG-guided RF-TC at Sanbo Brain Hospital, Capital Medical University, from April 2015 to December 2019. The probability of remaining seizure-free and the plotted survival curves were analyzed. Prognostic factors were analyzed using log-rank tests in univariate analysis and the Cox regression model in multivariate analysis. Results With a mean time of 31.07 ± 2.64 months (median 30.00, interquartile range: 18.00-40.00 months), 11 out of 30 patients (36.7%) were classified as International League Against Epilepsy class 1 in the last follow-up. The mean time of remaining seizure-free was 21.33 ± 4.55 months [95% confidence interval (CI) 12.41-30.25], and the median time was 3.00 ± 0.54 months (95% CI 1.94-4.06). Despite falling in the initial year, the probability of remaining seizure-free gradually stabilizes in the subsequent years. The patients were more likely to obtain seizure freedom when the epileptogenic zone was located in the insular lobe or with one focus on the limbic system (p = 0.034, hazard ratio 5.019, 95% CI 1.125-22.387). Conclusion Our findings may be applied to guide individualized surgical interventions and help clinicians make better decisions.
Collapse
Affiliation(s)
- Qi Huang
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Pandeng Xie
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Haoran Ding
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Zhao Liu
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Tianfu Li
- Department of Brain Institute, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Yuguang Guan
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Mengyang Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Jing Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Pengfei Teng
- Department of Magnetoencephalography, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Mingwang Zhu
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Kaiqiang Ma
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Han Wu
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, XiangshanYikesong 50, Haidian District, Beijing 100093, China
| | - Feng Zhai
- Department of Neurosurgery, Center of Epilepsy, Sanbo Brain Hospital, Capital Medical University, XiangshanYikesong 50, Haidian District, Beijing 100093, China
- Department of Functional Neurosurgery, Neurological Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| |
Collapse
|
3
|
Czarnetzki C, Spinelli L, Huppertz HJ, Schaller K, Momjian S, Lobrinus J, Vargas MI, Garibotto V, Vulliemoz S, Seeck M. Yield of non-invasive imaging in MRI-negative focal epilepsy. J Neurol 2024; 271:995-1003. [PMID: 37907727 PMCID: PMC10827933 DOI: 10.1007/s00415-023-11987-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVE The absence of MRI-lesion reduces considerably the probability of having an excellent outcome (International League Against Epilepsies [ILAE] class I-II) after epilepsy surgery. Surgical success in magnetic-resonance imaging (MRI)-negative cases relies therefore mainly on non-invasive techniques such as positron-emission tomography (PET), subtraction ictal/inter-ictal single-photon-emission-computed-tomography co-registered to MRI (SISCOM), electric source imaging (ESI) and morphometric MRI analysis (MAP). We were interested in identifying the optimal imaging technique or combination to achieve post-operative class I-II in patients with MRI-negative focal epilepsy. METHODS We identified 168 epileptic patients without MRI lesion. Thirty-three (19.6%) were diagnosed with unifocal epilepsy, underwent surgical resection and follow-up ⩾ 2 years. Sensitivity, specificity, predictive values, and diagnostic odds ratio (OR) were calculated for each technique individually and in combination (after co-registration). RESULTS 23/33 (70%) were free of disabling seizures (75.0% with temporal and 61.5% extratemporal lobe epilepsy). None of the individual modalities presented an OR > 1.5, except ESI if only patients with interictal epileptiform discharges (IEDs) were considered (OR 3.2). On a dual combination, SISCOM with ESI presented the highest outcome (OR = 6). MAP contributed to detecting indistinguishable focal cortical dysplasia in particular in extratemporal epilepsies with a sensitivity of 75%. Concordance of PET, ESI on interictal epileptic discharges, and SISCOM was associated with the highest chance for post-operative seizure control (OR = 11). CONCLUSION If MRI is negative, the chances to benefit from epilepsy surgery are almost as high as in lesional epilepsy, provided that multiple established non-invasive imaging tools are rigorously applied and co-registered together.
