1
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
2
|
Bocci T, Baloscio D, Ferrucci R, Briscese L, Priori A, Sartucci F. Interhemispheric Connectivity in Idiopathic Cervical Dystonia and Spinocerebellar Ataxias: A Transcranial Magnetic Stimulation Study. Clin EEG Neurosci 2022; 53:460-466. [PMID: 32938220 DOI: 10.1177/1550059420957487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND RATIONALE Hyperkinetic movement disorders represent a heterogeneous group of diseases, different from a genetic and clinical perspective. In the past, neurophysiological approaches provided different, sometimes contradictory findings, pointing to an impaired cortical inhibition as a common electrophysiological marker. Our aim was to evaluate changes in interhemispheric communication in patients with idiopathic cervical dystonia (ICD) and spinocerebellar ataxias (SCAs). MATERIALS AND METHODS Eleven patients with ICD, 7 with genetically confirmed SCA2 or SCA3, and 10 healthy volunteers were enrolled. The onset latency and duration of the ipsilateral silent period (iSPOL and iSPD, respectively), as well as the so-called transcallosal conduction time (TCT), were then recorded from the abductor pollicis brevis of the right side using an 8-shaped focal coil with wing diameters of 70 mm; all these parameters were evaluated and compared among groups. In SCAs, changes in neurophysiological measures were also correlated to the mutational load. RESULTS iSPD was significantly shorter in patients with SCA2 and SCA3, when compared both to control and ICD (P < .0001); iSPOL and TCT were prolonged in SCAs patients (P < .001). Changes in iSPD, iSPOL, and TCT in SCAs are significantly correlated with the mutational load (P = .01, P = .02, and P = .002, respectively). DISCUSSION This is the first study to assess changes in interhemispheric communication in patients with SCAs and ICD, using a transcranial magnetic stimulation protocol. Together with previous data in Huntington's disease, we suggest that these changes may underlie, at least in part, a common disease mechanism of polyglutamine disorders.
Collapse
Affiliation(s)
- Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experiental Brain Therapeutics, Department of Health Sciences, University of Milan & ASST Santi Paolo e Carlo, Milan, Italy
| | - Davide Baloscio
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberta Ferrucci
- "Aldo Ravelli" Center for Neurotechnology and Experiental Brain Therapeutics, Department of Health Sciences, University of Milan & ASST Santi Paolo e Carlo, Milan, Italy
| | - Lucia Briscese
- Severe Acquired Brain Injuries Unit, Cisanello University Hospital, Pisa, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experiental Brain Therapeutics, Department of Health Sciences, University of Milan & ASST Santi Paolo e Carlo, Milan, Italy
| | - Ferdinando Sartucci
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Chen R, Berardelli A, Bhattacharya A, Bologna M, Chen KHS, Fasano A, Helmich RC, Hutchison WD, Kamble N, Kühn AA, Macerollo A, Neumann WJ, Pal PK, Paparella G, Suppa A, Udupa K. Clinical neurophysiology of Parkinson's disease and parkinsonism. Clin Neurophysiol Pract 2022; 7:201-227. [PMID: 35899019 PMCID: PMC9309229 DOI: 10.1016/j.cnp.2022.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023] Open
Abstract
This review is part of the series on the clinical neurophysiology of movement disorders and focuses on Parkinson’s disease and parkinsonism. The pathophysiology of cardinal parkinsonian motor symptoms and myoclonus are reviewed. The recordings from microelectrode and deep brain stimulation electrodes are reported in detail.
This review is part of the series on the clinical neurophysiology of movement disorders. It focuses on Parkinson’s disease and parkinsonism. The topics covered include the pathophysiology of tremor, rigidity and bradykinesia, balance and gait disturbance and myoclonus in Parkinson’s disease. The use of electroencephalography, electromyography, long latency reflexes, cutaneous silent period, studies of cortical excitability with single and paired transcranial magnetic stimulation, studies of plasticity, intraoperative microelectrode recordings and recording of local field potentials from deep brain stimulation, and electrocorticography are also reviewed. In addition to advancing knowledge of pathophysiology, neurophysiological studies can be useful in refining the diagnosis, localization of surgical targets, and help to develop novel therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology and Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| | - William D Hutchison
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Antonella Macerollo
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, United Kingdom
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | | | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kaviraja Udupa
- Department of Neurophysiology National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
4
|
Hanson MR, Swanson CW, Whittier TT, Fling BW. Inhibitory signaling as a predictor of leg force control in young and older adults. Exp Brain Res 2022; 240:1005-1016. [PMID: 35171308 DOI: 10.1007/s00221-022-06321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
As the populations of the United States and developed nations age, motor control performance is adversely impacted, resulting in functional impairments that can diminish quality of life. Generally, force control in the lower limb worsens with age, with older adults (OA) displaying more variable and less accurate submaximal forces. Corticospinal inhibitory signaling may influence force control, with those OA who maintain corticospinal inhibitory signaling capacity achieving steadier forces. This study aimed to assess the relationships between lower limb force control and transcranial magnetic stimulation (TMS) measures of corticospinal inhibition (i.e., cortical silent period (cSP) duration and depth). 15 OA and 14 young adults (YA) were recruited for this study. All subjects underwent a TMS protocol to elicit the cSP while maintaining 15% of their maximal force in their knee extensor muscles. OA and YA did not display differences in force control metrics or corticospinal inhibitory measures. However, in OA, maximal cSP depth (%dSP max) was associated with lower force variability. No other significant relationships existed in the YA or OA groups. Future studies will benefit from evaluating a range of target forces and target muscles to assess potential relationships between sensorimotor inhibitory capacity and control of muscle force output.
