1
|
Pino MG, Rich KA, Kolb SJ. Update on Biomarkers in Spinal Muscular Atrophy. Biomark Insights 2021; 16:11772719211035643. [PMID: 34421296 PMCID: PMC8371741 DOI: 10.1177/11772719211035643] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
The availability of disease modifying therapies for spinal muscular atrophy (SMA) has created an urgent need to identify clinically meaningful biomarkers. Biomarkers present a means to measure and evaluate neurological disease across time. Changes in biomarkers provide insight into disease progression and may reveal biologic, physiologic, or pharmacologic phenomena occurring prior to clinical detection. Efforts to identify biomarkers for SMA, a genetic motor neuron disease characterized by motor neuron degeneration and weakness, have culminated in a number of putative molecular and physiologic markers that evaluate biological media (eg, blood and cerebrospinal fluid [CSF]) or nervous system function. Such biomarkers include SMN2 copy number, SMN mRNA and protein levels, neurofilament proteins (NFs), plasma protein analytes, creatine kinase (CK) and creatinine (Crn), and various electrophysiology and imaging measures. SMN2 copy number inversely correlates with disease severity and is the best predictor of clinical outcome in untreated individuals. SMN mRNA and protein are commonly measured in the blood or CSF of patients receiving SMA therapies, particularly those aimed at increasing SMN protein expression, and provide insight into current disease state. NFs have proven to be robust prognostic, disease progression, and pharmacodynamic markers for SMA infants undergoing treatment, but less so for adolescents and adults. Select plasma proteins are altered in SMA individuals and may track response to therapy. CK and Crn from blood correlate with motor function and disease severity status and are useful for predicting which individuals will respond to therapy. Electrophysiology measures comprise the most reliable means for monitoring motor function throughout disease course and are sensitive enough to detect neuromuscular changes before overt clinical manifestation, making them robust predictive and pharmacodynamic biomarkers. Finally, magnetic resonance imaging and muscle ultrasonography are non-invasive techniques for studying muscle structure and physiology and are useful diagnostic tools, but cannot reliably track disease progression. Importantly, biomarkers can provide information about the underlying mechanisms of disease as well as reveal subclinical disease progression, allowing for more appropriate timing and dosing of therapy for individuals with SMA. Recent therapeutic advancements in SMA have shown promising results, though there is still a great need to identify and understand the impact of biomarkers in modulating disease onset and progression.
Collapse
Affiliation(s)
- Megan G Pino
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Kelly A Rich
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry and
Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH,
USA
| |
Collapse
|
2
|
Boulay C, Delmont E, Audic F, Chabrol B, Attarian S. Motor unit number index: A potential electrophysiological biomarker for pediatric spinal muscular atrophy. Muscle Nerve 2021; 64:445-453. [PMID: 34255873 DOI: 10.1002/mus.27372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION/AIMS In adult spinal muscular atrophy (SMA), the motor unit number index (MUNIX) has been shown to be an useful electrophysiological biomarker. This study evaluated the feasibility and the clinical relevance of using the MUNIX technique for patients with pediatric SMA (Ped-SMA) and correlated MUNIX results with clinical scores. METHODS Fourteen patients with type II Ped-SMA (11 females; median age 11 y [interquartile range (IQR), 4.8-17 y]) and 14 controls (nine females; median age 10.75 y [IQR, 6.5-13.4 y]) were enrolled and matched by sex, age, height, weight, and body mass index. Clinical examination included manual muscle testing, dynamometry (grasp and pinch), and motor function measure (MFM). The MUNIX technique was evaluated in the abductor digiti minimi (ADM) and abductor pollicis brevis (APB) on two sides when possible. RESULTS In the patients with Ped-SMA, the MUNIX and compound muscle action potential (CMAP) amplitudes were significantly decreased and the motor size unit index (MUSIX) was significantly increased in the ADM and APB when compared to controls. The intraclass correlation coefficient was good for the intrarater variability of the CMAP amplitude, MUNIX, and MUSIX in the ADM (0.95, 0.83, and 0.89, respectively) and the APB (0.98, 0.96, and 0.94, respectively). The total CMAP amplitude correlated with the grasp and pinch scores (P < .05), and the MUNIX measurements correlated with the MFM scores. DISCUSSION The MUNIX technique, which accurately estimated lower motor neuron loss and the number of remaining functional motor units, was shown to be a useful electrophysiological biomarker for disease progression and a potential biomarker for treatment response.