Collapse
Affiliation(s)
- Christian Czarnetzki
- EEG & Epilepsy Unit, Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, University of Geneva, 4, Rue Gabrielle-Perret-Gentil, 1211, Geneva, Switzerland.
| | - Laurent Spinelli
- EEG & Epilepsy Unit, Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, University of Geneva, 4, Rue Gabrielle-Perret-Gentil, 1211, Geneva, Switzerland
| | | | - Karl Schaller
- Department of Clinical Neurosciences, Neurosurgery Clinic, University Hospital of Geneva, Geneva, Switzerland
| | - Shahan Momjian
- Department of Clinical Neurosciences, Neurosurgery Clinic, University Hospital of Geneva, Geneva, Switzerland
| | - Johannes Lobrinus
- Department of Clinical Pathology, Faculty of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Maria-Isabel Vargas
- Department of Radiology, Faculty of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Department of Radiology, Faculty of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Serge Vulliemoz
- EEG & Epilepsy Unit, Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, University of Geneva, 4, Rue Gabrielle-Perret-Gentil, 1211, Geneva, Switzerland
| | - Margitta Seeck
- EEG & Epilepsy Unit, Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, University of Geneva, 4, Rue Gabrielle-Perret-Gentil, 1211, Geneva, Switzerland.
| |
Collapse
|
4
|
PET/MRI in the Presurgical Evaluation of Patients with Epilepsy: A Concordance Analysis. Biomedicines 2022; 10:biomedicines10050949. [PMID: 35625684 PMCID: PMC9138772 DOI: 10.3390/biomedicines10050949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of our prospective study was to evaluate the clinical impact of hybrid [18F]-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ([18F]-FDG PET/MRI) on the decision workflow of epileptic patients with discordant electroclinical and MRI data. A novel mathematical model was introduced for a clinical concordance calculation supporting the classification of our patients by subgroups of clinical decisions. Fifty-nine epileptic patients with discordant clinical and diagnostic results or MRI negativity were included in this study. The diagnostic value of the PET/MRI was compared to other modalities of presurgical evaluation (e.g., electroclinical data, PET, and MRI). The results of the population-level statistical analysis of the introduced data fusion technique and concordance analysis demonstrated that this model could be the basis for the development of a more accurate clinical decision support parameter in the future. Therefore, making the establishment of “invasive” (operable and implantable) and “not eligible for any further invasive procedures” groups could be much more exact. Our results confirmed the relevance of PET/MRI with the diagnostic algorithm of presurgical evaluation. The introduction of a concordance analysis could be of high importance in clinical and surgical decision-making in the management of epileptic patients. Our study corroborated previous findings regarding the advantages of hybrid PET/MRI technology over MRI and electroclinical data.
Collapse
|
5
|
Haemels M, Van Weehaeghe D, Cleeren E, Dupont P, van Loon J, Theys T, Van Laere K, Van Paesschen W, Goffin K. Predictive value of metabolic and perfusion changes outside the seizure onset zone for postoperative outcome in patients with refractory focal epilepsy. Acta Neurol Belg 2022; 122:325-335. [PMID: 33544336 DOI: 10.1007/s13760-020-01569-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/08/2020] [Indexed: 01/30/2023]
Abstract
The value of functional molecular changes outside the seizure onset zone as independent predictive factors of surgical outcome has been scarcely evaluated. The aim of this retrospective study was to evaluate relative metabolic and perfusion changes outside the seizure onset zone as predictors of postoperative outcome in patients with unifocal refractory focal epilepsy. Eighty-six unifocal epilepsy patients who underwent 18F-FDG PET prior to surgery were included. Ictal and interictal perfusion SPECT was available in 65 patients. Good postoperative outcome was defined as the International League against Epilepsy class 1. Using univariate statistical analysis, the predictive ability of volume-of-interest based relative metabolism/perfusion for outcome classification was quantified by AUC ROC-curve, using composite, unilateral cortical (frontal, orbitofrontal, temporal, parietal, occipital) and central volumes-of-interest. The results were cross-validated, and a false discovery rate (FDR) correction was applied. As a secondary objective, a subgroup analysis was performed on temporal lobe epilepsy patients (N = 64). Increased relative ictal perfusion in the contralateral central volume-of-interest was significantly associated with the good surgical outcome both in the total population (AUC 0.79, pFDR = 0.009) and the temporal lobe epilepsy subgroup (AUC 0.80, pFDR = 0.028). No other significant associations between functional molecular changes and postoperative outcome were found. Increased relative ictal perfusion in the contralateral central region significantly predicted outcome after epilepsy surgery in patients with refractory focal epilepsy. We postulate that these relative perfusion changes could be an expression of better preoperative neuronal network integration and centralization in the contralateral central structures, which is suggested to be associated with better postoperative outcome.
