1
|
Latorre A, Rocchi L, Paparella G, Manzo N, Bhatia KP, Rothwell JC. Changes in cerebellar output abnormally modulate cortical myoclonus sensorimotor hyperexcitability. Brain 2024; 147:1412-1422. [PMID: 37956080 PMCID: PMC10994547 DOI: 10.1093/brain/awad384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Cortical myoclonus is produced by abnormal neuronal discharges within the sensorimotor cortex, as demonstrated by electrophysiology. Our hypothesis is that the loss of cerebellar inhibitory control over the motor cortex, via cerebello-thalamo-cortical connections, could induce the increased sensorimotor cortical excitability that eventually causes cortical myoclonus. To explore this hypothesis, in the present study we applied anodal transcranial direct current stimulation over the cerebellum of patients affected by cortical myoclonus and healthy controls and assessed its effect on sensorimotor cortex excitability. We expected that anodal cerebellar transcranial direct current stimulation would increase the inhibitory cerebellar drive to the motor cortex and therefore reduce the sensorimotor cortex hyperexcitability observed in cortical myoclonus. Ten patients affected by cortical myoclonus of various aetiology and 10 aged-matched healthy control subjects were included in the study. All participants underwent somatosensory evoked potentials, long-latency reflexes and short-interval intracortical inhibition recording at baseline and immediately after 20 min session of cerebellar anodal transcranial direct current stimulation. In patients, myoclonus was recorded by the means of surface EMG before and after the cerebellar stimulation. Anodal cerebellar transcranial direct current stimulation did not change the above variables in healthy controls, while it significantly increased the amplitude of somatosensory evoked potential cortical components, long-latency reflexes and decreased short-interval intracortical inhibition in patients; alongside, a trend towards worsening of the myoclonus after the cerebellar stimulation was observed. Interestingly, when dividing patients in those with and without giant somatosensory evoked potentials, the increment of the somatosensory evoked potential cortical components was observed mainly in those with giant potentials. Our data showed that anodal cerebellar transcranial direct current stimulation facilitates-and does not inhibit-sensorimotor cortex excitability in cortical myoclonus syndromes. This paradoxical response might be due to an abnormal homeostatic plasticity within the sensorimotor cortex, driven by dysfunctional cerebello-thalamo-cortical input to the motor cortex. We suggest that the cerebellum is implicated in the pathophysiology of cortical myoclonus and that these results could open the way to new forms of treatment or treatment targets.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari 09042, Italy
| | - Giulia Paparella
- Department of Neurology, IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Nicoletta Manzo
- Department of Neurology, IRCCS San Camillo Hospital, Venice 30126, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
2
|
Latorre A, Belvisi D, Rothwell JC, Bhatia KP, Rocchi L. Rethinking the neurophysiological concept of cortical myoclonus. Clin Neurophysiol 2023; 156:125-139. [PMID: 37948946 DOI: 10.1016/j.clinph.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/04/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Cortical myoclonus is thought to result from abnormal electrical discharges arising in the sensorimotor cortex. Given the ease of recording of cortical discharges, electrophysiological features of cortical myoclonus have been better characterized than those of subcortical forms, and electrophysiological criteria for cortical myoclonus have been proposed. These include the presence of giant somatosensory evoked potentials, enhanced long-latency reflexes, electroencephalographic discharges time-locked to individual myoclonic jerks and significant cortico-muscular connectivity. Other features that are assumed to support the cortical origin of myoclonus are short-duration electromyographic bursts, the presence of both positive and negative myoclonus and cranial-caudal progression of the jerks. While these criteria are widely used in clinical practice and research settings, their application can be difficult in practice and, as a result, they are fulfilled only by a minority of patients. In this review we reappraise the evidence that led to the definition of the electrophysiological criteria of cortical myoclonus, highlighting possible methodological incongruencies and misconceptions. We believe that, at present, the diagnostic accuracy of cortical myoclonus can be increased only by combining observations from multiple tests, according to their pathophysiological rationale; nevertheless, larger studies are needed to standardise the methods, to resolve methodological issues, to establish the diagnostic criteria sensitivity and specificity and to develop further methods that might be useful to clarify the pathophysiology of myoclonus.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom.
