1
|
Greisman JD, Olmsted ZT, Crorkin PJ, Dallimore CA, Zhigin V, Shlifer A, Bedi AD, Kim JK, Nelson P, Sy HL, Patel KV, Ellis JA, Boockvar J, Langer DJ, D'Amico RS. Enhanced Recovery After Surgery (ERAS) for Cranial Tumor Resection: A Review. World Neurosurg 2022; 163:104-122.e2. [PMID: 35381381 DOI: 10.1016/j.wneu.2022.03.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/15/2022]
Abstract
Enhanced Recovery After Surgery (ERAS) protocols describe a standardized method of preoperative, perioperative, and postoperative care to enhance outcomes and minimize complication risks surrounding elective surgical intervention. A growing body of evidence is being generated as we learn to apply principles of ERAS standardization to neurosurgical patients. First applied in spinal surgery, ERAS protocols have been extended to cranial neuro-oncological procedures. This review synthesizes recent findings to generate evidence-based guidelines to manage neurosurgical oncology patients with standardized systems and assess ability of these systems to coordinate multidisciplinary, patient-centric care efforts. Furthermore, we highlight the potential utility of multimedia, app-based communication platforms to facilitate patient education, autonomy, and team communication within each of the three settings.
Collapse
Affiliation(s)
- Jacob D Greisman
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY.
| | - Zachary T Olmsted
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY
| | - Patrick J Crorkin
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY
| | - Colin A Dallimore
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY
| | - Vadim Zhigin
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY
| | - Artur Shlifer
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY
| | - Anupama D Bedi
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY
| | - Jane K Kim
- Department of Anesthesiology, Lenox Hill Hospital/Northwell Health, New York, NY
| | - Priscilla Nelson
- Department of Anesthesiology, Lenox Hill Hospital/Northwell Health, New York, NY
| | - Heustein L Sy
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY
| | - Kiran V Patel
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY
| | - Jason A Ellis
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY
| | - John Boockvar
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY
| | - David J Langer
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY
| | - Randy S D'Amico
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY
| |
Collapse
|
2
|
Simon MV, Nuwer MR, Szelényi A. Electroencephalography, electrocorticography, and cortical stimulation techniques. HANDBOOK OF CLINICAL NEUROLOGY 2022; 186:11-38. [PMID: 35772881 DOI: 10.1016/b978-0-12-819826-1.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electroencephalography (EEG) and electrocorticography (ECoG) are two important neurophysiologic techniques used in the operating room for monitoring and mapping electrical brain activity. In this chapter, we detail their principle, recording methodology, and address specifics of their interpretation in the intraoperative setting (e.g., effect of anesthetics), as well as their clinical applications in epilepsy and non-epilepsy surgeries. In addition, we address differences between scalp, surface, and deep cortical recordings that will help towards a more reliable interpretation of the significance of electrophysiologic parameters such as amplitude and morphology as well as in differentiation between abnormal and normal patterns of electrical brain activity. Electrical stimulation is used for intraoperative mapping of different cortical functions such as language, parietal, and motor. Stimulation paradigms used in clinical practice vary with regard to stimulation frequencies and probes being used. Parameters, such as the number of phases per pulse, pulse/phase duration, pulse frequency, organization, and polarity, define their characteristics, including their safety, propensity to trigger seizures, efficiency and reliability of stimulation, and the mapping thresholds. Specifically, in this chapter, we will address differences between monopolar and bipolar stimulation; anodal and cathodal polarity; monophasic and biphasic pulses; constant voltage, and constant current paradigms.