Collapse
Affiliation(s)
- Moriah R Hanson
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, USA
| | - Clayton W Swanson
- Department of Health & Exercise Science, Colorado State University, 1582 Campus Delivery, Moby B-201A, Fort Collins, CO, 80523, USA
| | - Tyler T Whittier
- Department of Health & Exercise Science, Colorado State University, 1582 Campus Delivery, Moby B-201A, Fort Collins, CO, 80523, USA
| | - Brett W Fling
- Department of Health & Exercise Science, Colorado State University, 1582 Campus Delivery, Moby B-201A, Fort Collins, CO, 80523, USA. .,Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
5
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
6
|
Guerra A, Rocchi L, Grego A, Berardi F, Luisi C, Ferreri F. Contribution of TMS and TMS-EEG to the Understanding of Mechanisms Underlying Physiological Brain Aging. Brain Sci 2021; 11:405. [PMID: 33810206 PMCID: PMC8004753 DOI: 10.3390/brainsci11030405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the human brain, aging is characterized by progressive neuronal loss, leading to disruption of synapses and to a degree of failure in neurotransmission. However, there is increasing evidence to support the notion that the aged brain has a remarkable ability to reorganize itself, with the aim of preserving its physiological activity. It is important to develop objective markers able to characterize the biological processes underlying brain aging in the intact human, and to distinguish them from brain degeneration associated with many neurological diseases. Transcranial magnetic stimulation (TMS), coupled with electromyography or electroencephalography (EEG), is particularly suited to this aim, due to the functional nature of the information provided, and thanks to the ease with which it can be integrated with behavioral manipulation. In this review, we aimed to provide up to date information about the role of TMS and TMS-EEG in the investigation of brain aging. In particular, we focused on data about cortical excitability, connectivity and plasticity, obtained by using readouts such as motor evoked potentials and transcranial evoked potentials. Overall, findings in the literature support an important potential contribution of TMS to the understanding of the mechanisms underlying normal brain aging. Further studies are needed to expand the current body of information and to assess the applicability of TMS findings in the clinical setting.
Collapse
Affiliation(s)
| | - Lorenzo Rocchi
- Department of Clinical and Movements Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alberto Grego
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Francesca Berardi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Concetta Luisi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Florinda Ferreri
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
7
|
Hupfeld KE, Swanson CW, Fling BW, Seidler RD. TMS-induced silent periods: A review of methods and call for consistency. J Neurosci Methods 2020; 346:108950. [PMID: 32971133 PMCID: PMC8276277 DOI: 10.1016/j.jneumeth.2020.108950] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022]
Abstract
Transcranial magnetic stimulation (TMS)-induced silent periods provide an in vivo measure of human motor cortical inhibitory function. Cortical silent periods (cSP, also sometimes referred to as contralateral silent periods) and ipsilateral silent periods (iSP) may change with advancing age and disease and can provide insight into cortical control of the motor system. The majority of past silent period work has implemented largely varying methodology, sometimes including subjective analyses and incomplete methods descriptions. This limits reproducibility of silent period work and hampers comparisons of silent period measures across studies. Here, we discuss methodological differences in past silent period work, highlighting how these choices affect silent period outcome measures. We also outline challenges and possible solutions for measuring silent periods in the unique case of the lower limbs. Finally, we provide comprehensive recommendations for collection, analysis, and reporting of future silent period studies.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - C W Swanson
- Department of Health & Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - B W Fling
- Department of Health & Exercise Science, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, USA
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Ermer E, Harcum S, Lush J, Magder LS, Whitall J, Wittenberg GF, Dimyan MA. Contraction Phase and Force Differentially Change Motor Evoked Potential Recruitment Slope and Interhemispheric Inhibition in Young Versus Old. Front Hum Neurosci 2020; 14:581008. [PMID: 33132888 PMCID: PMC7573560 DOI: 10.3389/fnhum.2020.581008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Interhemispheric interactions are important for arm coordination and hemispheric specialization. Unilateral voluntary static contraction is known to increase bilateral corticospinal motor evoked potential (MEP) amplitude. It is unknown how increasing and decreasing contraction affect the opposite limb. Since dynamic muscle contraction is more ecologically relevant to daily activities, we studied MEP recruitment using a novel method and short interval interhemispheric inhibition (IHI) from active to resting hemisphere at 4 phases of contralateral ECR contraction: Rest, Ramp Up [increasing at 25% of maximum voluntary contraction (MVC)], Execution (tonic at 50% MVC), and Ramp Down (relaxation at 25% MVC) in 42 healthy adults. We analyzed the linear portion of resting extensor carpi radialis (ECR) MEP recruitment by stimulating at multiple intensities and comparing slopes, expressed as mV per TMS stimulation level, via linear mixed modeling. In younger participants (age ≤ 30), resting ECR MEP recruitment slopes were significantly and equally larger both at Ramp Up (slope increase = 0.047, p < 0.001) and Ramp Down (slope increase = 0.031, p < 0.001) compared to rest, despite opposite directions of force change. In contrast, Active ECR MEP recruitment slopes were larger in Ramp Down than all other phases (Rest:0.184, p < 0.001; Ramp Up:0.128, p = 0.001; Execution: p = 0.003). Older (age ≥ 60) participants’ resting MEP recruitment slope was higher than younger participants across all phases. IHI did not reduce MEP recruitment slope equally in old compared to young. In conclusion, our data indicate that MEP recruitment slope in the resting limb is affected by the homologous active limb contraction force, irrespective of the direction of force change. The active arm MEP recruitment slope, in contrast, remains relatively unaffected. Older participants had steeper MEP recruitment slopes and less interhemispheric inhibition compared to younger participants.
