1
|
Sasaki R, Kojima S, Saito K, Otsuru N, Shirozu H, Onishi H. Resting-state functional connectivity involved in tactile orientation processing. Neuroimage 2024; 299:120834. [PMID: 39236853 DOI: 10.1016/j.neuroimage.2024.120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Grating orientation discrimination (GOD) is commonly used to assess somatosensory spatial processing. It allows discrimination between parallel and orthogonal orientations of tactile stimuli applied to the fingertip. Despite its widespread application, the underlying mechanisms of GOD, particularly the role of cortico-cortical interactions and local brain activity in this process, remain elusive. Therefore, we aimed to investigate how a specific cortico-cortical network and inhibitory circuits within the primary somatosensory cortex (S1) and secondary somatosensory cortex (S2) contribute to GOD. METHODS In total, 51 healthy young adults were included in our study. We recorded resting-state magnetoencephalography (MEG) and somatosensory-evoked magnetic field (SEF) in participants with open eyes. We converted the data into a source space based on individual structural magnetic resonance imaging. Next, we estimated S1- and S2-seed resting-state functional connectivity (rs-FC) at the alpha and beta bands through resting-state MEG using the amplitude envelope correlation method across the entire brain (i.e., S1/S2-seeds × 15,000 vertices × two frequencies). We assessed the inhibitory response in the S1 and S2 from SEFs using a paired-pulse paradigm. We automatically measured the GOD task in parallel and orthogonal orientations to the index finger, applying various groove widths with a custom-made device. RESULTS We observed a specific association between the GOD threshold (all P < 0.048) and the alpha rs-FC in the S1-superior parietal lobule and S1-adjacent to the parieto-occipital sulcus (i.e., lower rs-FC values corresponded to higher performance). In contrast, no association was observed between the local responses and the threshold. DISCUSSION The results of this study underpin the significance of specific cortico-cortical networks in recognizing variations in tactile stimuli.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Graduate Course of Health and Social Work, Kanagawa University of Human Services, Yokosuka City, Kanagawa, Japan.
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Hiroshi Shirozu
- Department of Functional Neurosurgery, NHO Nishiniigata Chuo Hospital, Niigata City, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| |
Collapse
|
2
|
Dinse HR, Höffken O, Tegenthoff M. Cortical excitability in human somatosensory and visual cortex: implications for plasticity and learning - a minireview. Front Hum Neurosci 2023; 17:1235487. [PMID: 37662638 PMCID: PMC10469727 DOI: 10.3389/fnhum.2023.1235487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The balance of excitation and inhibition plays a key role in plasticity and learning. A frequently used, reliable approach to assess intracortical inhibition relies on measuring paired-pulse behavior. Moreover, recent developments of magnetic resonance spectroscopy allows measuring GABA and glutamate concentrations. We give an overview about approaches employed to obtain information about excitatory states in human participants and discuss their putative relation. We summarize paired-pulse techniques and basic findings characterizing paired-pulse suppression in somatosensory (SI) and (VI) visual areas. Paired-pulse suppression describes the effect of paired sensory stimulation at short interstimulus intervals where the cortical response to the second stimulus is significantly suppressed. Simultaneous assessments of paired-pulse suppression in SI and VI indicated that cortical excitability is not a global phenomenon, but instead reflects the properties of local sensory processing. We review studies using non-invasive brain stimulation and perceptual learning experiments that assessed both perceptual changes and accompanying changes of cortical excitability in parallel. Independent of the nature of the excitation/inhibition marker used these data imply a close relationship between altered excitability and altered performance. These results suggest a framework where increased or decreased excitability is linked with improved or impaired perceptual performance. Recent findings have expanded the potential role of cortical excitability by demonstrating that inhibition markers such as GABA concentrations, paired-pulse suppression or alpha power predict to a substantial degree subsequent perceptual learning outcome. This opens the door for a targeted intervention where subsequent plasticity and learning processes are enhanced by altering prior baseline states of excitability.