Collapse
Affiliation(s)
- Mirela V Simon
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.
| | - Marc R Nuwer
- Departments of Neurology and Clinical Neurophysiology, David Geffen School of Medicine, University of California Los Angeles, and Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
| | - Andrea Szelényi
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| |
Collapse
|
3
|
Li H, Dong S, Meng Q, Liu Y, Du C, Li K, Liu X, Wu H, Zhang H. Disparate properties of afterdischarges elicited by electric cortical stimulation in MRI lesional epilepsy patients with different surgical outcomes. Clin Neurol Neurosurg 2021; 212:107034. [PMID: 34863054 DOI: 10.1016/j.clineuro.2021.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE The purpose of this study was to demonstrate the prognostic value of afterdischarges(ADs) on surgical outcome by comparing the disparate properties in epilepsy patients with different surgical outcomes METHODS: 27 lesional epilepsy patients were retrospectively analyzed. The brain region covered by subdural electrodes in each patient was dichotomized into the area of the brain lobe(s) where the MRI lesion is located (region ML) and other brain areas (region nML). The occurrence of ADs and ADs evolving into clinical seizure, ADs threshold and ADs duration in region ML and nML were compared between seizure-free (SF) and non-seizure-free (nSF) patients. RESULTS A total of 2535 contacts were analyzed, and the total occurrence of ADs was 18.6% (471/2535). The overall occurrence of ADs in region ML (24.8%) was significantly higher than that in region nML (10.3%) (P < 0.001). In region ML, compared with SF patients, nSF patients had a lower occurrence of ADs (19.2% vs. 31.2%, P < 0.001), a higher occurrence of ADs evolves into clinical seizure (8.7% vs. 2.4%, P = 0.006), a higher ADs threshold (12.8 ± 4.1 mA vs. 11.0 ± 3.7 mA, P < 0.001) and a shorter ADs duration (15.3 ± 14.2 s vs. 20.6 ± 17.0 s, P < 0.001). However, in region nML, there was no significant difference in properties of ADs between SF and nSF patients. CONCLUSION Higher occurrence of ADs in region ML might predict a good outcome, whereas higher occurrence of ADs evolving into clinical seizure, higher ADs threshold and shorter ADs duration might predict an unfavorable surgical outcome. ADs might help predict surgical outcomes in epilepsy patients.
Collapse
Affiliation(s)
- Huanfa Li
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shaanxi Province, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an 710061, China
| | - Shan Dong
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shaanxi Province, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an 710061, China
| | - Qiang Meng
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shaanxi Province, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an 710061, China
| | - Yong Liu
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shaanxi Province, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an 710061, China
| | - Changwang Du
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shaanxi Province, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an 710061, China
| | - Kuo Li
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shaanxi Province, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an 710061, China
| | - Xiaofang Liu
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shaanxi Province, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an 710061, China
| | - Hao Wu
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shaanxi Province, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an 710061, China; Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710048, China.
| | - Hua Zhang
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shaanxi Province, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an 710061, China; Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
4
|
Wang Y, Hays MA, Coogan C, Kang JY, Flinker A, Arya R, Korzeniewska A, Crone NE. Spatial-Temporal Functional Mapping Combined With Cortico-Cortical Evoked Potentials in Predicting Cortical Stimulation Results. Front Hum Neurosci 2021; 15:661976. [PMID: 33935673 PMCID: PMC8079642 DOI: 10.3389/fnhum.2021.661976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Functional human brain mapping is commonly performed during invasive monitoring with intracranial electroencephalographic (iEEG) electrodes prior to resective surgery for drug resistant epilepsy. The current gold standard, electrocortical stimulation mapping (ESM), is time consuming, sometimes elicits pain, and often induces after discharges or seizures. Moreover, there is a risk of overestimating eloquent areas due to propagation of the effects of stimulation to a broader network of language cortex. Passive iEEG spatial-temporal functional mapping (STFM) has recently emerged as a potential alternative to ESM. However, investigators have observed less correspondence between STFM and ESM maps of language than between their maps of motor function. We hypothesized that incongruities between ESM and STFM of language function may arise due to propagation of the effects of ESM to cortical areas having strong effective connectivity with the site of stimulation. We evaluated five patients who underwent invasive monitoring for seizure localization, whose language areas were identified using ESM. All patients performed a battery of language tasks during passive iEEG recordings. To estimate the effective connectivity of stimulation sites with a broader network of task-activated cortical sites, we measured cortico-cortical evoked potentials (CCEPs) elicited across all recording sites by single-pulse electrical stimulation at sites where ESM was performed at other times. With the combination of high gamma power as well as CCEPs results, we trained a logistic regression model to predict ESM results at individual electrode pairs. The average accuracy of the classifier using both STFM and CCEPs results combined was 87.7%, significantly higher than the one using STFM alone (71.8%), indicating that the correspondence between STFM and ESM results is greater when effective connectivity between ESM stimulation sites and task-activated sites is taken into consideration. These findings, though based on a small number of subjects to date, provide preliminary support for the hypothesis that incongruities between ESM and STFM may arise in part from propagation of stimulation effects to a broader network of cortical language sites activated by language tasks, and suggest that more studies, with larger numbers of patients, are needed to understand the utility of both mapping techniques in clinical practice.
