1
|
Mirjalili S, Duarte A. More than the sum of its parts: investigating episodic memory as a multidimensional cognitive process. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590651. [PMID: 38712266 PMCID: PMC11071378 DOI: 10.1101/2024.04.22.590651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Why do we remember some events but forget others? Previous studies attempting to decode successful vs. unsuccessful brain states to investigate this question have met with limited success, potentially due, in part, to assessing episodic memory as a unidimensional process, despite evidence that multiple domains contribute to episodic encoding. Using a novel machine learning algorithm known as "transfer learning", we leveraged visual perception, sustained attention, and selective attention brain states to better predict episodic memory performance from trial-to-trial encoding electroencephalography (EEG) activity. We found that this multidimensional treatment of memory decoding improved prediction performance compared to traditional, unidimensional, methods, with each cognitive domain explaining unique variance in decoding of successful encoding-related neural activity. Importantly, this approach could be applied to cognitive domains outside of memory. Overall, this study provides critical insight into the underlying reasons why some events are remembered while others are not.
Collapse
|
2
|
Ryu H, Ju U, Wallraven C. Decoding visual fatigue in a visual search task selectively manipulated via myopia-correcting lenses. Front Neurosci 2024; 18:1307688. [PMID: 38660218 PMCID: PMC11039808 DOI: 10.3389/fnins.2024.1307688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Visual fatigue resulting from sustained, high-workload visual activities can significantly impact task performance and general wellbeing. So far, however, little is known about the underlying brain networks of visual fatigue. This study aimed to identify such potential networks using a unique paradigm involving myopia-correcting lenses known to directly modulate subjectively-perceived fatigue levels. Methods A sample of N = 31 myopia participants [right eye-SE: -3.77D (SD: 2.46); left eye-SE: -3.75D (SD: 2.45)] performed a demanding visual search task with varying difficulty levels, both with and without the lenses, while undergoing fMRI scanning. There were a total of 20 trials, after each of which participants rated the perceived difficulty and their subjective visual fatigue level. We used representational similarity analysis to decode brain regions associated with fatigue and difficulty, analyzing their individual and joint decoding pattern. Results and discussion Behavioral results showed correlations between fatigue and difficulty ratings and above all a significant reduction in fatigue levels when wearing the lenses. Imaging results implicated the cuneus, lingual gyrus, middle occipital gyrus (MOG), and declive for joint fatigue and difficulty decoding. Parts of the lingual gyrus were able to selectively decode perceived difficulty. Importantly, a broader network of visual and higher-level association areas showed exclusive decodability of fatigue (culmen, middle temporal gyrus (MTG), parahippocampal gyrus, precentral gyrus, and precuneus). Our findings enhance our understanding of processing within the context of visual search, attention, and mental workload and for the first time demonstrate that it is possible to decode subjectively-perceived visual fatigue during a challenging task from imaging data. Furthermore, the study underscores the potential of myopia-correcting lenses in investigating and modulating fatigue.
Collapse
Affiliation(s)
- Hyeongsuk Ryu
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Uijong Ju
- Department of Information Display, Kyunghee University, Seoul, Republic of Korea
| | - Christian Wallraven
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
- Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Shi P, Zhang Z, Feng X, Li C, Tang Y. Effect of physical exercise in real-world settings on executive function of atypical children: A systematic review and meta-analysis. Child Care Health Dev 2024; 50:e13182. [PMID: 37873578 DOI: 10.1111/cch.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Impaired executive function is a core symptom of cognitive impairment in atypical children. The purpose of this systematic review and meta-analysis is to explore the effectiveness of interventions for exercise in real-life settings on executive function in atypical children. METHODS This study searched the CNKI, Wan-Fang, VIP, WOS, PubMed, Scopus and EBSCO databases. Two researchers independently selected articles, extracted data and assessed the risk of bias for the included studies. Exercise activities were categorized into open and closed skills based on the unpredictability of the environmental context and into sequential and continuous skills based on the complexity of the movement structure. Based on these two classifications, motor skills were categorized into open-sequential (e.g. basketball), open-continuous (e.g. obstacle running), closed-sequential (e.g. martial arts) and closed-continuous (e.g. swimming) skills. The SPSS 25.0 and Stata 16.0 software were used for statistical analysis. RESULTS A total of 19 articles (23 studies) were included in the systematic review and meta-analysis. The participants were 990 atypical children with neurodevelopmental disorders. Physical exercise in real-world settings had significant intervention effects on inhibitory control (SMD = -0.592, P = 0.033), working memory (SMD = -0.473, P = 0.034) and cognitive flexibility (SMD = -0.793, P = 0.014) in atypical children. Quantitative intervention characteristics and motor skill types moderated the effect of exercise on promoting executive function in atypical children. Overall, exercise for 30-50 min, three to seven times a week for less than 10 weeks is effective in improving executive function in atypical children. Open skills and sequential skills have a positive intervention effect on more dimensions of executive function in atypical children. CONCLUSIONS Physical exercise in real-world settings has a positive intervention effect on executive function in atypical children. We should design interventions based on the personality traits of the subject and the type of exercise they are interested in to better promote improved executive function in atypical children.
