1
|
Afonso M, Sánchez-Cuesta F, González-Zamorano Y, Pablo Romero J, Vourvopoulos A. Investigating the synergistic neuromodulation effect of bilateral rTMS and VR brain-computer interfaces training in chronic stroke patients. J Neural Eng 2024; 21:056037. [PMID: 39419104 DOI: 10.1088/1741-2552/ad8836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Objective.Stroke is a major cause of adult disability worldwide, resulting in motor impairments. To regain motor function, patients undergo rehabilitation, typically involving repetitive movement training. For those who lack volitional movement, novel technology-based approaches have emerged that directly involve the central nervous system, through neuromodulation techniques such as transcranial magnetic stimulation (TMS), and closed-loop neurofeedback like brain-computer interfaces (BCIs). This, can be augmented through proprioceptive feedback delivered many times by embodied virtual reality (VR). Nonetheless, despite a growing body of research demonstrating the individual efficacy of each technique, there is limited information on their combined effects.Approach.In this study, we analyzed the Electroencephalographic (EEG) signals acquired from 10 patients with more than 4 months since stroke during a longitudinal intervention with repetitive TMS followed by VR-BCI training. From the EEG, the event related desynchronization (ERD) and individual alpha frequency (IAF) were extracted, evaluated over time and correlated with clinical outcome.Main results.Every patient's clinical outcome improved after treatment, and ERD magnitude increased during simultaneous rTMS and VR-BCI. Additionally, IAF values showed a significant correlation with clinical outcome, nonetheless, no relationship was found between differences in ERD pre- post- intervention with the clinical improvement.Significance.This study furnishes empirical evidence supporting the efficacy of the joint action of rTMS and VR-BCI in enhancing patient recovery. It also suggests a relationship between IAF and rehabilitation outcomes, that could potentially serve as a retrievable biomarker for stroke recovery.
Collapse
Affiliation(s)
- Monica Afonso
- Bioengineering Department, Institute for Systems and Robotics-Lisboa, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco Sánchez-Cuesta
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Francisco de Vitoria University, Pozuelo de Alarcón, Spain
| | - Yeray González-Zamorano
- Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Juan Pablo Romero
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Francisco de Vitoria University, Pozuelo de Alarcón, Spain
| | - Athanasios Vourvopoulos
- Bioengineering Department, Institute for Systems and Robotics-Lisboa, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Plata-Bello J, Privato N, Modroño C, Pérez-Martín Y, Borges Á, González-Mora JL. Empathy Modulates the Activity of the Sensorimotor Mirror Neuron System during Pain Observation. Behav Sci (Basel) 2023; 13:947. [PMID: 37998694 PMCID: PMC10669321 DOI: 10.3390/bs13110947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
AIM The aim of this study is to analyze the brain activity patterns during the observation of painful expressions and to establish the relationship between this activity and the scores obtained on the Interpersonal Reactivity Index (IRI). METHODS The study included twenty healthy, right-handed subjects (10 women). We conducted a task-based and resting-state functional magnetic resonance imaging (fMRI) study. The task involved observing pictures displaying painful expressions. We performed a region of interest (ROI) analysis focusing on the core regions of the sensorimotor mirror neuron system (MNS). Resting-state fMRI was utilized to assess the functional connectivity of the sensorimotor MNS regions with the rest of the cortex using a seed-to-voxel approach. Additionally, we conducted a regression analysis to examine the relationship between brain activity and scores from the IRI subtests. RESULTS Observing painful expressions led to increased activity in specific regions of the frontal, temporal, and parietal lobes. The largest cluster of activation was observed in the left inferior parietal lobule (IPL). However, the ROI analysis did not reveal any significant activity in the remaining core regions of the sensorimotor MNS. The regression analysis demonstrated a positive correlation between brain activity during the observation of pain and the "empathic concern" subtest scores of the IRI in both the cingulate gyri and bilateral IPL. Finally, we identified a positive relationship between the "empathic concern" subtest of the IRI and the functional connectivity (FC) of bilateral IPLs with the bilateral prefrontal cortex and the right IFG. CONCLUSION Observing expressions of pain triggers activation in the sensorimotor MNS, and this activation is influenced by the individual's level of empathy.