Collapse
|
6
|
Kogias E, Altenmüller DM, Karakolios K, Egger K, Coenen VA, Schulze-Bonhage A, Reinacher PC. Electrode placement for SEEG: Combining stereotactic technique with latest generation planning software for intraoperative visualization and postoperative evaluation of accuracy and accuracy predictors. Clin Neurol Neurosurg 2022; 213:107137. [DOI: 10.1016/j.clineuro.2022.107137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/24/2022]
|
7
|
Sun K, Yu T, Yang D, Ren Z, Qiao L, Ni D, Wang X, Zhao Y, Chen X, Xiang J, Chen N, Gao R, Yang K, Lin Y, Kober T, Zhang G. Fluid and White Matter Suppression Imaging and Voxel-Based Morphometric Analysis in Conventional Magnetic Resonance Imaging-Negative Epilepsy. Front Neurol 2021; 12:651592. [PMID: 33995250 PMCID: PMC8116947 DOI: 10.3389/fneur.2021.651592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/18/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose: Delineation of subtle lesions in magnetic resonance imaging (MRI)-negative patients is of great importance in preoperative epilepsy evaluation. The aim of our study was to explore the diagnostic value of the novel fluid and white matter suppression (FLAWS) sequence in comparison with a voxel-based MRI postprocessing morphometric analysis program (MAP) in a consecutive cohort of non-lesional patients. Methods: Surgical candidates with a negative finding on an official neuroradiology report were enrolled. High-resolution FLAWS image and MAP maps generated based on high-resolution three-dimensional (3D) T1 image were visually inspected for each patient. The findings of FLAWS or MAP-positive (FLAWS/MAP+) regions were compared with the surgical resection cavity in correlation with surgical outcome and pathology. Results: Forty-five patients were enrolled; the pathological examination revealed focal cortical dysplasia (FCD) in 32 patients and other findings in 13 patients. The positive rate, sensitivity, and specificity were 48.9%, 0.43, and 0.87, respectively, for FLAWS and 64.4%, 0.57, and 0.8, respectively, for MAP. Concordance between surgical resection and FLAWS+ or MAP+ regions was significantly associated with a seizure-free outcome (FLAWS: p = 0.002; MAP: p = 0.0003). A positive finding in FLAWS and MAP together with abnormalities in the same gyrus (FLAWS–MAP gyral+) was detected in 31.1% of patients. FLAWS+ only and MAP+ only were found in 7 (15.5%) and 14 (31.1%) patients, respectively. Conclusions: FLAWS showed a promising value for identifying subtle epileptogenic lesions and can be used as a complement to current MAP in patients with MRI-negative epilepsy.
Collapse
Affiliation(s)
- Ke Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongju Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Zhao
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Xiang
- Department of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Nan Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- Department of Evidence-Based Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yicong Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Kaewchur T, Chamroonrat W, Thientunyakit T, Khiewvan B, Wongsurawat N, Chotipanich C, Chinvarun Y, Bunyaratavej K, Amnuaywattakorn S, Poon-Iad N, Sontrapornpol T, Pasawang P, Tepmongkol S. Thai National Guideline for Nuclear Medicine Investigations in Epilepsy. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2021; 9:188-206. [PMID: 34250150 PMCID: PMC8255518 DOI: 10.22038/aojnmb.2021.54567.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/20/2021] [Accepted: 04/17/2021] [Indexed: 11/06/2022]
Abstract
Epilepsy is a disorder of the brain, which is characterized by recurrent epileptic seizures. These patients are generally treated with antiepileptic drugs. However, more than 30% of the patients become medically intractable and undergo a series of investigations to define candidates for epilepsy surgery. Nuclear Medicine studies using Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) radiopharmaceuticals are among the investigations used for this purpose. Since available guidelines for the investigation of surgical candidates are not up-to-date, The Nuclear Medicine Society of Thailand, The Neurological Society of Thailand, The Royal College of Neurological Surgeons of Thailand, and The Thai Medical Physicist Society has collaborated to develop this Thai national guideline for Nuclear Medicine study in epilepsy. The guideline focuses on the use of brain perfusion SPECT and F-18 fluorodeoxyglucose PET (FDG-PET), the mainly used methods in day-to-day practice. This guideline aims for effective use of Nuclear Medicine investigations by referring physicians e.g. epileptologists and neurologists, radiologists, nuclear medicine physicians, medical physicists, nuclear medicine technologists and technicians.