Collapse
Affiliation(s)
- Peng Shi
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Ziyun Zhang
- School of Life and Health, Huzhou College, Huzhou, China
| | - Xiaosu Feng
- School of Physical Educaiton, Liaoning Normal University, Dalian, China
| | - Chenyang Li
- Department of Physical Education, Huaiyin Institute of Technology, Huaian, China
| | - Yan Tang
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
Ghaderi S, Fatehi F, Kalra S, Batouli SAH. MRI biomarkers for memory-related impairment in amyotrophic lateral sclerosis: a systematic review. Amyotroph Lateral Scler Frontotemporal Degener 2023:1-17. [PMID: 37469125 DOI: 10.1080/21678421.2023.2236651] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
Introduction: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder associated with cognitive and behavioral impairments and motor symptoms. Magnetic resonance imaging (MRI) biomarkers have been investigated as potential tools for detecting and monitoring memory-related impairment in ALS. Our objective was to examine the importance of identifying MRI biomarkers for memory-related impairment in ALS, motor neuron disease (MND), and ALS frontotemporal dementia (FTD) (ALS-FTD) patients. Methods: PubMed and Scopus databases were searched. Keywords covering magnetic resonance imaging, ALS, MND, and memory impairments were searched. There were a total of 25 studies included in our work here. Results: The structural MRI (sMRI) studies reported gray matter (GM) atrophy in the regions associated with memory processing, such as the hippocampus and parahippocampal gyrus (PhG), in ALS patients. The diffusion tensor imaging (DTI) studies showed white matter (WM) alterations in the corticospinal tract (CST) and other tracts that are related to motor and extra-motor functions, and these alterations were associated with memory and executive function impairments in ALS. The functional MRI (fMRI) studies also demonstrated an altered activation in the prefrontal cortex, limbic system, and other brain regions involved in memory and emotional processing in ALS patients. Conclusion: MRI biomarkers show promise in uncovering the neural mechanisms of memory-related impairment in ALS. Nonetheless, addressing challenges such as sample sizes, imaging protocols, and longitudinal studies is crucial for future research. Ultimately, MRI biomarkers have the potential to be a tool for detecting and monitoring memory-related impairments in ALS.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neurology Department, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neurology Department, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanjay Kalra
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Linnhoff S, Haghikia A, Zaehle T. Cognitive fatigue-related sensory gating deficits in people with multiple sclerosis. Neurobiol Dis 2023; 176:105950. [PMID: 36493977 DOI: 10.1016/j.nbd.2022.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cognitive fatigue is highly prevalent in people with multiple sclerosis (pwMS) and significantly limits their quality of life. Fatigue can be subdivided into a subjective feeling of constant (trait) or current (state) exhaustion, as well as an objective performance decline, also known as fatigability. However, the current fatigue diagnosis in pwMS is purely subjective, leaving fatigability mostly unattended. Sensorimotor and sensory gating deficits have recently been described as possible objective markers for fatigability in healthy subjects. Thus, this study aimed to investigate the potential of prepulse inhibition (PPI) ratios and the P50 sensory gating suppression as surrogate markers for cognitive fatigue in pwMS. METHODS PPI and P50 sensory gating ratios were assessed before and after a 30-min fatigability-inducing AX- continuous performance task. Subjective trait fatigue was operationalized via self-report questionnaires, subjective state fatigue via visual analog scales (VAS), and fatigability via the change in both gating ratios. The data were analyzed using Linear Mixed Models and Pearson correlations. RESULTS We included 18 pwMS and 20 healthy controls (HC) in the final analyses. The task-induced fatigability was more pronounced in pwMS. While the initial PPI