Collapse
Affiliation(s)
- Julio Plata-Bello
- Department of Neurosurgery, Hospital Universitario de Canarias, S/C de Tenerife, 38320 La Laguna, Spain
- Cognitive Neuroscience Research Group, University of La Laguna, 38320 La Laguna, Spain
| | - Nicole Privato
- Cognitive Neuroscience Research Group, University of La Laguna, 38320 La Laguna, Spain
- Department of Neurology, Hospital Universitario de Canarias, S/C de Tenerife, 38320 La Laguna, Spain
| | - Cristián Modroño
- Department of Physiology, Faculty of Medicine, University of La Laguna, 38320 La Laguna, Spain
| | - Yaiza Pérez-Martín
- Department of Neurology, Hospital Universitario de Canarias, S/C de Tenerife, 38320 La Laguna, Spain
| | - África Borges
- Department of Clinical Psychology, Psychobiology and Methodology, University of La Laguna, 38320 La Laguna, Spain
| | - José Luis González-Mora
- Department of Physiology, Faculty of Medicine, University of La Laguna, 38320 La Laguna, Spain
| |
Collapse
|
3
|
Xin X, Zhang Q. The Inhibition Effect of Affordances in Action Picture Naming: An ERP Study. J Cogn Neurosci 2022; 34:951-966. [PMID: 35303083 DOI: 10.1162/jocn_a_01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
How quickly are different kinds of conceptual knowledge activated in action picture naming? Using a masked priming paradigm, we manipulated the prime category type (artificial vs. natural), prime action type (precision, power, vs. neutral grip), and target action type (precision vs. power grip) in action picture naming, while electrophysiological signals were measured concurrently. Naming latencies showed an inhibition effect in the congruent action type condition compared with the neutral condition. ERP results showed that artificial and natural category primes induced smaller waveforms in precision or power action primes than neutral primes in the time window of 100-200 msec. Time-frequency results consistently presented a power desynchronization of the mu rhythm in the time window of 0-210 msec with precision action type artificial objects compared with neutral primes, which localized at the supplementary motor, precentral and postcentral areas in the left hemisphere. These findings suggest an inhibitory effect of affordances arising at conceptual preparation in action picture naming and provide evidence for embodied cognition.
Collapse
Affiliation(s)
- Xin Xin
- Renmin University of China, Beijing
| | | |
Collapse
|
4
|
Delta and alpha rhythms are modulated by the physical movement knowledge in acrobatic gymnastics: an EEG study in visual context. SPORT SCIENCES FOR HEALTH 2018. [DOI: 10.1007/s11332-018-0461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Yu Z, Li L, Song J, Lv H. The Study of Visual-Auditory Interactions on Lower Limb Motor Imagery. Front Neurosci 2018; 12:509. [PMID: 30087594 PMCID: PMC6066580 DOI: 10.3389/fnins.2018.00509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/05/2018] [Indexed: 11/15/2022] Open
Abstract
In order to improve the activation of the mirror neuron system and the ability of the visual-cued motor imagery further, the multi-stimuli-cued unilateral lower limb motor imagery is studied in this paper. The visual-auditory evoked pathway is proposed and the sensory process is studied. To analyze the visual-auditory interactions, the kinesthetic motor imagery with the visual-auditory stimulus, visual stimulus and no stimulus are involved. The motor-related rhythm suppression is applied on quantitative evaluation. To explore the statistical sensory process, the causal relationships among the functional areas and the event-related potentials are investigated. The results have demonstrated the outstanding performances of the visual-auditory evoked motor imagery on the improvement of the mirror neuron system activation and the motor imagery ability. Besides, the abundant information interactions among functional areas and the positive impacts of the auditory stimulus in the motor and the visual areas have been revealed. The possibility that the sensory processes evoked by the visual-auditory interactions differ from the one elicited by kinesthetic motor imagery, has also been indicated. This study will promisingly offer an efficient way to motor rehabilitation, thus favorable for hemiparesis and partial paralysis patients.