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Nakatani-Enomoto S, Hanajima R, Hamada M, Matsumoto H, Terao Y, Jun Groiss S, Murakami T, Abe M, Enomoto H, Kawai K, Kan R, Niwa SI, Yabe H, Ugawa Y. Quadripulse transcranial magnetic stimulation inducing long-term depression in healthy subjects may increase seizure risk in some patients with intractable epilepsy. Clin Neurophysiol Pract 2023; 8:137-142. [PMID: 37529161 PMCID: PMC10387517 DOI: 10.1016/j.cnp.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Objective This study aimed to assess the efficacy and safety of quadripulse transcranial magnetic stimulation-50 (QPS-50) in patients with intractable epilepsy. Methods Four patients were included in the study. QPS-50, which induces long-term depression in healthy subjects, was administered for 30 min on a weekly basis for 12 weeks. Patients' clinical symptoms and physiological parameters were evaluated before, during, and after the repeated QPS-50 period. We performed two control experiments: the effect in MEP (Motor evoked potential) size after a single QPS-50 session with a round coil in nine healthy volunteers, and a follow-up study of physiological parameters by repeated QPS-50 sessions in four other healthy participants. Results Motor threshold (MT) decreased during the repeated QPS-50 sessions in all patients. Epileptic symptoms worsened in two patients, whereas no clinical worsening was observed in the other two patients. In contrast, MT remained unaffected for 12 weeks in all healthy volunteers. Conclusions QPS-50 may not be effective as a treatment for intractable epilepsy. Significance In intractable epilepsy patients, administering repeated QPS-50 may paradoxically render the motor cortex more excitable, probably because of abnormal inhibitory control within the epileptic cortex. The possibility of clinical aggravation should be seriously considered when treating intractable epilepsy patients with non-invasive stimulation methods.
Collapse
Affiliation(s)
- Setsu Nakatani-Enomoto
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Rehabilitation, Faculty of Health Care and Medical Sports, Teikyo Heisei University, Chiba, Japan
| | - Ritstuko Hanajima
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Masashi Hamada
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideyuki Matsumoto
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Terao
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Cell Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Stefan Jun Groiss
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
- Department of Neurology—Center for Movement Disorders and Neuromodulation—and Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Takenobu Murakami
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Mitsunari Abe
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Enomoto
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Rumiko Kan
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Shin-ichi Niwa
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
4
|
Tsujinaka R, Oda H, Fukuda S, Hamada N, Matsuoka M, Hiraoka K. Afferent volley from the digital nerve induces short-latency facilitation of perceptual sensitivity and primary sensory cortex excitability. Exp Brain Res 2023; 241:1339-1351. [PMID: 37012374 DOI: 10.1007/s00221-023-06611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Abstract
The present study examined whether the perceptual sensitivity and excitability of the primary sensory cortex are modulated by the afferent volley from the digital nerve of a conditioned finger within a short period of time. The perceptual threshold of an electrical stimulus to the index finger (test stimulus) was decreased by a conditioning stimulus to the index finger 4 or 6 ms before the test stimulus, or by a stimulus to the middle or ring finger 2 ms before that. This is explained by the view that the afferent volleys from the digital nerves of the fingers converge in the somatosensory areas, causing spatial summation of the afferent inputs through a small number of synaptic relays, leading to the facilitation of perceptual sensitivity. The N20 component of the somatosensory-evoked potential was facilitated by a conditioning stimulus to the middle finger 4 ms before a test stimulus or to the thumb 2 ms before the test stimulus. This is explained by the view that the afferent volley from the digital nerve of the finger adjacent to the tested finger induces lateral facilitation of the representation of the tested finger in the primary sensory cortex through a small number of synaptic relays.