Collapse
Affiliation(s)
- Tawika Kaewchur
- Department of Radiology, PET/CT and Cyclotron Center, Chiang Mai University, Chiang Mai, Thailand
| | - Wichana Chamroonrat
- Division of Nuclear Medicine, Department of Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tanyaluck Thientunyakit
- Division of Nuclear Medicine, Department of Radiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Benjapa Khiewvan
- Division of Nuclear Medicine, Department of Radiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nantaporn Wongsurawat
- Division of Nuclear Medicine, Department of Radiology, Khon Kaen University, Khon Kaen, Thailand
| | | | - Yotin Chinvarun
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | | | - Sasithorn Amnuaywattakorn
- Division of Nuclear Medicine, Department of Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nucharee Poon-Iad
- Division of Nuclear Medicine, Department of Radiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tanawat Sontrapornpol
- Division of Nuclear Medicine, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Panya Pasawang
- Division of Nuclear Medicine, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Supatporn Tepmongkol
- Nuclear Medicine Division, Department of Radiology, Chulalongkorn University, Rama IV Rd, Pathumwan, Bangkok, Thailand
| |
Collapse
|
9
|
The predictive value of hypometabolism in focal epilepsy: a prospective study in surgical candidates. Eur J Nucl Med Mol Imaging 2019; 46:1806-1816. [PMID: 31144060 DOI: 10.1007/s00259-019-04356-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/01/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE FDG PET is an established tool in presurgical epilepsy evaluation, but it is most often used selectively in patients with discordant MRI and EEG results. Interpretation is complicated by the presence of remote or multiple areas of hypometabolism, which leads to doubt as to the true location of the seizure onset zone (SOZ) and might have implications for predicting the surgical outcome. In the current study, we determined the sensitivity and specificity of PET localization prospectively in a consecutive unselected cohort of patients with focal epilepsy undergoing in-depth presurgical evaluation. METHODS A total of 130 patients who underwent PET imaging between 2006 and 2015 matched our inclusion criteria, and of these, 86 were operated on (72% with a favourable surgical outcome, Engel class I). Areas of focal hypometabolism were identified using statistical parametric mapping and concordance with MRI, EEG and intracranial EEG was evaluated. In the surgically treated patients, postsurgical outcome was used as the gold standard for correctness of localization (minimum follow-up 12 months). RESULTS PET sensitivity and specificity were both 95% in 86 patients with temporal lobe epilepsy (TLE) and 80% and 95%, respectively, in 44 patients with extratemporal epilepsy (ETLE). Significant extratemporal hypometabolism was observed in 17 TLE patients (20%). Temporal hypometabolism was observed in eight ETLE patients (18%). Among the 86 surgically treated patients, 26 (30%) had hypometabolism extending beyond the SOZ. The presence of unilobar hypometabolism, included in the resection, was predictive of complete seizure control (p = 0.007), with an odds ratio of 5.4. CONCLUSION Additional hypometabolic areas were found in one of five of this group of nonselected patients with focal epilepsy, including patients with "simple" lesional epilepsy, and this finding should prompt further in-depth evaluation of the correlation between EEG findings, semiology and PET. Hypometabolism confined to the epileptogenic zone as defined by EEG and MRI is associated with a favourable postoperative outcome in both TLE and ETLE patients.