Collapse
|
3
|
Sasaki R, Kojima S, Otsuru N, Yokota H, Saito K, Shirozu H, Onishi H. Beta resting-state functional connectivity predicts tactile spatial acuity. Cereb Cortex 2023; 33:9514-9523. [PMID: 37344255 PMCID: PMC10431746 DOI: 10.1093/cercor/bhad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Tactile perception is a complex phenomenon that is processed by multiple cortical regions via the primary somatosensory cortex (S1). Although somatosensory gating in the S1 using paired-pulse stimulation can predict tactile performance, the functional relevance of cortico-cortical connections to tactile perception remains unclear. We investigated the mechanisms by which corticocortical and local networks predict tactile spatial acuity in 42 adults using magnetoencephalography (MEG). Resting-state MEG was recorded with the eyes open, whereas evoked responses were assessed using single- and paired-pulse electrical stimulation. Source data were used to estimate the S1-seed resting-state functional connectivity (rs-FC) in the whole brain and the evoked response in the S1. Two-point discrimination threshold was assessed using a custom-made device. The beta rs-FC revealed a negative correlation between the discrimination threshold and S1-superior parietal lobule, S1-inferior parietal lobule, and S1-superior temporal gyrus connection (all P < 0.049); strong connectivity was associated with better performance. Somatosensory gating of N20m was also negatively correlated with the discrimination threshold (P = 0.015), with weak gating associated with better performance. This is the first study to demonstrate that specific beta corticocortical networks functionally support tactile spatial acuity as well as the local inhibitory network.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| | - Hiroshi Shirozu
- Department of Functional Neurosurgery, National Hospital Organization Nishiniigata Chuo Hospital, 1-14-1 Masago, Nishi-Ku, Niigata City, Niigata 950-2085, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| |
Collapse
|
4
|
Markmann M, Lenz M, Höffken O, Steponavičiūtė A, Brüne M, Tegenthoff M, Dinse HR, Newen A. Hypnotic suggestions cognitively penetrate tactile perception through top-down modulation of semantic contents. Sci Rep 2023; 13:6578. [PMID: 37085590 PMCID: PMC10121590 DOI: 10.1038/s41598-023-33108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
Perception is subject to ongoing alterations by learning and top-down influences. Although abundant studies have shown modulation of perception by attention, motivation, content and context, there is an unresolved controversy whether these examples provide true evidence that perception is penetrable by cognition. Here we show that tactile perception assessed as spatial discrimination can be instantaneously and systematically altered merely by the semantic content during hypnotic suggestions. To study neurophysiological correlates, we recorded EEG and SEPs. We found that the suggestion "your index finger becomes bigger" led to improved tactile discrimination, while the suggestion "your index finger becomes smaller" led to impaired discrimination. A hypnosis without semantic suggestions had no effect but caused a reduction of phase-locking synchronization of the beta frequency band between medial frontal cortex and the finger representation in somatosensory cortex. Late SEP components (P80-N140 complex) implicated in attentional processes were altered by the semantic contents, but processing of afferent inputs in SI remained unaltered. These data provide evidence that the psychophysically observed modifiability of tactile perception by semantic contents is not simply due to altered perception-based judgments, but instead is a consequence of modified perceptual processes which change the perceptual experience.
Collapse
Affiliation(s)
- Marius Markmann
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Melanie Lenz
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Oliver Höffken
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Agnė Steponavičiūtė
- Faculty of Social Sciences and Humanities, Klaipėda University, Klaipeda, Lithuania
| | - Martin Brüne
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL Universitätsklinikum Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Hubert R Dinse
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.
| | - Albert Newen
- Institute of Philosophy II, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
5
|
Ehrenbrusthoff K, Ryan CG, Martin DJ, Milnik V, Dinse HR, Grüneberg C. Low test–retest reliability of a protocol for assessing somatosensory cortex excitability generated from sensory nerves of the lower back. Front Hum Neurosci 2022; 16:898759. [PMID: 36082228 PMCID: PMC9445117 DOI: 10.3389/fnhum.2022.898759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
In people with chronic low back pain (CLBP), maladaptive structural and functional changes on a cortical level have been identified. On a functional level, somatosensory cortical excitability has been shown to be reduced in chronic pain conditions, resulting in cortical disinhibition. The occurrence of structural and/or functional maladaptive cortical changes in people with CLBP could play a role in maintaining the pain. There is currently no measurement protocol for cortical excitability that employs stimulation directly to the lower back. We developed a protocol for the measurement of single pulse somatosensory evoked potential (SEP) waveforms and paired-pulse behavior (PPB) generated from sensory nerves of the lower back and quantified its test–retest reliability in a sample of 30 healthy individuals to gain insights into the normal variability of cortical responses, which could then be compared to results from people with CLBP. We investigated cortical excitability by measuring SEPs and PPB. PPB was defined as the ratio of the amplitude of the second cortical response (A2s) divided by the first cortical response (A1). A2s was determined by subtracting the response to single-pulse stimuli from the paired pulse stimuli response to account for linear superposition effects. The test–retest reliability of the protocol was very poor with no evidence of systematic bias but a high amount of random variability between sessions. There was no significant difference in the right side PPB for session 1 (Mean ratio A2s/A1 = 0.66, SD = 0.54) and session 2 (Mean ratio A2s/A1 = 0.94, SD = 1.56); mean session difference [(95% CI) = −0.44 (−1.23 to 0.34); t (22) = −1.17, p = 0.26]. The ICC3.1 (absolute agreement) for the outlier-removed right side PPB were 0.19 (95% CI: −0.84 to 0.66) and 0.43 for left side PPB (95% CI: −0.37 to 0.76). This finding potentially has wider implications for PPB protocols. If these findings were replicated in other groups and other nerves, it would question the validity of this measure more generally. However, these findings are restricted to healthy people and sensory nerves of the lower back and may not be generalizable.
