1
|
Uzunçakmak-Uyanık H, Tan E, Temuçin ÇM, Yıldız FG. Lack of habituation in somatosensory cortex but not in visual cortex of ALS patients. Amyotroph Lateral Scler Frontotemporal Degener 2025; 26:93-102. [PMID: 39494632 DOI: 10.1080/21678421.2024.2421747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a multisystem degenerative disease with extra-motor components. In ALS, there is also hyperexcitability of extra-motor areas. Habituation is defined as ''a response decrement" caused by repeated stimulations. Studies on evoked potential habituation can be conducted to detect cortical excitability. This study aimed to explore lack of habituation in non-motor cortical structures in ALS. METHODS Twenty-one ALS patients and 14 controls were enrolled. Recordings were obtained in 3 and 10 consecutive blocks (each containing 100 responses) during right median somatosensory evoked potential (SEP) and bilateral visual evoked potential (VEP), respectively. "Habituation" and "lack of habituation" were defined as the amount of increase or decrease in the average N20 or N75-P100 amplitude of the last blocks compared to the first blocks, respectively. Comparative analyses were performed between patient and control groups, as well as the first and last block within groups. RESULTS Paired sample t-test showed that in control group N20 peak amplitude of last blocks were significantly lower than first block values (p = 0.025) that indicate the physiological habituation as expected. On the other hand, there was not such a difference in ALS group (p = 0.239) which indicated lack of habituation. CONCLUSIONS Our study results suggest somatosensory hyperexcitability in line with cortical reorganization in ALS patients.
Collapse
Affiliation(s)
| | - Ersin Tan
- Faculty of Medicine, Department of Neurology, Hacettepe University, Ankara, Turkey
| | - Çağrı Mesut Temuçin
- Faculty of Medicine, Department of Neurology, Hacettepe University, Ankara, Turkey
| | - Fatma Gökçem Yıldız
- Faculty of Medicine, Department of Neurology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Khamaysa M, El Mendili M, Marchand V, Querin G, Pradat PF. Quantitative spinal cord imaging: Early ALS diagnosis and monitoring of disease progression. Rev Neurol (Paris) 2024:S0035-3787(24)00657-X. [PMID: 39547910 DOI: 10.1016/j.neurol.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons in the cortex, brainstem, and spinal cord. This degeneration leads to muscular weakness, progressively impairing motor functions and ultimately resulting in respiratory failure. The clinical, genetic, and pathological heterogeneity of ALS, combined with the absence of reliable biomarkers, significantly challenge the efficacy of therapeutic trials. Despite these hurdles, neuroimaging, and particularly spinal cord imaging, has emerged as a promising tool. It provides insights into the involvement of both upper and lower motor neurons. Quantitative spinal imaging has the potential to facilitate early diagnosis, enable accurate monitoring of disease progression, and refine the design of clinical trials. In this review, we explore the utility of spinal cord imaging within the broader context of developing spinal imaging biomarkers in ALS. We focus on a both diagnostic and prognostic biomarker in ALS, highlighting its pivotal role in elucidating the disease's underlying pathology. We also discuss the existing limitations and future avenues for research, aiming to bridge the translational gap between academic research and its application in clinical practice and therapeutic trials.
Collapse
Affiliation(s)
- M Khamaysa
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France
| | - M El Mendili
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France
| | - V Marchand
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France
| | - G Querin
- Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, AP-HP, Paris, France
| | - P-F Pradat
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France; Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, AP-HP, Paris, France.
| |
Collapse
|
3
|
Ugawa Y. Somatosensory cortex/tracts involvement in amyotrophic lateral sclerosis. Clin Neurophysiol 2023; 156:249-250. [PMID: 37845101 DOI: 10.1016/j.clinph.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Affiliation(s)
- Yoshikazu Ugawa
- Department of Human Neurophysiology, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan.
