Zhang KY, Li PL, Yan P, Qin CJ, He H, Liao CP. The significance of admission blood lactate and fibrinogen in pediatric traumatic brain injury: a single-center clinical study.
Childs Nerv Syst 2024;
40:1207-1212. [PMID:
38147105 DOI:
10.1007/s00381-023-06257-9]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in pediatric patients, leading to long-term physical, cognitive, and psychological impairments. Blood lactate and fibrinogen levels have emerged as potential biomarkers associated with tissue hypoperfusion and coagulation dysfunction, respectively. However, limited research has specifically focused on the significance of these biomarkers in pediatric TBI. This study aimed to investigate the clinical significance of blood lactate and fibrinogen levels upon admission in pediatric patients with traumatic brain injury.
METHODS
The medical records of 80 children with a traumatic brain injury who were admitted from January 2017 to January 2021 were retrospectively analyzed. The two groups were compared according to whether the blood lactate in the admission arterial blood gas increased and the fibrinogen content in the coagulation function decreased. The clinical data of the children in the two groups were different, and then they were divided into a good prognosis group and a poor prognosis group according to the GOS prognostic score, and the differences in the clinical indicators of the two groups were compared.
RESULTS
Among the 80 patients, 33 had elevated blood lactate levels, 34 had decreased fibrinogen levels, and 29 had an unfavorable outcome (GOS < 4). Compared to the normal blood lactate group, there were no statistically significant differences in age, sex ratio, or platelet count in the elevated blood lactate group (P > 0.05). However, the elevated blood lactate group had lower Glasgow Coma Scale (GCS) scores upon admission, higher blood lactate levels, lower fibrinogen levels, longer hospital stay, lower GOS scores, and a higher proportion of GOS < 4 (P < 0.05). Compared to the normal fibrinogen group, there were no statistically significant differences in age, sex ratio, or platelet count in the decreased fibrinogen group (P > 0.05). However, the decreased fibrinogen group had lower GCS scores upon admission, higher blood lactate levels, lower fibrinogen levels, longer hospital stays, lower GOS scores, and a higher proportion of GOS < 4 (P < 0.05). Compared to the favorable outcome group, there were no statistically significant differences in age, sex ratio, or platelet count in the unfavorable outcome group (P > 0.05). However, the unfavorable outcome group had lower GCS scores upon admission, higher blood lactate levels, lower fibrinogen levels, longer hospital stays, a higher incidence of pulmonary infection, a higher incidence of stress ulcers, and lower GOS scores (P < 0.05).
CONCLUSION
The levels of blood lactate and fibrinogen may represent the severity of children with traumatic brain injury and may be risk factors for poor prognosis of children with traumatic brain injury.
Collapse