Collapse
Affiliation(s)
- Elsa Ermer
- University of Maryland, Baltimore, MD, United States.,Department of Neurology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Stacey Harcum
- University of Maryland, Baltimore, MD, United States
| | - Jaime Lush
- University of Maryland, Baltimore, MD, United States.,Department of Neurology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Laurence S Magder
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Jill Whitall
- University of Maryland, Baltimore, MD, United States.,Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - George F Wittenberg
- University of Maryland, Baltimore, MD, United States.,Department of Neurology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Michael A Dimyan
- University of Maryland, Baltimore, MD, United States.,Department of Neurology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States.,Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
9
|
Pellegrini M, Zoghi M, Jaberzadeh S. A Checklist to Reduce Response Variability in Studies Using Transcranial Magnetic Stimulation for Assessment of Corticospinal Excitability: A Systematic Review of the Literature. Brain Connect 2020; 10:53-71. [PMID: 32093486 DOI: 10.1089/brain.2019.0715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Response variability between individuals (interindividual variability) and within individuals (intraindividual variability) is an important issue in the transcranial magnetic stimulation (TMS) literature. This has raised questions of the validity of TMS to assess changes in corticospinal excitability (CSE) in a predictable and reliable manner. Several participant-specific factors contribute to this observed response variability with a current lack of consensus on the degree each factor contributes. This highlights a need for consistency and structure in reporting study designs and methodologies. Currently, there is no summarized review of the participant-specific factors that can be controlled and may contribute to response variability. This systematic review aimed to develop a checklist of methodological measures taken by previously published research to increase the homogeneity of participant selection criteria, preparation of participants before experimental testing, participant scheduling, and the instructions given to participants throughout experimental testing to minimize their effect on response variability. Seven databases were searched in full. Studies were included if CSE was measured via TMS and included methodological measures to increase the homogeneity of the participants. Eighty-four studies were included. Twenty-three included measures to increase participant selection homogeneity, 21 included measures to increase participant preparation homogeneity, while 61 included measures to increase participant scheduling and instructions during experimental testing homogeneity. These methodological measures were summarized into a user-friendly checklist with considerations, suggestions, and rationale/justification for their inclusion. This may provide the framework for further insights into ways to reduce response variability in TMS research.
Collapse
Affiliation(s)
- Michael Pellegrini
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, Discipline of Physiotherapy, School of Allied Health, La Trobe University, Melbourne, Victoria, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Houle J, Tremblay F. Neurophysiological basis of manual force asymmetries in young and senior adults. Laterality 2020; 25:469-489. [PMID: 32000588 DOI: 10.1080/1357650x.2020.1722149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, we investigated age differences in manual force production to explore their neurophysiological basis. Manual pinching and gripping forces were first measured during unilateral and bilateral efforts in two groups of right-handed adults (young, n = 12, senior, n = 11). Then, transcranial magnetic stimulation (TMS) was applied to each hemisphere to assess central motor inhibition via the contralateral and ipsilateral silent period (cSP, iSP). Laterality quotients (LQs) were computed to determine asymmetries for unimanual strength tests and hemispheric asymmetries in TMS measures. Bilateral indices (BLI) were computed to assess the bilateral force deficit (BFD). During unilateral efforts, both young and senior participants exhibited similar degrees of asymmetry. Similarly, no age difference was detected when comparing LQs derived from TMS measures. During bilateral efforts, although BLI tended to be lower in seniors, no age difference was detected. Asymmetry in strength and BLI showed no association with hemispheric asymmetry in TMS measures, except for the asymmetry in pinch strength, which was associated with asymmetry in the iSP duration. These observations confirm that asymmetries in manual strength and BFD are little affected by age. Also, our results show that hemispheric asymmetries in transcallosal inhibition are associated with pinch strength asymmetry.