Collapse
|
10
|
Lagarde S, Scholly J, Popa I, Valenti-Hirsch MP, Trebuchon A, McGonigal A, Milh M, Staack AM, Lannes B, Lhermitte B, Proust F, Benmekhbi M, Scavarda D, Carron R, Figarella-Branger D, Hirsch E, Bartolomei F. Can histologically normal epileptogenic zone share common electrophysiological phenotypes with focal cortical dysplasia? SEEG-based study in MRI-negative epileptic patients. J Neurol 2019; 266:1907-1918. [DOI: 10.1007/s00415-019-09339-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 11/30/2022]
|
11
|
Abstract
Purpose of review Functional neuroimaging with PET and SPECT is a commonly used tool in presurgical evaluation. The following article reviews the literature of PET and SPECT in presurgical assessment of epilepsies published in the last year. Recent findings FDG-PET adds concomitant information in temporal and extratemporal lobe epilepsy in adults and children. The pattern of hypometabolism in FDG-PET is a good additional predictor or seizure outcome in TLE with mesial temporal sclerosis or negative MRI. There is growing evidence that diagnostic value of FDG-PET increases with postprocessing. Although several methods were applied in the reviewed literature, all of them seem to outperform the visual analysis. Imaging of the epileptic focus with ictal SPECT is depending on short injection latencies. It is particularly useful in patients with nonlesional MRI and mostly of extratemporal localization. Areas of hyperperfusion remote of SOZ are reflecting the epileptic network. Combining more concordant investigations including PET and SPECT in MRI-negative evaluation adds to better presurgical stratification and therefore, better postsurgical outcome. FET-PET shows increased uptake in status epilepticus. Summary PET and SPECT are important investigations to localize the epileptic focus in temporal lobe and nonlesional extratemporal epilepsies. Postprocessing for both modalities is important to increase diagnostic value.
Collapse
|
12
|
Kogias E, Schmeiser B, Doostkam S, Brandt A, Hammen T, Zentner J, Ramantani G. Multilobar Resections for 3T MRI-Negative Epilepsy: Worth the Trouble? World Neurosurg 2018; 123:e338-e347. [PMID: 30502474 DOI: 10.1016/j.wneu.2018.11.170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Multilobar resection in magnetic resonance imaging (MRI)-negative drug-resistant epilepsy warrants attention because they account for up to one third of MRI-negative epilepsy surgery. Despite their high prevalence, data are sparse, and the risk/benefit ratio continues to be debated. The present study investigated the postoperative seizure outcomes in this especially challenging subgroup. METHODS We retrospectively analyzed the data of 4 consecutive patients with 3T MRI-negative findings and drug-resistant focal epilepsy who had undergone multilobar epilepsy surgery at our institution. RESULTS The mean age at first surgery was 28.5 years (range, 14-48); 1 patient required 2 consecutive reoperations. The final resection was in the frontotemporal and temporo-parieto-occipital regions in 2 patients each. Histopathological examination revealed mild malformations of cortical development in 2 patients and focal cortical dysplasia type Ia and type IIa in 1 patient each. At the last follow-up examination (median, 3.3 years; range, 1-11), 2 patients were completely seizure free (Engel class Ia), 1 patient had experienced some disabling seizures after surgery but had been free of disabling seizures for 2 years at the last follow-up examination (Engel class Ic), and 1 patient had experienced worthwhile improvement (Engel class IIb) and had been seizure free for 1 year at the last follow-up examination. No surgical complications developed. CONCLUSIONS Our results have demonstrated that multilobar epilepsy surgery is effective for lasting seizure control for selected 3T MRI-negative candidates, leading to favorable outcomes for all 4 of our patients. Comprehensive multimodal preoperative evaluation is a prerequisite for postoperative success. Reevaluation should be considered for patients with seizure recurrence, because reoperation could be especially beneficial for selected patients who have not responded to an initially limited resection.
Collapse
Affiliation(s)
- Evangelos Kogias
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Barbara Schmeiser
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Soroush Doostkam
- Institute of Neuropathology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Armin Brandt
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Thilo Hammen
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Josef Zentner
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Georgia Ramantani
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neuropediatrics, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
|