1
|
Dhiman A, Kumar V, Das CJ. Quantitative magnetic resonance imaging in prostate cancer: A review of current technology. World J Radiol 2024; 16:497-511. [PMID: 39494137 PMCID: PMC11525833 DOI: 10.4329/wjr.v16.i10.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024] Open
Abstract
Prostate cancer (PCa) imaging forms an important part of PCa clinical management. Magnetic resonance imaging is the modality of choice for prostate imaging. Most of the current imaging assessment is qualitative i.e., based on visual inspection and thus subjected to inter-observer disagreement. Quantitative imaging is better than qualitative assessment as it is more objective, and standardized, thus improving interobserver agreement. Apart from detecting PCa, few quantitative parameters may have potential to predict disease aggressiveness, and thus can be used for prognosis and deciding the course of management. There are various magnetic resonance imaging-based quantitative parameters and few of them are already part of PIRADS v.2.1. However, there are many other parameters that are under study and need further validation by rigorous multicenter studies before recommending them for routine clinical practice. This review intends to discuss the existing quantitative methods, recent developments, and novel techniques in detail.
Collapse
Affiliation(s)
- Ankita Dhiman
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi 110029, Delhi, India
| | - Virendra Kumar
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi 110029, Delhi, India
| | - Chandan Jyoti Das
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi 110029, Delhi, India
| |
Collapse
|
2
|
Krauss W, Frey J, Heydorn Lagerlöf J, Lidén M, Thunberg P. Radiomics from multisite MRI and clinical data to predict clinically significant prostate cancer. Acta Radiol 2024; 65:307-317. [PMID: 38115809 DOI: 10.1177/02841851231216555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is useful in the diagnosis of clinically significant prostate cancer (csPCa). MRI-derived radiomics may support the diagnosis of csPCa. PURPOSE To investigate whether adding radiomics from biparametric MRI to predictive models based on clinical and MRI parameters improves the prediction of csPCa in a multisite-multivendor setting. MATERIAL AND METHODS Clinical information (PSA, PSA density, prostate volume, and age), MRI reviews (PI-RADS 2.1), and radiomics (histogram and texture features) were retrieved from prospectively included patients examined at different radiology departments and with different MRI systems, followed by MRI-ultrasound fusion guided biopsies of lesions PI-RADS 3-5. Predictive logistic regression models of csPCa (Gleason score ≥7) for the peripheral (PZ) and transition zone (TZ), including clinical data and PI-RADS only, and combined with radiomics, were built and compared using receiver operating characteristic (ROC) curves. RESULTS In total, 456 lesions in 350 patients were analyzed. In PZ and TZ, PI-RADS 4-5 and PSA density, and age in PZ, were independent predictors of csPCa in models without radiomics. In models including radiomics, PI-RADS 4-5, PSA density, age, and ADC energy were independent predictors in PZ, and PI-RADS 5, PSA density and ADC mean in TZ. Comparison of areas under the ROC curve (AUC) for the models without radiomics (PZ: AUC = 0.82, TZ: AUC = 0.80) versus with radiomics (PZ: AUC = 0.82, TZ: AUC = 0.82) showed no significant differences (PZ: P = 0.366; TZ: P = 0.171). CONCLUSION PSA density and PI-RADS are potent predictors of csPCa. Radiomics do not add significant information to our multisite-multivendor dataset.