| |
Collapse
|
4
|
Shimizu T, Nakayama Y, Hayashi K, Mochizuki Y, Matsuda C, Haraguchi M, Bokuda K, Komori T, Takahashi K. Somatosensory pathway dysfunction in patients with amyotrophic lateral sclerosis in a completely locked-in state. Clin Neurophysiol 2023; 156:253-261. [PMID: 37827876 DOI: 10.1016/j.clinph.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE To investigate somatosensory pathway function in patients with amyotrophic lateral sclerosis (ALS) dependent on invasive ventilation and in a completely locked-in state (CLIS). METHODS We examined median nerve somatosensory evoked potentials (SEPs) in 17 ALS patients in a CLIS, including 11 patients with sporadic ALS, one with familial ALS with genes not examined, four with a Cu/Zn superoxide-dismutase-1 (SOD1) gene variant (Val118Leu, Gly93Ser, Cys146Arg), and one with a fused-in-sarcoma gene variant (P525L). We evaluated N9, N13, N20 and P25, and central conduction time (CCT); the data were compared with those of 73 healthy controls. RESULTS N20 and N13 were abolished in 12 and 10 patients, and their latencies was prolonged in four and three patients, respectively. The CCT was prolonged in five patients with measurable N13 and N20. Two patients with SOD1 gene mutations had absent or slightly visible N9. Compared to the CCT and latencies and amplitudes of N13 and N20 in the controls, those in the patient cohort were significantly abnormal. CONCLUSIONS The central somatosensory pathway is severely involved in patients with ALS in a CLIS. SIGNIFICANCE Our findings suggest that median nerve SEP cannot be utilized for communication in patients with ALS in a CLIS.
Collapse
Affiliation(s)
- Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.
| | - Yuki Nakayama
- Unit for Intractable Disease Nursing Care, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kentaro Hayashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan; Department of Neurology, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Yoko Mochizuki
- Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, Tokyo, Japan
| | - Chiharu Matsuda
- Unit for Intractable Disease Nursing Care, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Michiko Haraguchi
- Unit for Intractable Disease Nursing Care, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kota Bokuda
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Takashi Komori
- Department of Neuropathology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
5
|
Cengiz B, Koçak ÖK, Erdoğan T, Yanık E, Pek G, Savrun Y, Evren Boran H, Reha Kuruoğlu H. Excitability of somatosensory cortex is increased in ALS: A SEP recovery function study. Clin Neurophysiol 2023; 155:58-64. [PMID: 37734132 DOI: 10.1016/j.clinph.2023.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE Neuronal loss in the somatosensory, as well as the motor cortex in amyotrophic lateral sclerosis (ALS), indicative of a structural abnormality has been reported. Previously we have shown that afferent inhibition was impaired in ALS, suggestive of sensory involvement. In this study, we aimed to evaluate excitability changes in the somatosensory cortex of ALS patients. METHODS ALS patients underwent a paired pulse somatosensory evoked potential (SEP) paradigm at various interstimulus intervals (ISI). The amplitude ratio obtained by dividing the amplitude of paired pulse SEP stimulation S2 (paired pulse stimulation) to S1 (the single pulse stimulation) was considered the somatosensory cortex excitability parameter. Findings were compared to the results obtained from healthy controls. Resting motor threshold (RMT) was also assessed in the ALS group. RESULTS An increased S2/S1 ratio was found in the ALS group in every ISI examined. Additionally, the reduced inhibition correlated negatively with forced vital capacity, Medical Research Council sum score, median nerve compound muscle action potential amplitude, while there was a positive association with Penn upper motor neuron score and sural nerve conduction velocity. No correlation existed with RMT. CONCLUSIONS Our findings demonstrated increased somatosensory cortical excitability in ALS, which was associated with clinical parameters such as reduced pulmonary function and motor strength. SIGNIFICANCE Somatosensory cortical excitability is impaired in ALS. Whether this is associated with increased motor cortical excitability requires further studies.