Collapse
Affiliation(s)
- Christophe Boulay
- Neuropediatric Department, Children Timone University Hospital, Aix-Marseille University, Marseille, France.,Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France.,Aix-Marseille University, CNRS, ISM UMR 7287, Marseille, France
| | - Emilien Delmont
- Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France.,Aix-Marseille University, UMR 7286, Medicine Faculty, Marseille, France
| | - Frédérique Audic
- Neuropediatric Department, Children Timone University Hospital, Aix-Marseille University, Marseille, France.,Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Brigitte Chabrol
- Neuropediatric Department, Children Timone University Hospital, Aix-Marseille University, Marseille, France.,Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France.,Aix-Marseille University, Inserm UMR S 910, Medical Genetics and Functional Genomics, Marseille, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France.,Aix-Marseille University, Inserm UMR S 910, Medical Genetics and Functional Genomics, Marseille, France
| |
Collapse
|
3
|
Gunes T, Sirin NG, Sahin S, Kose E, Isak B. Use of CMAP, MScan fit-MUNE, and MUNIX in understanding neurodegeneration pattern of ALS and detection of early motor neuron loss in daily practice. Neurosci Lett 2020; 741:135488. [PMID: 33217503 DOI: 10.1016/j.neulet.2020.135488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND The pattern of lower motor neuron (LMN) degeneration in amyotrophic lateral sclerosis (ALS), i.e., dying-back (from the nerve ending to cell body) or dying-forward (from the cell body to nerve ending), has been widely discussed. In this study, we aimed to evaluate LMN loss using compound muscle action potential (CMAP), motor unit number index (MUNIX), and MScan-fit-based motor unit number estimation (MUNE) to understand the pattern of neurodegeneration in ALS. METHODS Twenty-five patients were compared with 25 controls using CMAP amplitude and area, MUNIX, and MScan-fit MUNE in three proximal and distal muscles innervated by the ulnar nerve. RESULTS Unlike the controls, the CMAP area, MScan-fit MUNE, and MUNIX recorded in ALS patients showed more neurodegeneration in distal muscles than proximal muscles. In ALS patients with unaffected CMAP amplitudes (n = 13), the CMAP area, MScan-fit MUNE, and MUNIX showed subtle motor unit loss of 30.7 %, 53.8 %, and 38.4 %, respectively. CONCLUSION The CMAP area, MScan-fit MUNE, and MUNIX showed neurodegeneration earlier than the reduction in CMAP amplitude. These tests confirmed dying-back neurodegeneration, while only MUSIX showed re-innervation in ALS.
Collapse
Affiliation(s)
- Taskin Gunes
- Department of Neurology, Marmara University Hospital, Istanbul, Turkey; VM Maltepe Medicalpark Hospital, Istanbul, Turkey.
| | | | - Sevki Sahin
- Department of Neurology, Maltepe University Hospital, Istanbul, Turkey.
| | - Ercan Kose
- Department of Neurology, Sultan 2. Abdulhamit Han Training and Research Hospital, Istanbul, Turkey.
| | - Baris Isak
- Department of Neurology, Marmara University Hospital, Istanbul, Turkey.
| |
Collapse
|
4
|
Huynh W, Dharmadasa T, Vucic S, Kiernan MC. Functional Biomarkers for Amyotrophic Lateral Sclerosis. Front Neurol 2019; 9:1141. [PMID: 30662429 PMCID: PMC6328463 DOI: 10.3389/fneur.2018.01141] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/10/2018] [Indexed: 01/06/2023] Open
Abstract
The clinical diagnosis of amyotrophic lateral sclerosis (ALS) relies on determination of progressive dysfunction of both cortical as well as spinal and bulbar motor neurons. However, the variable mix of upper and lower motor neuron signs result in the clinical heterogeneity of patients with ALS, resulting frequently in delay of diagnosis as well as difficulty in monitoring disease progression and treatment outcomes particularly in a clinical trial setting. As such, the present review provides an overview of recently developed novel non-invasive electrophysiological techniques that may serve as biomarkers to assess UMN and LMN dysfunction in ALS patients.