Collapse
Affiliation(s)
- Jonathan Houle
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - François Tremblay
- School of Human Kinetics, University of Ottawa, Ottawa, Canada.,School of Rehabilitation Sciences, University of Ottawa, Ottawa, Canada.,Bruyère Research Institute, Ottawa, Canada
| |
Collapse
|
11
|
Strauss S, Lotze M, Flöel A, Domin M, Grothe M. Changes in Interhemispheric Motor Connectivity Across the Lifespan: A Combined TMS and DTI Study. Front Aging Neurosci 2019; 11:12. [PMID: 30804775 PMCID: PMC6371065 DOI: 10.3389/fnagi.2019.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
Age-related decline in interhemispheric connectivity between motor areas has been reported with both transcranial magnetic stimulation (TMS) and diffusion tensor imaging (DTI) measurements. However, not all studies were able to confirm these findings, and previous studies did not apply structural (DTI) and functional (TMS) measurements within each individual appropriately. Here, we investigated age dependency of the ipsilateral silent period (ISP) and integrity of fibers in the corpus callosum as operationalized by fractional anisotrophy (FA), using TMS and DTI, respectively, in 20 participants between 19 and 72 years of age. We found age-dependent increase for ISP, and decrease of FA, both indicating a decrease in interhemispheric inhibition, with a negative association between FA and ISP for the dominant hemisphere (r = -0.39, p = 0.043). Our findings suggest that aging leads to decline of interhemispheric motor connectivity, as evidenced in both structural and functional parameters, which should be taken into account when interpreting disease- or medication-related changes.
Collapse
Affiliation(s)
- Sebastian Strauss
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| | - Martin Lotze
- Functional Imaging, Institute for Diagnostic Radiology and Neuroradiology, University Medicine of Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| | - Martin Domin
- Functional Imaging, Institute for Diagnostic Radiology and Neuroradiology, University Medicine of Greifswald, Greifswald, Germany
| | - Matthias Grothe
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
McGregor KM, Crosson B, Mammino K, Omar J, García PS, Nocera JR. Influences of 12-Week Physical Activity Interventions on TMS Measures of Cortical Network Inhibition and Upper Extremity Motor Performance in Older Adults-A Feasibility Study. Front Aging Neurosci 2018; 9:422. [PMID: 29354049 PMCID: PMC5758495 DOI: 10.3389/fnagi.2017.00422] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Objective: Data from previous cross-sectional studies have shown that an increased level of physical fitness is associated with improved motor dexterity across the lifespan. In addition, physical fitness is positively associated with increased laterality of cortical function during unimanual tasks; indicating that sedentary aging is associated with a loss of interhemispheric inhibition affecting motor performance. The present study employed exercise interventions in previously sedentary older adults to compare motor dexterity and measure of interhemispheric inhibition using transcranial magnetic stimulation (TMS) after the interventions. Methods: Twenty-one community-dwelling, reportedly sedentary older adults were recruited, randomized and enrolled to a 12-week aerobic exercise group or a 12-week non-aerobic exercise balance condition. The aerobic condition was comprised of an interval-based cycling "spin" activity, while the non-aerobic "balance" exercise condition involved balance and stretching activities. Participants completed upper extremity dexterity batteries and estimates of VO2max in addition to undergoing single (ipsilateral silent period-iSP) and paired-pulse interhemispheric inhibition (ppIHI) in separate assessment sessions before and after study interventions. After each intervention during which heart rate was continuously recorded to measure exertion level (load), participants crossed over into the alternate arm of the study for an additional 12-week intervention period in an AB/BA design with no washout period. Results: After the interventions, regardless of intervention order, participants in the aerobic spin condition showed higher estimated VO2max levels after the 12-week intervention as compared to estimated VO2max in the non-aerobic balance intervention. After controlling for carryover effects due to the study design, participants in the spin condition showed longer iSP duration than the balance condition. Heart rate load was more strongly correlated with silent period duration after the Spin condition than estimated VO2. Conclusions: Aging-related changes in cortical inhibition may be influenced by 12-week physical activity interventions when assessed with the iSP. Although inhibitory signaling is mediates both ppIHI and iSP measures each TMS modality likely employs distinct inhibitory networks, potentially differentially affected by aging. Changes in inhibitory function after physical activity interventions may be associated with improved dexterity and motor control at least as evidence from this feasibility study show.
Collapse
Affiliation(s)
- Keith M. McGregor
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bruce Crosson
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Kevin Mammino
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
| | - Javier Omar
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
| | - Paul S. García
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joe R. Nocera
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
13
|
Kuo YL, Dubuc T, Boufadel DF, Fisher BE. Measuring ipsilateral silent period: Effects of muscle contraction levels and quantification methods. Brain Res 2017; 1674:77-83. [DOI: 10.1016/j.brainres.2017.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/20/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
|
14
|
Shoraka AR, Otzel DM, M Zilli E, Finney GR, Doty L, Falchook AD, Heilman KM. Effects of aging on action-intentional programming. AGING NEUROPSYCHOLOGY AND COGNITION 2017; 25:244-258. [PMID: 28264637 DOI: 10.1080/13825585.2017.1287854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Action-intentional programs control "when" we initiate, inhibit, continue, and stop motor actions. The purpose of this study was to learn if there are changes in the action-intentional system with healthy aging, and if these changes are asymmetrical (right versus left upper limb) or related to impaired interhemispheric communication. METHODS We administered tests of action-intention to 41 middle-aged and older adults (61.9 ± 12.3 years). RESULTS Regression analyses revealed that older age predicted a decrement in performance for tests of crossed motor response inhibition as well as slower motor initiation with the left hand. CONCLUSION Changes in action-intention with aging appear to be related to alterations of interhemispheric communication and/or age-related right hemisphere dysfunction; however, further research is needed to identify the mechanisms for age-related changes in the brain networks that mediate action-intention.