Collapse
Affiliation(s)
- Wolfgang Krauss
- Department of Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Janusz Frey
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jakob Heydorn Lagerlöf
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Physics, Karlstad Central Hospital, Sweden
| | - Mats Lidén
- Department of Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Per Thunberg
- Department of Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
3
|
Tang J, Zheng X, Wang X, Mao Q, Xie L, Wang R. Computer-aided detection of prostate cancer in early stages using multi-parameter MRI: A promising approach for early diagnosis. Technol Health Care 2024; 32:125-133. [PMID: 38759043 PMCID: PMC11191472 DOI: 10.3233/thc-248011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
BACKGROUND Transrectal ultrasound-guided prostate biopsy is the gold standard diagnostic test for prostate cancer, but it is an invasive examination of non-targeted puncture and has a high false-negative rate. OBJECTIVE In this study, we aimed to develop a computer-assisted prostate cancer diagnosis method based on multiparametric MRI (mpMRI) images. METHODS We retrospectively collected 106 patients who underwent radical prostatectomy after diagnosis with prostate biopsy. mpMRI images, including T2 weighted imaging (T2WI), diffusion weighted imaging (DWI), and dynamic-contrast enhanced (DCE), and were accordingly analyzed. We extracted the region of interest (ROI) about the tumor and benign area on the three sequential MRI axial images at the same level. The ROI data of 433 mpMRI images were obtained, of which 202 were benign and 231 were malignant. Of those, 50 benign and 50 malignant images were used for training, and the 333 images were used for verification. Five main feature groups, including histogram, GLCM, GLGCM, wavelet-based multi-fractional Brownian motion features and Minkowski function features, were extracted from the mpMRI images. The selected characteristic parameters were analyzed by MATLAB software, and three analysis methods with higher accuracy were selected. RESULTS Through prostate cancer identification based on mpMRI images, we found that the system uses 58 texture features and 3 classification algorithms, including Support Vector Machine (SVM), K-nearest Neighbor (KNN), and Ensemble Learning (EL), performed well. In the T2WI-based classification results, the SVM achieved the optimal accuracy and AUC values of 64.3% and 0.67. In the DCE-based classification results, the SVM achieved the optimal accuracy and AUC values of 72.2% and 0.77. In the DWI-based classification results, the ensemble learning achieved optimal accuracy as well as AUC values of 75.1% and 0.82. In the classification results based on all data combinations, the SVM achieved the optimal accuracy and AUC values of 66.4% and 0.73. CONCLUSION The proposed computer-aided diagnosis system provides a good assessment of the diagnosis of the prostate cancer, which may reduce the burden of radiologists and improve the early diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Jianer Tang
- Department of Urology, First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Urology, First Affiliated Hospital of Huzhou Teachers College, Huzhou, Zhejiang, China
| | - Xiangyi Zheng
- Department of Urology, First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Wang
- Department of Urology, First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiqi Mao
- Department of Urology, First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, China
| | - Liping Xie
- Department of Urology, First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, China
| | - Rongjiang Wang
- Department of Urology, First Affiliated Hospital of Huzhou Teachers College, Huzhou, Zhejiang, China
| |
Collapse
|
4
|
Gibala S, Obuchowicz R, Lasek J, Schneider Z, Piorkowski A, Pociask E, Nurzynska K. Textural Features of MR Images Correlate with an Increased Risk of Clinically Significant Cancer in Patients with High PSA Levels. J Clin Med 2023; 12:jcm12082836. [PMID: 37109173 PMCID: PMC10146387 DOI: 10.3390/jcm12082836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Prostate cancer, which is associated with gland biology and also with environmental risks, is a serious clinical problem in the male population worldwide. Important progress has been made in the diagnostic and clinical setups designed for the detection of prostate cancer, with a multiparametric magnetic resonance diagnostic process based on the PIRADS protocol playing a key role. This method relies on image evaluation by an imaging specialist. The medical community has expressed its desire for image analysis techniques that can detect important image features that may indicate cancer risk. METHODS Anonymized scans of 41 patients with laboratory diagnosed PSA levels who were routinely scanned for prostate cancer were used. The peripheral and central zones of the prostate were depicted manually with demarcation of suspected tumor foci under medical supervision. More than 7000 textural features in the marked regions were calculated using MaZda software. Then, these 7000 features were used to perform region parameterization. Statistical analyses were performed to find correlations with PSA-level-based diagnosis that might be used to distinguish suspected (different) lesions. Further multiparametrical analysis using MIL-SVM machine learning was used to obtain greater accuracy. RESULTS Multiparametric classification using MIL-SVM allowed us to reach 92% accuracy. CONCLUSIONS There is an important correlation between the textural parameters of MRI prostate images made using the PIRADS MR protocol with PSA levels > 4 mg/mL. The correlations found express dependence between image features with high cancer markers and hence the cancer risk.