Collapse
Affiliation(s)
- Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher Coogan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adeen Flinker
- Department of Neurology, New York University School of Medicine, New York, NY, United States
| | - Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Sivaraju A, Spencer DD, Hirsch LJ. Intrastimulation discharges during electrical stimulation mapping May help identify seizure onset network. Brain Stimul 2021; 14:652-654. [PMID: 33826933 DOI: 10.1016/j.brs.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/03/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022] Open
Affiliation(s)
- Adithya Sivaraju
- Comprehensive Epilepsy Center, Department of Neurology, Yale University, New Haven, CT, USA.
| | - Dennis D Spencer
- Comprehensive Epilepsy Center, Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Perrone-Bertolotti M, Alexandre S, Jobb AS, De Palma L, Baciu M, Mairesse MP, Hoffmann D, Minotti L, Kahane P, David O. Probabilistic mapping of language networks from high frequency activity induced by direct electrical stimulation. Hum Brain Mapp 2020; 41:4113-4126. [PMID: 32697353 PMCID: PMC7469846 DOI: 10.1002/hbm.25112] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/29/2022] Open
Abstract
Direct electrical stimulation (DES) at 50 Hz is used as a gold standard to map cognitive functions but little is known about its ability to map large‐scale networks and specific subnetwork. In the present study, we aim to propose a new methodological approach to evaluate the specific hypothesis suggesting that language errors/dysfunction induced by DES are the result of large‐scale network modification rather than of a single cortical region, which explains that similar language symptoms may be observed after stimulation of different cortical regions belonging to this network. We retrospectively examined 29 patients suffering from focal drug‐resistant epilepsy who benefitted from stereo‐electroencephalographic (SEEG) exploration and exhibited language symptoms during a naming task following 50 Hz DES. We assessed the large‐scale language network correlated with behavioral DES‐induced responses (naming errors) by quantifying DES‐induced changes in high frequency activity (HFA, 70–150 Hz) outside the stimulated cortical region. We developed a probabilistic approach to report the spatial pattern of HFA modulations during DES‐induced language errors. Similarly, we mapped the pattern of after‐discharges (3–35 Hz) occurring after DES. HFA modulations concurrent to language symptoms revealed a brain network similar to our current knowledge of language gathered from standard brain mapping. In addition, specific subnetworks could be identified within the global language network, related to different language processes, generally described in relation to the classical language regions. Spatial patterns of after‐discharges were similar to HFA induced during DES. Our results suggest that this new methodological DES‐HFA mapping is a relevant approach to map functional networks during SEEG explorations, which would allow to shift from “local” to “network” perspectives.