Collapse
Affiliation(s)
- Ali R Shoraka
- b Geriatric Research Education and Clinical Center of the Malcom Randall Veterans Affairs Medical Center , Gainesville , FL , USA.,c Department of Neurology and Center for Neuropsychological Studies , University of Florida , Gainesville , FL , USA
| | - Dana M Otzel
- b Geriatric Research Education and Clinical Center of the Malcom Randall Veterans Affairs Medical Center , Gainesville , FL , USA
| | - Eduardo M Zilli
- c Department of Neurology and Center for Neuropsychological Studies , University of Florida , Gainesville , FL , USA
| | - Glen R Finney
- c Department of Neurology and Center for Neuropsychological Studies , University of Florida , Gainesville , FL , USA
| | - Leilani Doty
- c Department of Neurology and Center for Neuropsychological Studies , University of Florida , Gainesville , FL , USA.,d Florida Department of Elder Affairs , Alzheimer's Disease Initiative, University of Florida Cognitive and Memory Disorder Clinics , Gainesville , FL , USA.,e National Institutes of Health/National Institute of Aging, 1Florida ADRC (Alzheimer's Disease Research Center) , Gainesville , FL , USA
| | - Adam D Falchook
- a Brain Rehabilitation Research Center of the Malcom Randall Veterans Affairs Medical Center , Gainesville , FL , USA.,c Department of Neurology and Center for Neuropsychological Studies , University of Florida , Gainesville , FL , USA
| | - Kenneth M Heilman
- a Brain Rehabilitation Research Center of the Malcom Randall Veterans Affairs Medical Center , Gainesville , FL , USA.,b Geriatric Research Education and Clinical Center of the Malcom Randall Veterans Affairs Medical Center , Gainesville , FL , USA.,c Department of Neurology and Center for Neuropsychological Studies , University of Florida , Gainesville , FL , USA.,d Florida Department of Elder Affairs , Alzheimer's Disease Initiative, University of Florida Cognitive and Memory Disorder Clinics , Gainesville , FL , USA
| |
Collapse
|
15
|
Beaulieu LD, Flamand VH, Massé-Alarie H, Schneider C. Reliability and minimal detectable change of transcranial magnetic stimulation outcomes in healthy adults: A systematic review. Brain Stimul 2016; 10:196-213. [PMID: 28031148 DOI: 10.1016/j.brs.2016.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is used worldwide for noninvasively testing human motor systems but its psychometric properties remain unclear. OBJECTIVE/HYPOTHESIS This work systematically reviewed studies on the reliability of TMS outcome measures of primary motor cortex (M1) excitability in healthy humans, with an emphasis on retrieving minimal detectable changes (MDC). METHODS The literature search was performed in three databases (Pubmed, CINAHL, Embase) up to June 2016 and additional studies were identified through hand-searching. French and English-written studies had to report the reliability of at least one TMS outcome of M1 in healthy humans. Two independent raters assessed the eligibility of potential studies, and eligible articles were reviewed using a structured data extraction form and two critical appraisal scales. RESULTS A total of 34 articles met the selection criteria, which tested the intra- and inter-rater reliability (relative and absolute subtypes) of several TMS outcomes. However, our critical appraisal of studies raised concerns on the applicability and generalization of results because of methodological and statistical pitfalls. Importantly, MDC were generally large and likely affected by various factors, especially time elapsed between sessions and number of stimuli delivered. CONCLUSIONS This systematic review underlined that the evidence about the reliability of TMS outcomes is scarce and affected by several methodological and statistical problems. Data and knowledge of the review provided however relevant insights on the ability of TMS outcomes to track plastic changes within an individual or within a group, and recommendations were made to level up the quality of future work in the field.