and P50 ratios were similar in both groups, P50 sensory gating was significantly disrupted after fatigability induction in pwMS. PPI, on the other hand, decreased in both groups. Moreover, initial P50 sensory gating ratios were negatively associated with subjective trait fatigue in pwMS, indicating that higher trait fatigue is associated with disrupted sensory gating. Finally, fatigability-related changes in P50 sensory gating were associated with the changes in VAS ratings, but only in HC. CONCLUSIONS This study demonstrated that P50 sensory gating is a promising objective fatigue and fatigability parameter. Importantly, P50 sensory gating correlated with subjective trait and state fatigue ratings. Our results extend the subjective fatigue diagnosis and broaden the understanding of pathophysiological neuronal mechanisms in MS-related fatigue. This is the first study to present fatigue-related disruption of sensory gating in pwMS.
Collapse
Affiliation(s)
- Stefanie Linnhoff
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Leipziger Street 44, Magdeburg 39120, Germany
| | - Aiden Haghikia
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Leipziger Street 44, Magdeburg 39120, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39106, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Leipziger Street 44, Magdeburg 39120, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39106, Germany.
| |
Collapse
|
6
|
Meykadeh A, Golfam A, Batouli SAH, Sommer W. Overlapping but Language-Specific Mechanisms in Morphosyntactic Processing in Highly Competent L2 Acquired at School Entry: fMRI Evidence From an Alternating Language Switching Task. Front Hum Neurosci 2021; 15:728549. [PMID: 34899211 PMCID: PMC8663636 DOI: 10.3389/fnhum.2021.728549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022] Open
Abstract
Many bilingual individuals acquire their second language when entering primary school; however, very few studies have investigated morphosyntax processing in this population. Combining a whole-brain and region of interest (ROI)-based approach, we studied event-related fMRI during morphosyntactic processing, specifically person-number phi-features, in Turkish (L1) and Persian (L2) by highly proficient bilinguals who learned Persian at school entry. In a design with alternating language switching and pseudorandomized grammaticality conditions, two left-lateralized syntax-specific ROIs and 11 bilateral ROIs involved in executive functions (EF) were analyzed for the intensity of activation relative to a resting baseline. Our findings indicate a strong overlap of neural networks for L1 and L2, suggesting structural similarities of neuroanatomical organization. In all ROIs morphosyntactic processing invoked stronger activation in L1 than in L2. This may be a consequence of symmetrical switch costs in the alternating design used here, where the need for suppressing the non-required language is stronger for the dominant L1 when it is non-required as compared to the non-dominant L2, leading to a stronger rebound for L1 than L2 when the language is required. Both L1 and L2 revealed significant activation in syntax-specific areas in left hemisphere clusters and increased activation in EF-specific areas in right-hemisphere than left-hemisphere clusters, confirming syntax-specific functions of the left hemisphere, whereas the right hemisphere appears to subserve control functions required for switching languages. While previous reports indicate a leftward bias in planum temporale activation during auditory and linguistic processing, the present study shows the activation of the right planum temporale indicating its involvement in auditory attention. More pronounced grammaticality effect in left pars opercularis for L1 and in left pSTG for L2 indicate differences in the processing of morphosyntactic information in these brain regions. Nevertheless, the activation of pars opercularis and pSTG emphasize the centrality of these regions in the processing of person-number phi-features. Taken together, the present results confirm that morphosyntactic processing in bilinguals relates to composite, syntax-sensitive and EF-sensitive mechanisms in which some nodes of the language network are differentially involved.