Collapse
Affiliation(s)
- Katja Ehrenbrusthoff
- Department of Applied Health Sciences, Hochschule für Gesundheit, Bochum, Germany
- *Correspondence: Katja Ehrenbrusthoff,
| | - Cormac G. Ryan
- School of Health & Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Denis J. Martin
- School of Health & Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | | | - Hubert R. Dinse
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, Bochum, Germany
- Institute for Neuroinformatics, Neural Plasticity Lab, Ruhr-University of Bochum, Bochum, Germany
| | - Christian Grüneberg
- Department of Applied Health Sciences, Hochschule für Gesundheit, Bochum, Germany
| |
Collapse
|
6
|
Fujioka H, Urasaki E, Soejima Y, Harada H, Yamashita K. Combination of Single- and Paired-Pulse Somatosensory Evoked Potentials in Ischemic Monitoring: Preliminary Investigation in Carotid Endarterectomy. Cureus 2020; 12:e12206. [PMID: 33489615 PMCID: PMC7815265 DOI: 10.7759/cureus.12206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction Severe ischemia induces cerebral excitability imbalance before completion of infarct. To investigate the clinical availability of this imbalance with ischemic monitoring, paired-pulse somatosensory evoked potentials (SEPs) were performed in conjunction with conventional SEPs during carotid endarterectomy. Methods For carotid endarterectomy patients with hemodynamic deficits of the middle cerebral artery area (n = 34), the excitability imbalances (Q) were measured by paired-pulse SEPs, wherein the second response (A2) was divided by the first (A1; Q = A2/A1). Regional cerebral saturation (rSO2) was also measured. Occlusion was performed twice using shunting. Results Each carotid occlusion induced a significant decrease in mean A1 and rSO2, and an increase in mean Q values (p < 0.001), which returned to the baseline level after occlusion. While neuronal imbalances were mostly transient, persistently increased Q values were observed in four cases (11.8%), all indicating postoperative abnormalities in diffusion-weighted magnetic resonance imaging (100%). Meanwhile, A1 detected the postoperative abnormality in only one case (25%). Preoperative Q values at the time of surgery were significantly higher in symptomatic patients having the upper limb deficits than those without (p < 0.01), indicating persistent or permanent imbalances. Conclusion Paired-pulse SEPs reliably identified transient, persistent or permanent neuronal imbalances, depending on the ischemic severity. These preliminary results indicated that paired-pulse SEPs, in combination with conventional SEPs (A1), may offer better ischemic monitoring.
Collapse
Affiliation(s)
- Hiroshi Fujioka
- Neurosurgery, Nagasaki Yurino Hospital, Nagasaki, JPN.,Neurosurgery, Kanmon Medical Center, National Hospital Organization (NHO), Shimonoseki, JPN.,Neurosurgery, Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, Fukuoka, JPN
| | | | - Yoshiteru Soejima
- Neurosurgery, Kanmon Medical Center, National Hospital Organization (NHO), Shimonoseki, JPN
| | - Hideki Harada
- Anaesthesiology, Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, Fukuoka, JPN
| | - Katsuhiro Yamashita
- Neurosurgery, Kanmon Medical Center, National Hospital Organization (NHO), Shimonoseki, JPN
| |
Collapse
|
7
|
Schloemer N, Lenz M, Tegenthoff M, Dinse HR, Höffken O. Parallel modulation of intracortical excitability of somatosensory and visual cortex by the gonadal hormones estradiol and progesterone. Sci Rep 2020; 10:22237. [PMID: 33335211 PMCID: PMC7747729 DOI: 10.1038/s41598-020-79389-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 11/24/2022] Open
Abstract
The levels of the gonadal hormones estradiol and progesterone vary throughout the menstrual cycle thereby affecting cognition, emotion, mood, and social behaviour. However, how these hormones modulate the balance of neural excitation and inhibition, which crucially regulate processing and plasticity, is not fully understood. We here used paired-pulse stimulation to investigate in healthy humans the action of low and high estradiol and progesterone on intracortical inhibition in somatosensory (SI) and visual cortex (V1). We found that paired-pulse suppression in both SI and VI depended on estradiol. During high estradiol levels, paired-pulse suppression was significantly reduced. No comparable effects were found for progesterone, presumably due to a confounding effect of estradiol. Also, no hormone level-depending effects were observed for single-pulse evoked SEPs (somatosensory evoked potentials) and VEPs (visual evoked potentials) indicating a specific hormonal action on intracortical processing. The results demonstrate that estradiol globally modulates the balance of excitation and inhibition of SI and VI cortex.
Collapse
Affiliation(s)
- Nasim Schloemer
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, 44789, Bochum, Germany.,Department of Psychiatry, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Melanie Lenz
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, 44789, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, 44789, Bochum, Germany
| | - Hubert R Dinse
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, 44789, Bochum, Germany. .,Institute for Neuroinformatik, Neural Plasticity Lab, Ruhr-University of Bochum, 44780, Bochum, Germany.
| | - Oliver Höffken
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr-University Bochum, 44789, Bochum, Germany
| |
Collapse
|
8
|
Transcutaneous spinal direct current stimulation shows no effect on paired stimulation suppression of the somatosensory cortex. Sci Rep 2020; 10:22010. [PMID: 33319846 PMCID: PMC7738485 DOI: 10.1038/s41598-020-79131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/03/2020] [Indexed: 11/08/2022] Open
Abstract
Transcutaneous spinal direct current stimulation (tsDCS) is a safe and convenient method of neuromodulation. It has been proven to alter sensory processing at cervicomedullary level by amplitude changes of the P30 response of tibial nerve somatosensory evoked potentials (TN SEPs). With knowledge that tsDCS affects cortical circuits, we hypothesized that tsDCS may also affect intracortical excitability of the somatosensory cortex assessed by paired stimulation suppression (PSS). Fourteen healthy men were included in this prospective, single-blinded, placebo-controlled crossover study. Single (SS) and paired stimulation (PS) TN SEPs were recorded over the scalp before, immediately as well as 30 and 60 min after applying 15 min of tsDCS over the twelfth thoracic vertebra. Each volunteer underwent three independent and randomized sessions of either cathodal, anodal or sham stimulation. tsDCS showed no effect on peak-to-peak amplitudes or latencies of cortical P40-N50 response after SS. Furthermore, tsDCS failed to induce significant changes on amplitude ratios of PSS, thus showing no impact on intracortical excitability of the somatosensory cortex in healthy subjects. Further research is required to reveal the different mechanisms and to strengthen clinical use of this promising technique.