Collapse
Affiliation(s)
- Louis-David Beaulieu
- Clinical Neuroscience and Neurostimulation Laboratory, CHU de Québec Research Center - Neuroscience Division, Quebec City, Qc, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Qc, Canada.
| | - Véronique H Flamand
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Qc, Canada; Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Qc, Canada
| | - Hugo Massé-Alarie
- Clinical Neuroscience and Neurostimulation Laboratory, CHU de Québec Research Center - Neuroscience Division, Quebec City, Qc, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Qc, Canada
| | - Cyril Schneider
- Clinical Neuroscience and Neurostimulation Laboratory, CHU de Québec Research Center - Neuroscience Division, Quebec City, Qc, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Qc, Canada
| |
Collapse
|
16
|
Tian L, Ma L, Wang L. Alterations of functional connectivities from early to middle adulthood: Clues from multivariate pattern analysis of resting-state fMRI data. Neuroimage 2016; 129:389-400. [DOI: 10.1016/j.neuroimage.2016.01.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/08/2015] [Accepted: 01/19/2016] [Indexed: 01/25/2023] Open
|
17
|
Impaired interhemispheric processing in early Huntington's Disease: A transcranial magnetic stimulation study. Clin Neurophysiol 2015; 127:1750-1752. [PMID: 26547356 DOI: 10.1016/j.clinph.2015.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/26/2015] [Accepted: 10/09/2015] [Indexed: 11/21/2022]
|
18
|
Bocci T, Caleo M, Vannini B, Vergari M, Cogiamanian F, Rossi S, Priori A, Sartucci F. An unexpected target of spinal direct current stimulation: Interhemispheric connectivity in humans. J Neurosci Methods 2015. [DOI: 10.1016/j.jneumeth.2015.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Effect of a Gluten-Free Diet on Cortical Excitability in Adults with Celiac Disease. PLoS One 2015. [PMID: 26053324 DOI: 10.1371/journal.pone.0129218.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION An imbalance between excitatory and inhibitory synaptic excitability was observed in de novo patients with celiac disease (CD) in a previous study with Transcranial Magnetic Stimulation (TMS), suggesting a subclinical involvement of GABAergic and glutamatergic neurotransmission in asymptomatic patients. The aim of this investigation was to monitor the eventual changes in the same cohort of patients, evaluated after a period of gluten-free diet. METHODS Patients were re-evaluated after a median period of 16 months during which an adequate gluten-free diet was maintained. Clinical, cognitive and neuropsychiatric assessment was repeated, as well as cortical excitability by means of single- and paired-pulse TMS from the first dorsal interosseous muscle of the dominant hand. RESULTS Compared to baseline, patients showed a significant decrease of the median resting motor threshold (from 35% to 33%, p<0.01). The other single-pulse (cortical silent period, motor evoked potentials latency and amplitude, central motor conduction time) and paired-pulse TMS measures (intracortical inhibition and intracortical facilitation) did not change significantly after the follow-up period. Antibodies were still present in 7 subjects. DISCUSSION In patients under a gluten-free diet, a global increase of cortical excitability was observed, suggesting a glutamate-mediated functional reorganization compensating for disease progression. We hypothesize that glutamate receptor activation, probably triggered by CD-related immune system dysregulation, might result in a long-lasting motor cortex hyperexcitability with increased excitatory post-synaptic potentials, probably related to phenomena of long-term plasticity. The impact of the gluten-free diet on subclinical neurological abnormalities needs to be further explored.
Collapse
|
20
|
Bhakuni R, Mutha PK. Learning of bimanual motor sequences in normal aging. Front Aging Neurosci 2015; 7:76. [PMID: 26005417 PMCID: PMC4424879 DOI: 10.3389/fnagi.2015.00076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/24/2015] [Indexed: 01/06/2023] Open
Abstract
While it is well accepted that motor performance declines with age, the ability to learn simple procedural motor tasks appears to remain intact to some extent in normal aging. Here we examined the impact of aging on the acquisition of a simple sequence of bimanual actions. We further asked whether such learning results from an overall decrease in response time or is also associated with improved coordination between the hands. Healthy young and old individuals performed a bimanual version of the classic serial reaction time task. We found no learning deficit in older adults and noted that older subjects were able to learn as much as young participants. We also observed that learning in both groups was associated with an overall decrease in response time, but switch cost, the increase in response time when a switch in hands was required during sequence execution, did not decrease with learning. Surprisingly however, overall switch cost was lower in the older group compared to the younger subjects. These findings are discussed in the context of interactions between procedural and declarative memory, reduced interhemispheric inhibition and more symmetric cortical activation during motor performance in normal aging.