Collapse
Affiliation(s)
- Zhongliang Yu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Lili Li
- School of Physics, Liaoning University, Shenyang, China
| | - Jinchun Song
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Hangyuan Lv
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| |
Collapse
|
6
|
Schulz L, Ischebeck A, Wriessnegger SC, Steyrl D, Müller-Putz GR. Action affordances and visuo-spatial complexity in motor imagery: An fMRI study. Brain Cogn 2018; 124:37-46. [PMID: 29723681 DOI: 10.1016/j.bandc.2018.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
Imagining a complex action requires not only motor-related processing but also visuo-spatial imagery. In the current study, we examined visuo-spatial complexity and action affordances in motor imagery (MI). Using functional magnetic resonance imaging, we investigated the neural activity in MI of reach-to-grasp movements of the right hand in five conditions. Thirty participants were scanned while imagining grasping an everyday object, grasping a geometrical shape, grasping next to an everyday object, grasping next to a geometrical shape, and grasping at nothing (no object involved). We found that MI of grasping next to an object recruited the visuo-spatial cognition network including posterior parietal and premotor regions more strongly than MI of grasping an object. This indicates that grasping next to an object requires additional processing resources rendering MI more complex. MI of a grasping movement involving a familiar everyday object compared to a geometrical shape yielded stronger activation in motor-related regions, including the bilateral supplementary motor area. This activation might be due to inhibitory processes preventing motor execution of motor scripts evoked by everyday objects (action affordances). Our results indicate that visuo-spatial cognition plays a significant role in MI.
Collapse
Affiliation(s)
- Laura Schulz
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria; Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Anja Ischebeck
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Selina C Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - David Steyrl
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| |
Collapse
|
7
|
Action-Related Speech Modulates Beta Oscillations During Observation of Tool-Use Gestures. Brain Topogr 2018; 31:838-847. [DOI: 10.1007/s10548-018-0641-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
|
8
|
Naro A, Calabrò RS, Leo A, Russo M, Milardi D, Cannavò A, Manuli A, Buda A, Casella C, Bramanti P, Cacciola A, Bramanti A. Bridging the Gap Towards Awareness Detection in Disorders of Consciousness: An Experimental Study on the Mirror Neuron System. Brain Topogr 2018; 31:623-639. [DOI: 10.1007/s10548-018-0628-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/01/2018] [Indexed: 12/31/2022]
|
9
|
Cheng CH, Sun HH, Weng JQ, Tseng YJ. Differential motor cortex excitability during observation of normal and abnormal goal-directed movement patterns. Neurosci Res 2017; 123:36-42. [PMID: 28457959 DOI: 10.1016/j.neures.2017.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
|
10
|
Babiloni C, Del Percio C, Lopez S, Di Gennaro G, Quarato PP, Pavone L, Morace R, Soricelli A, Noce G, Esposito V, Gallese V, Mirabella G. Frontal Functional Connectivity of Electrocorticographic Delta and Theta Rhythms during Action Execution Versus Action Observation in Humans. Front Behav Neurosci 2017; 11:20. [PMID: 28223926 PMCID: PMC5294389 DOI: 10.3389/fnbeh.2017.00020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/24/2017] [Indexed: 01/01/2023] Open
Abstract
We have previously shown that in seven drug-resistant epilepsy patients, both reaching-grasping of objects and the mere observation of those actions did desynchronize subdural electrocorticographic (ECoG) alpha (8-13 Hz) and beta (14-30) rhythms as a sign of cortical activation in primary somatosensory-motor, lateral premotor and ventral prefrontal areas (Babiloni et al., 2016a). Furthermore, that desynchronization was greater during action execution than during its observation. In the present exploratory study, we reanalyzed those ECoG data to evaluate the proof-of-concept that lagged linear connectivity (LLC) between primary somatosensory-motor, lateral premotor and ventral prefrontal areas would be enhanced during the action execution compared to the mere observation due to a greater flow of visual and somatomotor information. Results showed that the delta-theta (<8 Hz) LLC between lateral premotor and ventral prefrontal areas was higher during action execution than during action observation. Furthermore, the phase of these delta-theta rhythms entrained the local event-related connectivity of alpha and beta rhythms. It was speculated the existence of a multi-oscillatory functional network between high-order frontal motor areas which should be more involved during the actual reaching-grasping of objects compared to its mere observation. Future studies in a larger population should cross-validate these preliminary results.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology, University of Rome "La Sapienza"Rome, Italy; IRCCS S. Raffaele PisanaRome, Italy
| | | | - Susanna Lopez