Collapse
Affiliation(s)
- Marcela Perrone-Bertolotti
- CNRC, Laboratoire de Psychologie et NeuroCognition, University of Grenoble Alpes, University of Savoie Mont Blanc, Grenoble, France.,Institut Universitaire de, Paris, France
| | - Sarah Alexandre
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France
| | - Anne-Sophie Jobb
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France.,University of Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France.,Inserm, Grenoble, France
| | - Luca De Palma
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France
| | - Monica Baciu
- CNRC, Laboratoire de Psychologie et NeuroCognition, University of Grenoble Alpes, University of Savoie Mont Blanc, Grenoble, France.,Institut Universitaire de, Paris, France
| | | | | | - Lorella Minotti
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France.,University of Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France.,Inserm, Grenoble, France
| | - Philippe Kahane
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France.,University of Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France.,Inserm, Grenoble, France
| | - Olivier David
- University of Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France.,Inserm, Grenoble, France
| |
Collapse
|
7
|
Goldstein HE, Smith EH, Gross RE, Jobst BC, Lega BC, Sperling MR, Worrell GA, Zaghloul KA, Wanda PA, Kahana MJ, Rizzuto DS, Schevon CA, McKhann GM, Sheth SA. Risk of seizures induced by intracranial research stimulation: analysis of 770 stimulation sessions. J Neural Eng 2019; 16:066039. [PMID: 31509808 DOI: 10.1088/1741-2552/ab4365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Patients with medically refractory epilepsy often undergo intracranial electroencephalography (iEEG) monitoring to identify a seizure focus and determine their candidacy for surgical intervention. This clinically necessary monitoring period provides an increasingly utilized research opportunity to study human neurophysiology, however ethical concerns demand a thorough appreciation of the associated risks. We measured the incidence of research stimulation-associated seizures in a large multi-institutional dataset in order to determine whether brain stimulation was statistically associated with seizure incidence and identify potential risk factors for stimulation-associated seizures. APPROACH 188 subjects undergoing iEEG monitoring across ten institutions participated in 770 research stimulation sessions over 3.5 yr. Seizures within 30 min of a stimulation session were included in our retrospective analysis. We analyzed stimulation parameters, seizure incidence, and typical seizure patterns, to assess the likelihood that recorded seizures were stimulation-induced, rather than events that occurred by chance in epilepsy patients prone to seizing. MAIN RESULTS In total, 14 seizures were included in our analysis. All events were single seizures, and no adverse events occurred. The mean amplitude of seizure-associated stimulation did not differ significantly from the mean amplitude delivered in sessions without seizures. In order to determine the likelihood that seizures were stimulation induced, we used three sets of analyses: visual iEEG analysis, statistical frequency, and power analyses. We determined that three of the 14 seizures were likely stimulation-induced, five were possibly stimulation-induced, and six were unlikely stimulation-induced. Overall, we estimate a rate of stimulation-induced seizures between 0.39% and 1.82% of sessions. SIGNIFICANCE The rarity of stimulation-associated seizures and the fact that none added morbidity or affected the clinical course of any patient are important findings for understanding the feasibility and safety of intracranial stimulation for research purposes.
Collapse
Affiliation(s)
- Hannah E Goldstein
- Department of Neurological Surgery, Columbia University, New York, NY, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dineen J, Maus DC, Muzyka I, See RB, Cahill DP, Carter BS, Curry WT, Jones PS, Nahed BV, Peterfreund RA, Simon MV. Factors that modify the risk of intraoperative seizures triggered by electrical stimulation during supratentorial functional mapping. Clin Neurophysiol 2019; 130:1058-1065. [DOI: 10.1016/j.clinph.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/05/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022]
|
9
|
Kambara T, Sood S, Alqatan Z, Klingert C, Ratnam D, Hayakawa A, Nakai Y, Luat AF, Agarwal R, Rothermel R, Asano E. Presurgical language mapping using event-related high-gamma activity: The Detroit procedure. Clin Neurophysiol 2017; 129:145-154. [PMID: 29190521 DOI: 10.1016/j.clinph.2017.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/25/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
A number of investigators have reported that event-related augmentation of high-gamma activity at 70-110 Hz on electrocorticography (ECoG) can localize functionally-important brain regions in children and adults who undergo epilepsy surgery. The advantages of ECoG-based language mapping over the gold-standard stimulation include: (i) lack of stimulation-induced seizures, (ii) better sensitivity of localization of language areas in young children, and (iii) shorter patient participant time. Despite its potential utility, ECoG-based language mapping is far less commonly practiced than stimulation mapping. Here, we have provided video presentations to explain, point-by-point, our own hardware setting and time-frequency analysis procedures. We also have provided standardized auditory stimuli, in multiple languages, ready to be used for ECoG-based language mapping. Finally, we discussed the technical aspects of ECoG-based mapping, including its pitfalls, to facilitate appropriate interpretation of the data.