Collapse
Affiliation(s)
- Ryo Tsujinaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino City, Japan
| | - Hitoshi Oda
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino City, Japan
| | - Shiho Fukuda
- Department of Rehabilitation Science, School of Medicine, Osaka Metropolitan University, Habikino City, Japan
| | - Naoki Hamada
- Department of Rehabilitation Science, School of Medicine, Osaka Metropolitan University, Habikino City, Japan
| | - Masakazu Matsuoka
- Department of Rehabilitation Science, School of Medicine, Osaka Metropolitan University, Habikino City, Japan
| | - Koichi Hiraoka
- Department of Rehabilitation Science, School of Medicine, Osaka Metropolitan University, Habikino City, Japan.
| |
Collapse
|
5
|
|
6
|
Nardone R, Versace V, Höller Y, Sebastianelli L, Brigo F, Lochner P, Golaszewski S, Saltuari L, Trinka E. Transcranial magnetic stimulation in myoclonus of different aetiologies. Brain Res Bull 2018; 140:258-269. [DOI: 10.1016/j.brainresbull.2018.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/12/2018] [Accepted: 05/18/2018] [Indexed: 12/29/2022]
|
7
|
van den Ende T, Sharifi S, van der Salm SMA, van Rootselaar AF. Familial Cortical Myoclonic Tremor and Epilepsy, an Enigmatic Disorder: From Phenotypes to Pathophysiology and Genetics. A Systematic Review. Tremor Other Hyperkinet Mov (N Y) 2018; 8:503. [PMID: 29416935 PMCID: PMC5801339 DOI: 10.7916/d85155wj] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Background Autosomal dominant familial cortical myoclonic tremor and epilepsy (FCMTE) is characterized by distal tremulous myoclonus, generalized seizures, and signs of cortical reflex myoclonus. FCMTE has been described in over 100 pedigrees worldwide, under several different names and acronyms. Pathological changes have been located in the cerebellum. This systematic review discusses the clinical spectrum, treatment, pathophysiology, and genetic findings. Methods We carried out a PubMed search, using a combination of the following search terms: cortical tremor, myoclonus, epilepsy, benign course, adult onset, familial, and autosomal dominant; this resulted in a total of 77 studies (761 patients; 126 pedigrees) fulfilling the inclusion and exclusion criteria. Results Phenotypic differences across pedigrees exist, possibly related to underlying genetic differences. A "benign" phenotype has been described in several Japanese families and pedigrees linked to 8q (FCMTE1). French patients (5p linkage; FCMTE3) exhibit more severe progression, and in Japanese/Chinese pedigrees (with unknown linkage) anticipation has been suggested. Preferred treatment is with valproate (mind teratogenicity), levetiracetam, and/or clonazepam. Several genes have been identified, which differ in potential pathogenicity. Discussion Based on the core features (above), the syndrome can be considered a distinct clinical entity. Clinical features may also include proximal myoclonus and mild progression with aging. Valproate or levetiracetam, with or without clonazepam, reduces symptoms. FCMTE is a heterogeneous disorder, and likely to include a variety of different conditions with mutations of different genes. Distinct phenotypic traits might reflect different genetic mutations. Genes involved in Purkinje cell outgrowth or those encoding for ion channels or neurotransmitters seem good candidate genes.
Collapse
Affiliation(s)
- Tom van den Ende
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Academic Medical Center, Amsterdam, The Netherlands
| | - Sarvi Sharifi
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Academic Medical Center, Amsterdam, The Netherlands
| | - Sandra M. A. van der Salm
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, The Netherlands
| | - Anne-Fleur van Rootselaar
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Park HJ, Kang HK, Wang M, Jo J, Chung E, Kim S. A pilot study of planar coil based magnetic stimulation using acute hippocampal slice in mice. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:1118-1121. [PMID: 29060071 DOI: 10.1109/embc.2017.8037025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Micromagnetic stimulation using small-sized implantable coils has recently been studied. The main advantage of this method is that it can provide sustainable stimulation performance even if a fibrotic encapsulation layer is formed around the implanted coil by inflammation response, because indirectly induced currents are used to induce neural responses. In previous research, we optimized the geometrical and control parameters used in implantable magnetic stimulation. Based on those results, we fabricated the planar coil and studied the LTP effect in the hippocampal slice by two different magnetic stimulation protocols using the quadripulse stimulation (QPS) pattern. We found that direct magnetic stimulation (DMS) induced insignificant LTP effect and priming magnetic stimulation (PMS) occluded LTP effect after tetanic stimulation, when QPS patterned magnetic stimulation with 1 A current pulse was applied to the planar coil.
Collapse
|
9
|
Focal seizure induced by preoperative navigated transcranial magnetic stimulation in a patient with anaplastic oligoastrocytoma. Brain Stimul 2017; 10:331-332. [DOI: 10.1016/j.brs.2016.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 11/17/2022] Open
|