Collapse
Affiliation(s)
- Azam Meykadeh
- Department of Linguistics, Tarbiat Modares University, Tehran, Iran.,Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arsalan Golfam
- Department of Linguistics, Tarbiat Modares University, Tehran, Iran
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Werner Sommer
- Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychology, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
7
|
Sisakhti M, Sachdev PS, Batouli SAH. The Effect of Cognitive Load on the Retrieval of Long-Term Memory: An fMRI Study. Front Hum Neurosci 2021; 15:700146. [PMID: 34720904 PMCID: PMC8548369 DOI: 10.3389/fnhum.2021.700146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
One of the less well-understood aspects of memory function is the mechanism by which the brain responds to an increasing load of memory, either during encoding or retrieval. Identifying the brain structures which manage this increasing cognitive demand would enhance our knowledge of human memory. Despite numerous studies about the effect of cognitive loads on working memory processes, whether these can be applied to long-term memory processes is unclear. We asked 32 healthy young volunteers to memorize all possible details of 24 images over a 12-day period ending 2 days before the fMRI scan. The images were of 12 categories relevant to daily events, with each category including a high and a low load image. Behavioral assessments on a separate group of participants (#22) provided the average loads of the images. The participants had to retrieve these previously memorized images during the fMRI scan in 15 s, with their eyes closed. We observed seven brain structures showing the highest activation with increasing load of the retrieved images, viz. parahippocampus, cerebellum, superior lateral occipital, fusiform and lingual gyri, precuneus, and posterior cingulate gyrus. Some structures showed reduced activation when retrieving higher load images, such as the anterior cingulate, insula, and supramarginal and postcentral gyri. The findings of this study revealed that the mechanism by which a difficult-to-retrieve memory is handled is mainly by elevating the activation of the responsible brain areas and not by getting other brain regions involved, which is a help to better understand the LTM retrieval process in the human brain.
Collapse
Affiliation(s)
- Minoo Sisakhti
- Institute for Cognitive Sciences Studies, Tehran, Iran.,Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Perminder S Sachdev
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Seyed Amir Hossein Batouli
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Objective electrophysiological fatigability markers and their modulation through tDCS. Clin Neurophysiol 2021; 132:1721-1732. [PMID: 33867262 DOI: 10.1016/j.clinph.2021.02.391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Cognitive fatigability is a frequent symptom after sustained performance. Fatigability is evident in healthy subjects but is also often comorbid in several neuropsychiatric diseases. However, to date, clinical diagnostic almost solely relies on the self-reported subjective experience of fatigue. The goals of this present study were i) to complement the purely subjective fatigue diagnostic with objective electrophysiological fatigability parameters and ii) to prove the potential therapeutic application of transcranial direct current stimulation (tDCS) as a fatigability intervention. METHODS We performed a pseudo-randomized, sham-controlled, parallel-group trial. Forty healthy participants received either anodal or sham tDCS over the left dorsolateral prefrontal cortex (DLPFC) while they performed an exhaustive cognitive task to induce cognitive fatigability. To assess fatigability changes, we analyzed variations of prepulse inhibition (PPI) and P50 suppression as well as frontomedial theta and occipital alpha power with time-on-task. RESULTS The task reliably induced subjective exhaustion in all participants. Furthermore, we confirmed fatigability-related increases in frontomedial theta and occipital alpha power throughout the task. Additionally, fatigability significantly reduced PPI as well as P50 sensory gating. Anodal tDCS over the left DLPFC successfully counteracted fatigability and reduced the fatigability-related increase in alpha power as well as the decline in both gating parameters. CONCLUSION Occipital alpha and sensorimotor/sensory gating are suitable parameters to assess the severity of fatigability objectively. Anodal tDCS can counteract fatigability and has therapeutic potential for the treatment of fatigability in neuropsychiatric diseases. SIGNIFICANCE Fatigability can be objectively assessed by electrophysiological measures and attenuated by tDCS.
Collapse
|