Collapse
|
9
|
Kyong JS, Noh TS, Park MK, Oh SH, Lee JH, Suh MW. Phantom Perception of Sound and the Abnormal Cortical Inhibition System: An Electroencephalography (EEG) Study. Ann Otol Rhinol Laryngol 2019; 128:84S-95S. [DOI: 10.1177/0003489419837990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objectives: Despite no observable external sound present, a perceived feeling of a recurrent unpleasant sound is a main complaint in the patients with chronic tinnitus. This phantom perception of sound is considered as the auditory equivalent of phantom limb pain, and altered excitability may be involved in its underlying pathology. Tinnitus-related hyper-excitation is suppressed by inhibitory repetitive transcranial magnetic stimulation (rTMS). However, the neural mechanism underlying the treatment is not fully understood, and quantifying the suppression induced by rTMS has yet to be considered. Methods: We evaluated the effect of rTMS on the cortical inhibition status following single-site stimulation over the auditory temporal cortex (T group) or dual-site stimulation over the auditory temporal and the frontal regions (TF group). These effects were also compared with outcomes following sham stimulation (S group). Subjective response was recorded using tinnitus-related handicap index (THI), and changes in the cortical inhibition status were assessed using an auditory paired-pulse suppression index (PPSI). Results: TF group showed the greatest benefit from the treatment evidenced in the reduced PPSI and THI scores. T and S groups did not benefit much. TF group overlapped mostly with the responder group, indicating improvement in both subjective THI and objective PPSI measurements. Conclusion: Our results suggest that rTMS is a beneficial therapeutic treatment for chronic tinnitus patients and the dual-site treatment was the most effective in terms of both tinnitus complaint and quantitative indices. Thus, subjective reports and electrophysiological signatures may be complementary for the diagnosis/prognosis of tinnitus.
Collapse
Affiliation(s)
- Jeong-Sug Kyong
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
- Audiology Institute, Department of Audiology and Speech-Language Pathology, Hallym University of Graduate Studies, Seoul, Korea
| | - Tae-Soo Noh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Seung-Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
10
|
Höffken O, Schmelz A, Lenz M, Gruhn K, Grehl T, Tegenthoff M, Sczesny-Kaiser M. Excitability in somatosensory cortex correlates with motoric impairment in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:192-198. [PMID: 30798637 DOI: 10.1080/21678421.2019.1570270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative motoneuron disease. As previous studies reported alterations in motor cortex excitability, we evaluate excitability changes in somatosensory system. Methods: We examined 15 ALS patients and 15 healthy controls. Cortical excitability was assessed using paired somatosensory evoked potentials of median nerves. To determine disease severity and functional impairment, we assessed muscle strength and revised ALS-Functional Rating Scale (ALSFRS-R). Results: We found significantly reduced bilateral paired-stimulation inhibition in the ALS-group (both p < 0.05). Additionally, paired-stimulation ratios significantly correlated with ALSFRS-R (left somatosensory cortex: r= -orte; right somatosensory cortex: r= -ort4; both p < 0.05) and contralateral muscle strength (left somatosensory cortex: r= -orte, p = 0.007; right somatosensory cortex: r= -ortex p = 0.003). Conclusions: The results indicate disinhibition of the somatosensory cortex in ALS. It remains open if central somatosensory disinhibition is a primary characteristic of ALS as one element of a multisystem neurodegenerative disorder or a compensatory up-regulation due to functional motoric impairment. Longitudinal studies are necessary to categorize these findings.
Collapse
Affiliation(s)
- Oliver Höffken
- a Department of Neurology, Medical Faculty , BG University Hospital Bergmannsheil, Ruhr University Bochum , Bochum , Germany and
| | - Alena Schmelz
- a Department of Neurology, Medical Faculty , BG University Hospital Bergmannsheil, Ruhr University Bochum , Bochum , Germany and
| | - Melanie Lenz
- a Department of Neurology, Medical Faculty , BG University Hospital Bergmannsheil, Ruhr University Bochum , Bochum , Germany and
| | - Kai Gruhn
- a Department of Neurology, Medical Faculty , BG University Hospital Bergmannsheil, Ruhr University Bochum , Bochum , Germany and
| | - Torsten Grehl
- a Department of Neurology, Medical Faculty , BG University Hospital Bergmannsheil, Ruhr University Bochum , Bochum , Germany and.,b Department of Neurology , Outpatient Center for ALS and Other Motor Neuron Disorders, Alfried Krupp Hospital , Essen , Germany
| | - Martin Tegenthoff
- a Department of Neurology, Medical Faculty , BG University Hospital Bergmannsheil, Ruhr University Bochum , Bochum , Germany and
| | - Matthias Sczesny-Kaiser
- a Department of Neurology, Medical Faculty , BG University Hospital Bergmannsheil, Ruhr University Bochum , Bochum , Germany and
| |
Collapse
|
11
|
Gating of Sensory Input at Subcortical and Cortical Levels during Grasping in Humans. J Neurosci 2018; 38:7237-7247. [PMID: 29976624 DOI: 10.1523/jneurosci.0545-18.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 06/22/2018] [Indexed: 01/27/2023] Open
Abstract
Afferent input from the periphery to the cortex contributes to the control of grasping. How sensory input is gated along the ascending sensory pathway and its functional role during gross and fine grasping in humans remain largely unknown. To address this question, we assessed somatosensory-evoked potential components reflecting activation at subcortical and cortical levels and psychophysical tests at rest, during index finger abduction, precision, and power grip. We found that sensory gating at subcortical level and in the primary somatosensory cortex (S1), as well as intracortical inhibition in the S1, increased during power grip compared with the other tasks. To probe the functional relevance of gating in the S1, we examined somatosensory temporal discrimination threshold by measuring the shortest time interval to perceive a pair of electrical stimuli. Somatosensory temporal discrimination threshold increased during power grip, and higher threshold was associated with increased intracortical inhibition in the S1. These novel findings indicate that humans gate sensory input at subcortical level and in the S1 largely during gross compared with fine grasping. Inhibitory processes in the S1 may increase discrimination threshold to allow better performance during power grip.SIGNIFICANCE STATEMENT Most of our daily life actions involve grasping. Here, we demonstrate that gating of afferent input increases at subcortical level and in the primary somatosensory cortex (S1) during gross compared with fine grasping in intact humans. The precise timing of sensory information is critical for human perception and behavior. Notably, we found that the ability to perceive a pair of electrical stimuli, as measured by the somatosensory temporal discrimination threshold, increased during power grip compared with the other tasks. We propose that reduced afferent input to the S1 during gross grasping behaviors diminishes temporal discrimination of sensory processes related, at least in part, to increased inhibitory processes within the S1.
