Li M, Lin F, Xu G. A TrAdaBoost Method for Detecting Multiple Subjects' N200 and P300 Potentials Based on Cross-Validation and an Adaptive Threshold.
Int J Neural Syst 2020;
30:2050009. [PMID:
32116091 DOI:
10.1142/s0129065720500094]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditional training methods need to collect a large amount of data for every subject to train a subject-specific classifier, which causes subjects fatigue and training burden. This study proposes a novel training method, TrAdaBoost based on cross-validation and an adaptive threshold (CV-T-TAB), to reduce the amount of data required for training by selecting and combining multiple subjects' classifiers that perform well on a new subject to train a classifier. This method adopts cross-validation to extend the amount of the new subject's training data and sets an adaptive threshold to select the optimal combination of the classifiers. Twenty-five subjects participated in the N200- and P300-based brain-computer interface. The study compares CV-T-TAB to five traditional training methods by testing them on the training of a support vector machine. The accuracy, information transfer rate, area under the curve, recall and precision are used to evaluate the performances under nine conditions with different amounts of data. CV-T-TAB outperforms the other methods and retains a high accuracy even when the amount of data is reduced to one-third of the original amount. The results imply that CV-T-TAB is effective in improving the performance of a subject-specific classifier with a small amount of data by adopting multiple subjects' classifiers, which reduces the training cost.
Collapse