Collapse
Affiliation(s)
- Toshimune Kambara
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Postdoctoral Fellowship for Research Abroad, Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 1020083, Japan
| | - Sandeep Sood
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Zahraa Alqatan
- Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | | - Diksha Ratnam
- Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Akane Hayakawa
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Yasuo Nakai
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Aimee F Luat
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Rajkumar Agarwal
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Robert Rothermel
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Psychiatry, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Eishi Asano
- Wayne State University, School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
10
|
Spena G, Schucht P, Seidel K, Rutten GJ, Freyschlag CF, D'Agata F, Costi E, Zappa F, Fontanella M, Fontaine D, Almairac F, Cavallo M, De Bonis P, Conesa G, Foroglou N, Gil-Robles S, Mandonnet E, Martino J, Picht T, Viegas C, Wager M, Pallud J. Brain tumors in eloquent areas: A European multicenter survey of intraoperative mapping techniques, intraoperative seizures occurrence, and antiepileptic drug prophylaxis. Neurosurg Rev 2016; 40:287-298. [PMID: 27481498 DOI: 10.1007/s10143-016-0771-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 01/08/2023]
Abstract
Intraoperative mapping and monitoring techniques for eloquent area tumors are routinely used world wide. Very few data are available regarding mapping and monitoring methods and preferences, intraoperative seizures occurrence and perioperative antiepileptic drug management. A questionnaire was sent to 20 European centers with experience in intraoperative mapping or neurophysiological monitoring for the treatment of eloquent area tumors. Fifteen centers returned the completed questionnaires. Data was available on 2098 patients. 863 patients (41.1%) were operated on through awake surgery and intraoperative mapping, while 1235 patients (58.8%) received asleep surgery and intraoperative electrophysiological monitoring or mapping. There was great heterogeneity between centers with some totally AW oriented (up to 100%) and other almost totally ASL oriented (up to 92%) (31% SD). For awake surgery, 79.9% centers preferred an asleep-awake-asleep anesthesia protocol. Only 53.3% of the centers used ECoG or transcutaneous EEG. The incidence of intraoperative seizures varied significantly between centers, ranging from 2.5% to 54% (p < 0.001). It there appears to be a statistically significant link between the mastery of mapping technique and the risk of intraoperative seizures. Moreover, history of preoperative seizures can significantly increase the risk of intraoperative seizures (p < 0.001). Intraoperative seizures occurrence was similar in patients with or without perioperative drugs (12% vs. 12%, p = 0.2). This is the first European survey to assess intraoperative functional mapping and monitoring protocols and the management of peri- and intraoperative seizures. This data can help identify specific aspects that need to be investigated in prospective and controlled studies.
Collapse
Affiliation(s)
- Giannantonio Spena
- Clinic of Neurosurgery, Spedali Civili di Brescia, Scala 7, Piano 3°, Piazzale Spedali Civili 1, 25121, Brescia, Italy.
| | | | | | | | | | | | - Emanule Costi
- Clinic of Neurosurgery, Spedali Civili di Brescia, Scala 7, Piano 3°, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Francesca Zappa
- Clinic of Neurosurgery, Spedali Civili di Brescia, Scala 7, Piano 3°, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Marco Fontanella
- Clinic of Neurosurgery, Spedali Civili di Brescia, Scala 7, Piano 3°, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Denys Fontaine
- Neurosurgery, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Fabien Almairac
- Neurosurgery, Centre Hospitalier Universitaire de Nice, Nice, France
| | | | | | | | - Nicholas Foroglou
- Neurosurgery, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | | | | | - Juan Martino
- Neurosurgery, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Thomas Picht
- Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Michel Wager
- Neurosurgery, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Johan Pallud
- Neurosurgery, Centre Hospitalier Sainte-Anne and Paris Descartes University, Paris, France
| |
Collapse
|
11
|
Wang Y, Fifer MS, Flinker A, Korzeniewska A, Cervenka MC, Anderson WS, Boatman-Reich DF, Crone NE. Spatial-temporal functional mapping of language at the bedside with electrocorticography. Neurology 2016; 86:1181-9. [PMID: 26935890 DOI: 10.1212/wnl.0000000000002525] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/27/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the feasibility and clinical utility of using passive electrocorticography (ECoG) for online spatial-temporal functional mapping (STFM) of language cortex in patients being monitored for epilepsy surgery. METHODS We developed and tested an online system that exploits ECoG's temporal resolution to display the evolution of statistically significant high gamma (70-110 Hz) responses across all recording sites activated by a discrete cognitive task. We illustrate how this spatial-temporal evolution can be used to study the function of individual recording sites engaged during different language tasks, and how this approach can be particularly useful for mapping eloquent cortex. RESULTS Using electrocortical stimulation mapping (ESM) as the clinical gold standard for localizing language cortex, the average sensitivity and specificity of online STFM across 7 patients were 69.9% and 83.5%, respectively. Moreover, relative to regions of interest where discrete cortical lesions have most reliably caused language impairments in the literature, the sensitivity of STFM was significantly greater than that of ESM, while its specificity was also greater than that of ESM, though not significantly so. CONCLUSIONS This study supports the feasibility and clinical utility of online STFM for mapping human language function, particularly under clinical circumstances in which time is limited and comprehensive ESM is impractical.