Collapse
Affiliation(s)
- Rashmi Bhakuni
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Ahmedabad, Gujarat, India
| | - Pratik K Mutha
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Ahmedabad, Gujarat, India ; Centre for Cognitive Science, Indian Institute of Technology Gandhinagar Ahmedabad, Gujarat, India
| |
Collapse
|
21
|
Bella R, Lanza G, Cantone M, Giuffrida S, Puglisi V, Vinciguerra L, Pennisi M, Ricceri R, D’Agate CC, Malaguarnera G, Ferri R, Pennisi G. Effect of a Gluten-Free Diet on Cortical Excitability in Adults with Celiac Disease. PLoS One 2015; 10:e0129218. [PMID: 26053324 PMCID: PMC4460029 DOI: 10.1371/journal.pone.0129218] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/06/2015] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION An imbalance between excitatory and inhibitory synaptic excitability was observed in de novo patients with celiac disease (CD) in a previous study with Transcranial Magnetic Stimulation (TMS), suggesting a subclinical involvement of GABAergic and glutamatergic neurotransmission in asymptomatic patients. The aim of this investigation was to monitor the eventual changes in the same cohort of patients, evaluated after a period of gluten-free diet. METHODS Patients were re-evaluated after a median period of 16 months during which an adequate gluten-free diet was maintained. Clinical, cognitive and neuropsychiatric assessment was repeated, as well as cortical excitability by means of single- and paired-pulse TMS from the first dorsal interosseous muscle of the dominant hand. RESULTS Compared to baseline, patients showed a significant decrease of the median resting motor threshold (from 35% to 33%, p<0.01). The other single-pulse (cortical silent period, motor evoked potentials latency and amplitude, central motor conduction time) and paired-pulse TMS measures (intracortical inhibition and intracortical facilitation) did not change significantly after the follow-up period. Antibodies were still present in 7 subjects. DISCUSSION In patients under a gluten-free diet, a global increase of cortical excitability was observed, suggesting a glutamate-mediated functional reorganization compensating for disease progression. We hypothesize that glutamate receptor activation, probably triggered by CD-related immune system dysregulation, might result in a long-lasting motor cortex hyperexcitability with increased excitatory post-synaptic potentials, probably related to phenomena of long-term plasticity. The impact of the gluten-free diet on subclinical neurological abnormalities needs to be further explored.
Collapse
Affiliation(s)
- Rita Bella
- Department ‘‘G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Giuseppe Lanza
- Department of Neurology I.C., “Oasi” Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (EN), Italy
| | - Mariagiovanna Cantone
- Department of Neurology I.C., “Oasi” Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (EN), Italy
| | - Salvatore Giuffrida
- Department ‘‘G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Valentina Puglisi
- Department ‘‘G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Luisa Vinciguerra
- Department ‘‘G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Manuela Pennisi
- Spinal Unit, Emergency Hospital “Cannizzaro”, Catania, Italy
| | - Riccardo Ricceri
- Department ‘‘G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | | | | | - Raffaele Ferri
- Department of Neurology I.C., “Oasi” Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (EN), Italy
| | - Giovanni Pennisi
- Department“Specialità Medico-Chirurgiche”, University of Catania, Catania, Italy
- * E-mail:
| |
Collapse
|
22
|
Coppi E, Houdayer E, Chieffo R, Spagnolo F, Inuggi A, Straffi L, Comi G, Leocani L. Age-related changes in motor cortical representation and interhemispheric interactions: a transcranial magnetic stimulation study. Front Aging Neurosci 2014; 6:209. [PMID: 25157232 PMCID: PMC4128298 DOI: 10.3389/fnagi.2014.00209] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
To better understand the physiological mechanisms responsible for the differential motor cortex functioning in aging, we used transcranial magnetic stimulation to investigate interhemispheric interactions and cortical representation of hand muscles in the early phase of physiological aging, correlating these data with participants' motor abilities. Right-handed healthy subjects were divided into a younger group (n = 15, mean age 25.4 ± 1.9 years old) and an older group (n = 16, mean age 61.1 ± 5.1 years old). Activity of the bilateral abductor pollicis brevis (APB) and abductor digiti minimi (ADM) was recorded. Ipsilateral silent period (ISP) was measured in both APBs. Cortical maps of APB and ADM were measured bilaterally. Mirror movements (MM) were recorded during thumb abductions. Motor abilities were tested using Nine Hole Peg Test, finger tapping, and grip strength. ISP was reduced in the older group on both sides, in terms of duration (p = 0.025), onset (p = 0.029), and area (p = 0.008). Resting motor threshold did not differ between groups. APB and ADM maps were symmetrical in the younger group, but were reduced on the right compared to the left hemisphere in the older group (p = 0.008). The APB map of the right hemisphere was reduced in the older group compared to the younger (p = 0.021). Older subjects showed higher frequency of MM and worse motor abilities (p < 0.001). The reduction of right ISP area correlated significantly with the worsening of motor performances. Our results showed decreased interhemispheric interactions in the early processes of physiological aging and decreased cortical muscles representation over the non-dominant hemisphere. The decreased ISP and increased frequency of MM suggest a reduction of transcallosal inhibition. These data demonstrate that early processes of normal aging are marked by a dissociation of motor cortices, characterized, at least, by a decline of the non-dominant hemisphere, reinforcing the hypothesis of the right hemi-aging model.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| | - Elise Houdayer
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| | - Raffaella Chieffo
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| | - Francesca Spagnolo
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| | - Alberto Inuggi
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| | - Laura Straffi
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| | - Giancarlo Comi
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| | - Letizia Leocani
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| |
Collapse
|
23
|
Papegaaij S, Taube W, Baudry S, Otten E, Hortobágyi T. Aging causes a reorganization of cortical and spinal control of posture. Front Aging Neurosci 2014; 6:28. [PMID: 24624082 PMCID: PMC3939445 DOI: 10.3389/fnagi.2014.00028] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/13/2014] [Indexed: 11/13/2022] Open
Abstract
Classical studies in animal preparations suggest a strong role for spinal control of posture. In humans it is now established that the cerebral cortex contributes to postural control of unperturbed and perturbed standing. The age-related degeneration and accompanying functional changes in the brain, reported so far mainly in conjunction with simple manual motor tasks, may also affect the mechanisms that control complex motor tasks involving posture. This review outlines the age-related structural and functional changes at spinal and cortical levels and provides a mechanistic analysis of how such changes may be linked to the behaviorally manifest postural deficits in old adults. The emerging picture is that the age-related reorganization in motor control during voluntary tasks, characterized by differential modulation of spinal reflexes, greater cortical activation and cortical disinhibition, is also present during postural tasks. We discuss the possibility that this reorganization underlies the increased coactivation and dual task interference reported in elderly. Finally, we propose a model for future studies to unravel the structure-function-behavior relations in postural control and aging.