Collapse
|
12
|
Lei Y, Perez MA. Cortical contributions to sensory gating in the ipsilateral somatosensory cortex during voluntary activity. J Physiol 2017; 595:6203-6217. [PMID: 28513860 DOI: 10.1113/jp274504] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/11/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS It has long been known that the somatosensory cortex gates sensory inputs from the contralateral side of the body. Here, we examined the contribution of the ipsilateral somatosensory cortex (iS1) to sensory gating during index finger voluntary activity. The amplitude of the P25/N33, but not other somatosensory evoked potential (SSEP) components, was reduced during voluntary activity compared with rest. Interhemispheric inhibition between S1s and intracortical inhibition in the S1 modulated the amplitude of the P25/N33. Note that changes in interhemispheric inhibition between S1s correlated with changes in cortical circuits in the ipsilateral motor cortex. Our findings suggest that cortical circuits, probably from somatosensory and motor cortex, contribute to sensory gating in the iS1 during voluntary activity in humans. ABSTRACT An important principle in the organization of the somatosensory cortex is that it processes afferent information from the contralateral side of the body. The role of the ipsilateral somatosensory cortex (iS1) in sensory gating in humans remains largely unknown. Using electroencephalographic (EEG) recordings over the iS1 and electrical stimulation of the ulnar nerve at the wrist, we examined somatosensory evoked potentials (SSEPs; P14/N20, N20/P25 and P25/N33 components) and paired-pulse SSEPs between S1s (interhemispheric inhibition) and within (intracortical inhibition) the iS1 at rest and during tonic index finger voluntary activity. We found that the amplitude of the P25/N33, but not other SSEP components, was reduced during voluntary activity compared with rest. Interhemispheric inhibition increased the amplitude of the P25/N33 and intracortical inhibition reduced the amplitude of the P25/N33, suggesting a cortical origin for this effect. The P25/N33 receives inputs from the motor cortex, so we also examined the contribution of distinct sets of cortical interneurons by testing the effect of ulnar nerve stimulation on motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the ipsilateral motor cortex with the coil in the posterior-anterior (PA) and anterior-posterior (AP) orientation. Afferent input attenuated PA, but not AP, MEPs during voluntary activity compared with rest. Notably, changes in interhemispheric inhibition correlated with changes in PA MEPs. Our novel findings suggest that interhemispheric projections between S1s and intracortical circuits, probably from somatosensory and motor cortex, contribute to sensory gating in the iS1 during voluntary activity in humans.
Collapse
Affiliation(s)
- Yuming Lei
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA.,Bruce W. Carter Department of Veterans Affairs Medical Centre, 1201 NW 16th Street, Miami, FL, 33125, USA
| |
Collapse
|
13
|
Kufner M, Brückner S, Kammer T. No modulatory effects by transcranial static magnetic field stimulation of human motor and somatosensory cortex. Brain Stimul 2017; 10:703-710. [PMID: 28302459 DOI: 10.1016/j.brs.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/27/2017] [Accepted: 03/02/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Recently, it was reported that the application of a static magnetic field by placing a strong permanent magnet over the scalp for 10 min led to an inhibition of motor cortex excitability for at least 6 min after removing the magnet. When placing the magnet over the somatosensory cortex, a similar inhibitory after effect could be observed as well. OBJECTIVE Our aim was to replicate the inhibitory effects of transcranial static magnetic field stimulation in the motor and somatosensory system. METHODS The modulatory effect of static magnetic field stimulation was investigated in three experiments. In two experiments motor cortex excitability was measured before and after 10 or 15 min of magnet application, respectively. The second experiment included a sham condition and was designed in a double-blinded manner. In a third experiment, paired-pulse SSEPs were measured pre and four times post positioning the magnet over the somatosensory cortex for 10 min on both hemispheres, respectively. The SSEPs of the non stimulated hemisphere served as control condition. RESULTS We did not observe any systematic effect of the static magnetic field neither on motor cortex excitability nor on SSEPs. Moreover, no SSEP paired-pulse suppression was found. CONCLUSION We provide a detailed analysis of possible confounding factors and differences to previous studies on tSMS. After all, our results could not confirm the static magnetic field effect.