- Department of Physiology and Pharmacology, University of Rome "La Sapienza" Rome, Italy
| | | | | | | | | | - Andrea Soricelli
- IRCCS SDNNaples, Italy; Department of Motor Sciences and Healthiness, University of Naples ParthenopeNaples, Italy
| | | | - Vincenzo Esposito
- Department of Physiology and Pharmacology, University of Rome "La Sapienza"Rome, Italy; IRCCS NeuromedPozzilli (IS), Italy
| | | | - Giovanni Mirabella
- Department of Physiology and Pharmacology, University of Rome "La Sapienza"Rome, Italy; IRCCS NeuromedPozzilli (IS), Italy
| |
Collapse
|
11
|
Babiloni C, Del Percio C, Vecchio F, Sebastiano F, Di Gennaro G, Quarato PP, Morace R, Pavone L, Soricelli A, Noce G, Esposito V, Rossini PM, Gallese V, Mirabella G. Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans. Clin Neurophysiol 2016; 127:641-654. [DOI: 10.1016/j.clinph.2015.04.068] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 12/30/2022]
|
12
|
Fox NA, Bakermans-Kranenburg MJ, Yoo KH, Bowman LC, Cannon EN, Vanderwert RE, Ferrari PF, van IJzendoorn MH. Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychol Bull 2015; 142:291-313. [PMID: 26689088 DOI: 10.1037/bul0000031] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A fundamental issue in cognitive neuroscience is how the brain encodes others' actions and intentions. In recent years, a potential advance in our knowledge on this issue is the discovery of mirror neurons in the motor cortex of the nonhuman primate. These neurons fire to both execution and observation of specific types of actions. Researchers use this evidence to fuel investigations of a human mirror system, suggesting a common neural code for perceptual and motor processes. Among the methods used for inferring mirror system activity in humans are changes in a particular frequency band in the electroencephalogram (EEG) called the mu rhythm. Mu frequency appears to decrease in amplitude (reflecting cortical activity) during both action execution and action observation. The current meta-analysis reviewed 85 studies (1,707 participants) of mu that infer human mirror system activity. Results demonstrated significant effect sizes for mu during execution (Cohen's d = 0.46, N = 701) as well as observation of action (Cohen's d = 0.31, N = 1,508), confirming a mirroring property in the EEG. A number of moderators were examined to determine the specificity of these effects. We frame these meta-analytic findings within the current discussion about the development and functions of a human mirror system, and conclude that changes in EEG mu activity provide a valid means for the study of human neural mirroring. Suggestions for improving the experimental and methodological approaches in using mu to study the human mirror system are offered.
Collapse
Affiliation(s)
- Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland
| | | | - Kathryn H Yoo
- Department of Human Development and Quantitative Methodology, University of Maryland
| | - Lindsay C Bowman
- Department of Human Development and Quantitative Methodology, University of Maryland
| | - Erin N Cannon
- Department of Human Development and Quantitative Methodology, University of Maryland
| | | | | | | |
Collapse
|
13
|
Abstract
The activity of mirror neurons in macaque ventral premotor cortex (PMv) and primary motor cortex (M1) is modulated by the observation of another's movements. This modulation could underpin well documented changes in EEG/MEG activity indicating the existence of a mirror neuron system in humans. Because the local field potential (LFP) represents an important link between macaque single neuron and human noninvasive studies, we focused on mirror properties of intracortical LFPs recorded in the PMv and M1 hand regions in two macaques while they reached, grasped and held different objects, or observed the same actions performed by an experimenter. Upper limb EMGs were recorded to control for covert muscle activity during observation.The movement-related potential (MRP), investigated as intracortical low-frequency LFP activity (<9 Hz), was modulated in both M1 and PMv, not only during action execution but also during action observation. Moreover, the temporal LFP modulations during execution and observation were highly correlated in both cortical areas. Beta power in both PMv and M1 was clearly modulated in both conditions. Although the MRP was detected only during dynamic periods of the task (reach/grasp/release), beta decreased during dynamic and increased during static periods (hold).Comparison of LFPs for different grasps provided evidence for partially nonoverlapping networks being active during execution and observation, which might be related to different inputs to motor areas during these conditions. We found substantial information about grasp in the MRP corroborating its suitability for brain-machine interfaces, although information about grasp was generally low during action observation.
Collapse
|
14
|
Halder S, Pinegger A, Käthner I, Wriessnegger SC, Faller J, Pires Antunes JB, Müller-Putz GR, Kübler A. Brain-controlled applications using dynamic P300 speller matrices. Artif Intell Med 2015; 63:7-17. [PMID: 25533310 DOI: 10.1016/j.artmed.2014.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/19/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
|