Collapse
Affiliation(s)
- Selma Papegaaij
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Wolfgang Taube
- Movement and Sports Science, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Stéphane Baudry
- Laboratory of Applied Biology, Faculty for Motor Sciences, Université Libre de Bruxelles Brussels, Belgium
| | - Egbert Otten
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen Groningen, Netherlands ; Faculty of Health and Life Sciences, Northumbria University Newcastle Upon Tyne, UK
| |
Collapse
|
24
|
Schecklmann M, Landgrebe M, Kleinjung T, Frank E, Rupprecht R, Sand PG, Eichhammer P, Hajak G, Langguth B. State- and trait-related alterations of motor cortex excitability in tinnitus patients. PLoS One 2014; 9:e85015. [PMID: 24409317 PMCID: PMC3883686 DOI: 10.1371/journal.pone.0085015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
Chronic tinnitus is a brain network disorder with involvement of auditory and non-auditory areas. Repetitive transcranial magnetic stimulation (rTMS) over the temporal cortex has been investigated for the treatment of tinnitus. Several small studies suggest that motor cortex excitability is altered in people with tinnitus. We retrospectively analysed data from 231 patients with chronic tinnitus and 120 healthy controls by pooling data from different studies. Variables of interest were resting motor threshold (RMT), short-interval intra-cortical inhibition (SICI), intra-cortical facilitation (ICF), and cortical silent period (CSP). 118 patients were tested twice - before and after ten rTMS treatment sessions over the left temporal cortex. In tinnitus patients SICI and ICF were increased and CSP was shortened as compared to healthy controls. There was no group difference in RMT. Treatment related amelioration of tinnitus symptoms were correlated with normalisations in SICI. These findings confirm earlier studies of abnormal motor cortex excitability in tinnitus patients. Moreover our longitudinal data suggest that altered SICI may reflect a state parameter, whereas CSP and ICF may rather mirror a trait-like predisposing factor of tinnitus. These findings are new and innovative as they enlarge the knowledge about basic physiologic and neuroplastic processes in tinnitus.
Collapse
Affiliation(s)
- Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
- * E-mail:
| | - Michael Landgrebe
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Social Foundation Bamberg, Bamberg, Germany
| | - Tobias Kleinjung
- Department of Otorhinolaryngology, University of Zurich, Zurich, Switzerland
| | - Elmar Frank
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Philipp G. Sand
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Peter Eichhammer
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Göran Hajak
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Social Foundation Bamberg, Bamberg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| |
Collapse
|
25
|
McGregor KM, Nocera JR, Sudhyadhom A, Patten C, Manini TM, Kleim JA, Crosson B, Butler AJ. Effects of aerobic fitness on aging-related changes of interhemispheric inhibition and motor performance. Front Aging Neurosci 2013; 5:66. [PMID: 24198784 PMCID: PMC3812779 DOI: 10.3389/fnagi.2013.00066] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/11/2013] [Indexed: 11/26/2022] Open
Abstract
Physical fitness has been long associated with maintenance and improvement of motor performance as we age. In particular, measures of psychomotor speed and motor dexterity tend to be higher in physically fit aging adults as compared to their sedentary counterparts. Using functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS), we explored the patterns of neural activity that may, in part, account for differences between individuals of varying physical fitness levels. In this study, we enrolled both sedentary and physically fit middle age (40–60) and younger (18–30) adults and measured upper extremity motor performance during behavioral testing. In a follow-up session, we employed TMS and fMRI to assess levels of interhemispheric communication during unimanual tasks. Results show that increased physical fitness is associated with better upper extremity motor performance on distal dexterity assessments and increased levels of interhemispheric inhibition in middle age adults. Further, the functional correlates of changes of ipsilateral activity appears to be restricted to the aging process as younger adults of varying fitness levels do not differ in hemispheric patterns of activity or motor performance. We conclude that sedentary aging confers a loss of interhemispheric inhibition that is deleterious to some aspects of motor function, as early as midlife, but these changes can be mediated by chronic engagement in aerobic exercise.
Collapse
Affiliation(s)
- Keith M McGregor
- Center for Visual and Neurocognitive Rehabilitation, U.S. Department of Veterans Affairs , Decatur, GA , USA ; Department of Neurology, Emory University , Atlanta, GA , USA
| | | | | | | | | | | | | | | |
Collapse
|