Aberrant visual-related networks in familial cortical myoclonic tremor with epilepsy.
Parkinsonism Relat Disord 2022;
101:105-110. [PMID:
35870251 DOI:
10.1016/j.parkreldis.2022.07.001]
[Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION
In familial cortical myoclonic tremor with epilepsy, photic stimulation can trigger visual symptoms and induce a photoparoxysmal response, or photosensitivity, on electroencephalography. However, the mechanism is poorly understood. In this study, we aimed to explore the neuroimaging changes related to visual symptoms and photosensitivity in genetically confirmed familial cortical myoclonic tremor with epilepsy type 1.
METHODS
Resting-state functional magnetic resonance imaging and electroencephalography data were collected from 31 patients carrying the heterozygous pathogenic intronic pentanucleotide (TTTCA)n insertion in the sterile alpha motif domain-containing 12 gene and from 52 age- and sex-matched healthy controls.
RESULTS
(1) Both regional homogeneity and degree centrality values in the bilateral calcarine sulcus were significantly increased in patients compared with healthy controls. (2) When the calcarine sulcus area with increased regional homogeneity was taken as a seed, increased functional connectivity values were observed in the right precentral gyrus, while decreased functional connectivity values were observed in the right superior frontal gyrus and right inferior parietal lobule. (3) Independent component analysis showed increased connectivity in the left calcarine sulcus inside the medial visual network. (4) Correlation analysis revealed a significant positive correlation between regional homogeneity values and frequency of seizure, and photoparoxysmal response grades were positively correlated with the severity of cortical tremor and duration of epilepsy.
CONCLUSION
These findings provide strong evidence for the interpretation of visual symptoms and photosensitivity in familial cortical myoclonic tremor with epilepsy. We speculate that functional changes in the primary visual cortex may be an imaging biomarker for the disease.
Collapse