Collapse
Affiliation(s)
- Yujing Wang
- From the Departments of Neurology (Y.W., A.K., M.C.C., D.F.B.-R., N.E.C.), Biomedical Engineering (M.S.F.), and Neurosurgery (W.S.A.), Johns Hopkins University, Baltimore, MD; Fischell Department of Bioengineering (Y.W.), University of Maryland College Park; and Department of Psychology (A.F.), New York University, New York.
| | - Matthew S Fifer
- From the Departments of Neurology (Y.W., A.K., M.C.C., D.F.B.-R., N.E.C.), Biomedical Engineering (M.S.F.), and Neurosurgery (W.S.A.), Johns Hopkins University, Baltimore, MD; Fischell Department of Bioengineering (Y.W.), University of Maryland College Park; and Department of Psychology (A.F.), New York University, New York
| | - Adeen Flinker
- From the Departments of Neurology (Y.W., A.K., M.C.C., D.F.B.-R., N.E.C.), Biomedical Engineering (M.S.F.), and Neurosurgery (W.S.A.), Johns Hopkins University, Baltimore, MD; Fischell Department of Bioengineering (Y.W.), University of Maryland College Park; and Department of Psychology (A.F.), New York University, New York
| | - Anna Korzeniewska
- From the Departments of Neurology (Y.W., A.K., M.C.C., D.F.B.-R., N.E.C.), Biomedical Engineering (M.S.F.), and Neurosurgery (W.S.A.), Johns Hopkins University, Baltimore, MD; Fischell Department of Bioengineering (Y.W.), University of Maryland College Park; and Department of Psychology (A.F.), New York University, New York
| | - Mackenzie C Cervenka
- From the Departments of Neurology (Y.W., A.K., M.C.C., D.F.B.-R., N.E.C.), Biomedical Engineering (M.S.F.), and Neurosurgery (W.S.A.), Johns Hopkins University, Baltimore, MD; Fischell Department of Bioengineering (Y.W.), University of Maryland College Park; and Department of Psychology (A.F.), New York University, New York
| | - William S Anderson
- From the Departments of Neurology (Y.W., A.K., M.C.C., D.F.B.-R., N.E.C.), Biomedical Engineering (M.S.F.), and Neurosurgery (W.S.A.), Johns Hopkins University, Baltimore, MD; Fischell Department of Bioengineering (Y.W.), University of Maryland College Park; and Department of Psychology (A.F.), New York University, New York
| | - Dana F Boatman-Reich
- From the Departments of Neurology (Y.W., A.K., M.C.C., D.F.B.-R., N.E.C.), Biomedical Engineering (M.S.F.), and Neurosurgery (W.S.A.), Johns Hopkins University, Baltimore, MD; Fischell Department of Bioengineering (Y.W.), University of Maryland College Park; and Department of Psychology (A.F.), New York University, New York
| | - Nathan E Crone
- From the Departments of Neurology (Y.W., A.K., M.C.C., D.F.B.-R., N.E.C.), Biomedical Engineering (M.S.F.), and Neurosurgery (W.S.A.), Johns Hopkins University, Baltimore, MD; Fischell Department of Bioengineering (Y.W.), University of Maryland College Park; and Department of Psychology (A.F.), New York University, New York
| |
Collapse
|