Collapse
Affiliation(s)
- Sebastian Gibala
- Urology Department, Ultragen Medical Center, 31-572 Krakow, Poland
| | - Rafal Obuchowicz
- Department of Diagnostic Imaging, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Julia Lasek
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Zofia Schneider
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Adam Piorkowski
- Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Elżbieta Pociask
- Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Karolina Nurzynska
- Department of Algorithmics and Software, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
5
|
Liu YF, Shu X, Qiao XF, Ai GY, Liu L, Liao J, Qian S, He XJ. Radiomics-Based Machine Learning Models for Predicting P504s/P63 Immunohistochemical Expression: A Noninvasive Diagnostic Tool for Prostate Cancer. Front Oncol 2022; 12:911426. [PMID: 35795067 PMCID: PMC9252170 DOI: 10.3389/fonc.2022.911426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/19/2022] [Indexed: 01/31/2023] Open
Abstract
Objective To develop and validate a noninvasive radiomic-based machine learning (ML) model to identify P504s/P63 status and further achieve the diagnosis of prostate cancer (PCa). Methods A retrospective dataset of patients with preoperative prostate MRI examination and P504s/P63 pathological immunohistochemical results between June 2016 and February 2021 was conducted. As indicated by P504s/P63 expression, the patients were divided into label 0 (atypical prostatic hyperplasia), label 1 (benign prostatic hyperplasia, BPH) and label 2 (PCa) groups. This study employed T2WI, DWI and ADC sequences to assess prostate diseases and manually segmented regions of interest (ROIs) with Artificial Intelligence Kit software for radiomics feature acquisition. Feature dimensionality reduction and selection were performed by using a mutual information algorithm. Based on screened features, P504s/P63 prediction models were established by random forest (RF), gradient boosting decision tree (GBDT), logistic regression (LR), adaptive boosting (AdaBoost) and k-nearest neighbor (KNN) algorithms. The performance was evaluated by the area under the ROC curve (AUC) and accuracy. Results A total of 315 patients were enrolled. Among the 851 radiomic features, the 32 top features were derived from T2WI, in which the gray-level run length matrix (GLRLM) and gray-level cooccurrence matrix (GLCM) features accounted for the largest proportion. Among the five models, the RF algorithm performed best in general evaluations (microaverage AUC=0.920, macroaverage AUC=0.870) and provided the most accurate result in further sublabel prediction (the accuracies of label 0, 1, and 2 were 0.831, 0.831, and 0.932, respectively). In comparative sequence analyses, T2WI was the best single-sequence candidate (microaverage AUC=0.94 and macroaverage AUC=0.78). The merged datasets of T2WI, DWI, and ADC yielded optimal AUCs (microaverage AUC=0.930 and macroaverage AUC=0.900). Conclusions The radiomic-based RF classifier has the potential to be used to evaluate the presurgical P504s/P63 status and further diagnose PCa noninvasively and accurately.
Collapse
Affiliation(s)
- Yun-Fan Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Shu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Feng Qiao
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guang-Yong Ai
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Liu
- Big Data and Software Engineering College, Chongqing University, Chongqing, China
| | - Jun Liao
- Big Data and Software Engineering College, Chongqing University, Chongqing, China
| | - Shuang Qian
- Big Data and Software Engineering College, Chongqing University, Chongqing, China
| | - Xiao-Jing He
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiao-Jing He,
| |
Collapse
|
6
|
More than Meets the Eye: Using Textural Analysis and Artificial Intelligence as Decision Support Tools in Prostate Cancer Diagnosis—A Systematic Review. J Pers Med 2022; 12:jpm12060983. [PMID: 35743766 PMCID: PMC9225075 DOI: 10.3390/jpm12060983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
(1) Introduction: Multiparametric magnetic resonance imaging (mpMRI) is the main imagistic tool employed to assess patients suspected of harboring prostate cancer (PCa), setting the indication for targeted prostate biopsy. However, both mpMRI and targeted prostate biopsy are operator dependent. The past decade has been marked by the emerging domain of radiomics and artificial intelligence (AI), with extended application in medical diagnosis and treatment processes. (2) Aim: To present the current state of the art regarding decision support tools based on texture analysis and AI for the prediction of aggressiveness and biopsy assistance. (3) Materials and Methods: We performed literature research using PubMed MeSH, Scopus and WoS (Web of Science) databases and screened the retrieved papers using PRISMA principles. Articles that addressed PCa diagnosis and staging assisted by texture analysis and AI algorithms were included. (4) Results: 359 papers were retrieved using the keywords “prostate cancer”, “MRI”, “radiomics”, “textural analysis”, “artificial intelligence”, “computer assisted diagnosis”, out of which 35 were included in the final review. In total, 24 articles were presenting PCa diagnosis and prediction of aggressiveness, 7 addressed extracapsular extension assessment and 4 tackled computer-assisted targeted prostate biopsies. (5) Conclusions: The fusion of radiomics and AI has the potential of becoming an everyday tool in the process of diagnosis and staging of the prostate malignancies.
Collapse
|
7
|
Kamal O, Foster BR, Young DJ, Hansel DE, Coakley FV. MRI appearance of BRCA-associated prostate cancer. Clin Imaging 2022; 84:135-139. [DOI: 10.1016/j.clinimag.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 12/28/2022]
|