Collapse
Affiliation(s)
- Marco Kufner
- Section for Neurostimulation, Department of Psychiatry, University of Ulm, Germany
| | - Sabrina Brückner
- Section for Neurostimulation, Department of Psychiatry, University of Ulm, Germany
| | - Thomas Kammer
- Section for Neurostimulation, Department of Psychiatry, University of Ulm, Germany.
| |
Collapse
|
14
|
Bailey AZ, Asmussen MJ, Nelson AJ. Short-latency afferent inhibition determined by the sensory afferent volley. J Neurophysiol 2016; 116:637-44. [PMID: 27226451 DOI: 10.1152/jn.00276.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/25/2016] [Indexed: 01/07/2023] Open
Abstract
Short-latency afferent inhibition (SAI) is characterized by the suppression of the transcranial magnetic stimulation motor evoked potential (MEP) by the cortical arrival of a somatosensory afferent volley. It remains unknown whether the magnitude of SAI reflects changes in the sensory afferent volley, similar to that observed for somatosensory evoked potentials (SEPs). The present study investigated stimulus-response relationships between sensory nerve action potentials (SNAPs), SAI, and SEPs and their interrelatedness. Experiment 1 (n = 23, age 23 ± 1.5 yr) investigated the stimulus-response profile for SEPs and SAI in the flexor carpi radialis muscle after stimulation of the mixed median nerve at the wrist using ∼25%, 50%, 75%, and 100% of the maximum SNAP and at 1.2× and 2.4× motor threshold (the latter equated to 100% of the maximum SNAP). Experiment 2 (n = 20, age 23.1 ± 2 yr) probed SEPs and SAI stimulus-response relationships after stimulation of the cutaneous digital nerve at ∼25%, 50%, 75%, and 100% of the maximum SNAP recorded at the elbow. Results indicate that, for both nerve types, SAI magnitude is dependent on the volume of the sensory afferent volley and ceases to increase once all afferent fibers within the nerve are recruited. Furthermore, for both nerve types, the magnitudes of SAI and SEPs are related such that an increase in excitation within somatosensory cortex is associated with an increase in the magnitude of afferent-induced MEP inhibition.
Collapse
Affiliation(s)
- Aaron Z Bailey
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Michael J Asmussen
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Somatosensory Temporal Discrimination Threshold Involves Inhibitory Mechanisms in the Primary Somatosensory Area. J Neurosci 2016; 36:325-35. [PMID: 26758826 DOI: 10.1523/jneurosci.2008-15.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Somatosensory temporal discrimination threshold (STDT) is defined as the shortest time interval necessary for a pair of tactile stimuli to be perceived as separate. Although STDT is altered in several neurological disorders, its neural bases are not entirely clear. We used continuous theta burst stimulation (cTBS) to condition the excitability of the primary somatosensory cortex in healthy humans to examine its possible contribution to STDT. Excitability was assessed using the recovery cycle of the N20 component of somatosensory evoked potentials (SEP) and the area of high-frequency oscillations (HFO). cTBS increased STDT and reduced inhibition in the N20 recovery cycle at an interstimulus interval of 5 ms. It also reduced the amplitude of late HFO. All three effects were correlated. There was no effect of cTBS over the secondary somatosensory cortex on STDT, although it reduced the N120 component of the SEP. STDT is assessed conventionally with a simple ascending method. To increase insight into the effect of cTBS, we measured temporal discrimination with a psychophysical method. cTBS reduced the slope of the discrimination curve, consistent with a reduction of the quality of sensory information caused by an increase in noise. We hypothesize that cTBS reduces the effectiveness of inhibitory interactions normally used to sharpen temporal processing of sensory inputs. This reduction in discriminability of sensory input is equivalent to adding neural noise to the signal. SIGNIFICANCE STATEMENT Precise timing of sensory information is crucial for nearly every aspect of human perception and behavior. One way to assess the ability to analyze temporal information in the somatosensory domain is to measure the somatosensory temporal discrimination threshold (STDT), defined as the shortest time interval necessary for a pair of tactile stimuli to be perceived as separate. In this study, we found that STDT depends on inhibitory mechanisms within the primary somatosensory area (S1). This finding helps interpret the sensory processing deficits in neurological diseases, such as focal dystonia and Parkinson's disease, and possibly prompts future studies using neurostimulation techniques over S1 for therapeutic purposes in dystonic patients.
Collapse
|
16
|
Rehmann R, Sczesny-Kaiser M, Lenz M, Gucia T, Schliesing A, Schwenkreis P, Tegenthoff M, Höffken O. Polarity-Specific Cortical Effects of Transcranial Direct Current Stimulation in Primary Somatosensory Cortex of Healthy Humans. Front Hum Neurosci 2016; 10:208. [PMID: 27242473 PMCID: PMC4860403 DOI: 10.3389/fnhum.2016.00208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/22/2016] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive stimulation method that has been shown to modulate the excitability of the motor and visual cortices in human subjects in a polarity dependent manner in previous studies. The aim of our study was to investigate whether anodal and cathodal tDCS can also be used to modulate the excitability of the human primary somatosensory cortex (S1). We measured paired-pulse suppression (PPS) of somatosensory evoked potentials in 36 right-handed volunteers before and after anodal, cathodal, or sham stimulation over the right non-dominant S1. Paired-pulse stimulation of the median nerve was performed at the dominant and non-dominant hand. After anodal tDCS, PPS was reduced in the ipsilateral S1 compared to sham stimulation, indicating an excitatory effect of anodal tDCS. In contrast, PPS in the stimulated left hemisphere was increased after cathodal tDCS, indicating an inhibitory effect of cathodal tDCS. Sham stimulation induced no pre-post differences. Thus, tDCS can be used to modulate the excitability of S1 in polarity-dependent manner, which can be assessed by PPS. An interesting topic for further studies could be the investigation of direct correlations between sensory changes and excitability changes induced by tDCS.