Collapse
Affiliation(s)
- William Huynh
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | | | - Steve Vucic
- Western Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
5
|
Andrews JA, Shefner JM. Clinical neurophysiology of anterior horn cell disorders. HANDBOOK OF CLINICAL NEUROLOGY 2019; 161:317-326. [PMID: 31307610 DOI: 10.1016/b978-0-444-64142-7.00057-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of neurophysiological techniques for clinical assessment in the 20th century is closely related to the study of anterior horn cell diseases. The effects of motor axon loss on nerve conduction velocity and compound motor amplitude were elucidated first in amyotrophic lateral sclerosis (ALS), as was the characterization of reinnervation as detected by needle electromyography. The same changes noted in early studies still play a major role in the diagnosis of anterior horn cell diseases. In addition, much of modern neurophysiological assessment of motor axon quantitation, ion channel changes in neurogenic disease, and cortical physiology studies to assess both network and excitability abnormalities have all been applied to ALS. In this chapter, we summarize the clinical attributes of ALS and Spinal Muscular Atrophy, and review how clinical neurophysiology is employed in the clinical and the research setting.
Collapse
Affiliation(s)
- Jinsy A Andrews
- The Neurological Institute, Columbia University, New York, NY, United States
| | - Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States.
| |
Collapse
|
6
|
Querin G, Lenglet T, Debs R, Stojkovic T, Behin A, Salachas F, Le Forestier N, Amador MDM, Lacomblez L, Meininger V, Bruneteau G, Laforêt P, Blancho S, Marchand-Pauvert V, Bede P, Hogrel JY, Pradat PF. The motor unit number index (MUNIX) profile of patients with adult spinal muscular atrophy. Clin Neurophysiol 2018; 129:2333-2340. [PMID: 30248623 DOI: 10.1016/j.clinph.2018.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/27/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Objective of this study is the comprehensive characterisation of motor unit (MU) loss in type III and IV Spinal Muscular Atrophy (SMA) using motor unit number index (MUNIX), and evaluation of compensatory mechanisms based on MU size indices (MUSIX). METHODS Nineteen type III and IV SMA patients and 16 gender- and age-matched healthy controls were recruited. Neuromuscular performance was evaluated by muscle strength testing and functional scales. Compound motor action potential (CMAP), MUNIX and MUSIX were studied in the abductor pollicis brevis (APB), abductor digiti minimi (ADM), deltoid, tibialis anterior and trapezius muscles. A composite MUNIX score was also calculated. RESULTS SMA patients exhibited significantly reduced MUNIX values (p < 0.05) in all muscles, while MUSIX was increased, suggesting active re-innervation. Significant correlations were identified between MUNIX/MUSIX and muscle strength. Similarly, composite MUNIX scores correlated with disability scores. Interestingly, in SMA patients MUNIX was much lower in the ADM than in the ABP, a pattern which is distinctly different from that observed in Amyotrophic Lateral Sclerosis. CONCLUSIONS MUNIX is a sensitive measure of MU loss in adult forms of SMA and correlates with disability. SIGNIFICANCE MUNIX evaluation is a promising candidate biomarker for longitudinal studies and pharmacological trials in adult SMA patients.
Collapse
Affiliation(s)
- Giorgia Querin
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Timothée Lenglet
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; APHP, Hôpital Pitié-Salpêtriere, Service d'Explorations Fonctionnelles, Paris, France
| | - Rabab Debs
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; APHP, Hôpital Pitié-Salpêtriere, Service d'Explorations Fonctionnelles, Paris, France
| | - Tanya Stojkovic
- APHP, Centre de Référence Maladies Neuromusculaires Paris-Est, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anthony Behin
- APHP, Centre de Référence Maladies Neuromusculaires Paris-Est, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - François Salachas
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Nadine Le Forestier
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; Département de recherche en éthique, EA 1610: Etudes des sciences et techniques, Université Paris Sud/Paris Saclay, Paris, France
| | - Maria Del Mar Amador
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Lucette Lacomblez
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Vincent Meininger
- Hôpital des Peupliers, Ramsay Générale de Santé, F-75013 Paris, France
| | - Gaelle Bruneteau
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Pascal Laforêt
- Neurology Department, Nord/Est/Ile de France Neuromuscular Center, Raymond-Poincaré Hospital, Garches, France; INSERM U1179, END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France
| | - Sophie Blancho
- Institut pour la Recherche sur la Moelle Epinière et l'Encéphale (IRME), Paris, France
| | | | - Peter Bede
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Ireland
| | - Jean-Yves Hogrel
- Institute of Myology, Neuromuscular Investigation Center, Paris, France; Institut pour la Recherche sur la Moelle Epinière et l'Encéphale (IRME), Paris, France
| | - Pierre-François Pradat
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, United Kingdom.
| |
Collapse
|
7
|
de Carvalho M, Barkhaus PE, Nandedkar SD, Swash M. Motor unit number estimation (MUNE): Where are we now? Clin Neurophysiol 2018; 129:1507-1516. [DOI: 10.1016/j.clinph.2018.04.748] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/31/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022]
|