Collapse
Affiliation(s)
- Robert Rehmann
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | | | - Melanie Lenz
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Tomasz Gucia
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Annika Schliesing
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Peter Schwenkreis
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Oliver Höffken
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| |
Collapse
|
17
|
Stude P, Lenz M, Höffken O, Tegenthoff M, Dinse H. A single dose of lorazepam reduces paired-pulse suppression of median nerve evoked somatosensory evoked potentials. Eur J Neurosci 2016; 43:1156-60. [PMID: 26929110 DOI: 10.1111/ejn.13224] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
Abstract
Paired-pulse behaviour in the somatosensory cortex is an approach to obtain insights into cortical processing modes and to obtain markers of changes of cortical excitability attributable to learning or pathological states. Numerous studies have demonstrated suppression of the response to the stimulus that follows a first one after a short interval, but the underlying mechanisms remain elusive, although there is agreement that GABAergic mechanisms seem to play a crucial role. We therefore aimed to explore the influence of the GABAA agonist lorazepam on paired-pulse somatosensory evoked potentials (SEPs). We recorded and analysed SEPs after paired median nerve stimulation in healthy individuals before and after they had received a single dose of 2.5 mg of lorazepam as compared with a control group receiving placebo. Paired-pulse suppression was expressed as a ratio of the amplitudes of the second and the first peaks. We found that, after lorazepam application, paired-pulse suppression of the cortical N20 component remained unchanged, but suppression of the N20-P25 complex was significantly reduced, indicative of GABAergic involvement in intracortical processing. Our data suggest that lorazepam most likely enhances inhibition within the cortical network of interneurons responsible for creating paired-pulse suppression, leading to reduced inhibitory drive with a subsequently reduced amount of suppression. The results provide further evidence that GABAA -mediated mechanisms are involved in the generation of median nerve evoked paired-pulse suppression.
Collapse
Affiliation(s)
- Philipp Stude
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Melanie Lenz
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Oliver Höffken
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Hubert Dinse
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.,Neural Plasticity Laboratory, Institute for Neuroinformatics, Ruhr University, Bochum, Germany
| |
Collapse
|
18
|
Jones CB, Lulic T, Bailey AZ, Mackenzie TN, Mi YQ, Tommerdahl M, Nelson AJ. Metaplasticity in human primary somatosensory cortex: effects on physiology and tactile perception. J Neurophysiol 2016; 115:2681-91. [PMID: 26984422 DOI: 10.1152/jn.00630.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 03/11/2016] [Indexed: 11/22/2022] Open
Abstract
Theta-burst stimulation (TBS) over human primary motor cortex evokes plasticity and metaplasticity, the latter contributing to the homeostatic balance of excitation and inhibition. Our knowledge of TBS-induced effects on primary somatosensory cortex (SI) is limited, and it is unknown whether TBS induces metaplasticity within human SI. Sixteen right-handed participants (6 females, mean age 23 yr) received two TBS protocols [continuous TBS (cTBS) and intermittent TBS (iTBS)] delivered in six different combinations over SI in separate sessions. TBS protocols were delivered at 30 Hz and were as follows: a single cTBS protocol, a single iTBS protocol, cTBS followed by cTBS, iTBS followed by iTBS, cTBS followed by iTBS, and iTBS followed by cTBS. Measures included the amplitudes of the first and second somatosensory evoked potentials (SEPs) via median nerve stimulation, their paired-pulse ratio (PPR), and temporal order judgment (TOJ). Dependent measures were obtained before TBS and at 5, 25, 50, and 90 min following stimulation. Results indicate similar effects following cTBS and iTBS; increased amplitudes of the second SEP and PPR without amplitude changes to SEP 1, and impairments in TOJ. Metaplasticity was observed such that TOJ impairments following a single cTBS protocol were abolished following consecutive cTBS protocols. Additionally, consecutive iTBS protocols altered the time course of effects when compared with a single iTBS protocol. In conclusion, 30-Hz cTBS and iTBS protocols delivered in isolation induce effects consistent with a TBS-induced reduction in intracortical inhibition within SI. Furthermore, cTBS- and iTBS-induced metaplasticity appear to follow homeostatic and nonhomeostatic rules, respectively.
Collapse
Affiliation(s)
- Christina B Jones
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Tea Lulic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Aaron Z Bailey
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Tanner N Mackenzie
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Yi Qun Mi
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Mark Tommerdahl
- Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| |
Collapse
|
19
|
Abstract
Fibromyalgia (FM) is a chronic widespread pain condition linked to central sensitization. Altered excitability of sensorimotor cortex has been proposed as an underlying pathology of FM. This study aimed to investigate intracortical excitability of the primary somatosensory cortex (S1) and its potential role in clinical pain in patients with FM. Somatosensory evoked magnetic fields were recorded in 17 right-handed females with FM and 21 age-, sex-, and handedness-matched healthy control subjects. Paired-pulse median nerve stimulation was delivered to the left and right wrist. We assessed the peak-to-peak amplitudes of the N20m-P35m and peak amplitude of each N20m and P35m component. Paired-pulse suppression (PPS) of the second response was quantified as the ratio of the amplitudes of the second to the first response. Patients with FM displayed significantly higher PPS ratio for the N20m-P35m in both hemispheres, indicating reduced intracortical inhibition in the S1. Notably, PPS ratio for the P35m was higher in patients with FM than in healthy controls, whereas no differences were apparent in PPS ratio for the N20m in both hemispheres. For both the N20m-P35m and the P35m in the left hemisphere, PPS ratios were positively associated with the sensory pain on the short-form McGill Pain Questionnaire. This study demonstrated that intracortical inhibition in the S1 is compromised bilaterally in patients with FM, and the extent of disinhibition can be closely associated with increased clinical pain. Our results suggest that changes of intracortical inhibition of the S1 may contribute to the pathophysiology of FM pain.
Collapse
|
20
|
Sczesny-Kaiser M, Höffken O, Aach M, Cruciger O, Grasmücke D, Meindl R, Schildhauer TA, Schwenkreis P, Tegenthoff M. HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil 2015; 12:68. [PMID: 26289818 PMCID: PMC4545929 DOI: 10.1186/s12984-015-0058-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Reorganization in the sensorimotor cortex accompanied by increased excitability and enlarged body representations is a consequence of spinal cord injury (SCI). Robotic-assisted bodyweight supported treadmill training (BWSTT) was hypothesized to induce reorganization and improve walking function. OBJECTIVE To assess whether BWSTT with hybrid assistive limb® (HAL®) exoskeleton affects cortical excitability in the primary somatosensory cortex (S1) in SCI patients, as measured by paired-pulse somatosensory evoked potentials (ppSEP) stimulated above the level of injury. METHODS Eleven SCI patients took part in HAL® assisted BWSTT for 3 months. PpSEP were conducted before and after this training period, where the amplitude ratios (SEP amplitude following double pulses - SEP amplitude following single pulses) were assessed and compared to eleven healthy control subjects. To assess improvement in walking function, we used the 10-m walk test, timed-up-and-go test, the 6-min walk test, and the lower extremity motor score. RESULTS PpSEPs were significantly increased in SCI patients as compared to controls at baseline. Following training, ppSEPs were increased from baseline and no longer significantly differed from controls. Walking parameters also showed significant improvements, yet there was no significant correlation between ppSEP measures and walking parameters. CONCLUSIONS The findings suggest that robotic-assisted BWSTT with HAL® in SCI patients is capable of inducing cortical plasticity following highly repetitive, active locomotive use of paretic legs. While there was no significant correlation of excitability with walking parameters, brain areas other than S1 might reflect improvement of walking functions. EEG and neuroimaging studies may provide further information about supraspinal plastic processes and foci in SCI rehabilitation.
Collapse
Affiliation(s)
- Matthias Sczesny-Kaiser
- Department of Neurology, BG University Hospital Bergmannsheil Bochum, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Oliver Höffken
- Department of Neurology, BG University Hospital Bergmannsheil Bochum, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Mirko Aach
- Department of Spinal Cord Injuries, BG University Hospital Bergmannsheil Bochum, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Oliver Cruciger
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Dennis Grasmücke
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Renate Meindl
- Department of Spinal Cord Injuries, BG University Hospital Bergmannsheil Bochum, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Thomas A Schildhauer
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Peter Schwenkreis
- Department of Neurology, BG University Hospital Bergmannsheil Bochum, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil Bochum, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| |
Collapse
|
21
|
Bradley C, Joyce N, Garcia-Larrea L. Adaptation in human somatosensory cortex as a model of sensory memory construction: a study using high-density EEG. Brain Struct Funct 2014; 221:421-31. [DOI: 10.1007/s00429-014-0915-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/14/2014] [Indexed: 11/29/2022]
|
22
|
Nakagawa K, Inui K, Yuge L, Kakigi R. Inhibition of somatosensory-evoked cortical responses by a weak leading stimulus. Neuroimage 2014; 101:416-24. [PMID: 25067817 DOI: 10.1016/j.neuroimage.2014.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/12/2014] [Accepted: 07/17/2014] [Indexed: 11/19/2022] Open
Abstract
We previously demonstrated that auditory-evoked cortical responses were suppressed by a weak leading stimulus in a manner similar to the prepulse inhibition (PPI) of startle reflexes. The purpose of the present study was to investigate whether a similar phenomenon was present in the somatosensory system, and also whether this suppression reflected an inhibitory process. We recorded somatosensory-evoked magnetic fields following stimulation of the median nerve and evaluated the extent by which they were suppressed by inserting leading stimuli at an intensity of 2.5-, 1.5-, 1.1-, or 0.9-fold the sensory threshold (ST) in healthy participants (Experiment 1). The results obtained demonstrated that activity in the secondary somatosensory cortex in the hemisphere contralateral to the stimulated side (cSII) was significantly suppressed by a weak leading stimulus with the intensity larger than 1.1-fold ST. This result implied that the somatosensory system had an inhibitory process similar to that of PPI. We then presented two successive leading stimuli before the test stimulus, and compared the extent of suppression between the test stimulus-evoked responses and those obtained with the second prepulse alone and with two prepulses (first and second) (Experiment 2). When two prepulses were preceded, cSII responses to the second prepulse were suppressed by the first prepulse, whereas the ability of the second prepulse to suppress the test stimulus remained unchanged. These results suggested the presence of at least two individual pathways; response-generating and inhibitory pathways.
Collapse
Affiliation(s)
- Kei Nakagawa
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | - Koji Inui
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|