Collapse
Affiliation(s)
- Bülent Cengiz
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey; Neuroscience and Neurotechnology Center of Excellence, Ankara, Turkey.
| | - Özlem Kurtkaya Koçak
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Tuğba Erdoğan
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ece Yanık
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gökhan Pek
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Yusuf Savrun
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - H Evren Boran
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey; Neuroscience and Neurotechnology Center of Excellence, Ankara, Turkey
| | - H Reha Kuruoğlu
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
6
|
Theme 08 - Clinical Imaging and Electrophysiology. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:192-208. [PMID: 37966324 DOI: 10.1080/21678421.2023.2260200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
|
7
|
Sensory Involvement in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms232415521. [PMID: 36555161 PMCID: PMC9779879 DOI: 10.3390/ijms232415521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) is pre-eminently a motor disease, the existence of non-motor manifestations, including sensory involvement, has been described in the last few years. Although from a clinical perspective, sensory symptoms are overshadowed by their motor manifestations, this does not mean that their pathological significance is not relevant. In this review, we have made an extensive description of the involvement of sensory and autonomic systems described to date in ALS, from clinical, neurophysiological, neuroimaging, neuropathological, functional, and molecular perspectives.
Collapse
|
8
|
De Oliveira HM, Silsby M, Jaiser SR, Lai HM, Pavey N, Kiernan MC, Williams TL, Vucic S, Baker MR. Electrodiagnostic findings in facial onset sensory motor neuronopathy (FOSMN). Clin Neurophysiol 2022; 140:228-238. [PMID: 35599162 DOI: 10.1016/j.clinph.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 01/08/2023]
|
9
|
Ranieri F, Mariotto S, Dubbioso R, Di Lazzaro V. Brain Stimulation as a Therapeutic Tool in Amyotrophic Lateral Sclerosis: Current Status and Interaction With Mechanisms of Altered Cortical Excitability. Front Neurol 2021; 11:605335. [PMID: 33613416 PMCID: PMC7892772 DOI: 10.3389/fneur.2020.605335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
In the last 20 years, several modalities of neuromodulation, mainly based on non-invasive brain stimulation (NIBS) techniques, have been tested as a non-pharmacological therapeutic approach to slow disease progression in amyotrophic lateral sclerosis (ALS). In both sporadic and familial ALS cases, neurophysiological studies point to motor cortical hyperexcitability as a possible priming factor in neurodegeneration, likely related to dysfunction of both excitatory and inhibitory mechanisms. A trans-synaptic anterograde mechanism of excitotoxicity is thus postulated, causing upper and lower motor neuron degeneration. Specifically, motor neuron hyperexcitability and hyperactivity are attributed to intrinsic cell abnormalities related to altered ion homeostasis and to impaired glutamate and gamma aminobutyric acid gamma-aminobutyric acid (GABA) signaling. Several neuropathological mechanisms support excitatory and synaptic dysfunction in ALS; additionally, hyperexcitability seems to drive DNA-binding protein 43-kDA (TDP-43) pathology, through the upregulation of unusual isoforms directly contributing to ASL pathophysiology. Corticospinal excitability can be suppressed or enhanced using NIBS techniques, namely, repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), as well as invasive brain and spinal stimulation. Experimental evidence supports the hypothesis that the after-effects of NIBS are mediated by long-term potentiation (LTP)-/long-term depression (LTD)-like mechanisms of modulation of synaptic activity, with different biological and physiological mechanisms underlying the effects of tDCS and rTMS and, possibly, of different rTMS protocols. This potential has led to several small trials testing different stimulation interventions to antagonize excitotoxicity in ALS. Overall, these studies suggest a possible efficacy of neuromodulation in determining a slight reduction of disease progression, related to the type, duration, and frequency of treatment, but current evidence remains preliminary. Main limitations are the small number and heterogeneity of recruited patients, the limited "dosage" of brain stimulation that can be delivered in the hospital setting, the lack of a sufficient knowledge on the excitatory and inhibitory mechanisms targeted by specific stimulation interventions, and the persistent uncertainty on the key pathophysiological processes leading to motor neuron loss. The present review article provides an update on the state of the art of neuromodulation in ALS and a critical appraisal of the rationale for the application/optimization of brain stimulation interventions, in the light of their interaction with ALS pathophysiological mechanisms.
Collapse
Affiliation(s)
- Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
10
|
Riancho J, Paz-Fajardo L, López de Munaín A. Clinical and preclinical evidence of somatosensory involvement in amyotrophic lateral sclerosis. Br J Pharmacol 2020; 178:1257-1268. [PMID: 32673410 DOI: 10.1111/bph.15202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron neurodegenerative disease. Although it has been classically considered as a disease limited to the motor system, there is increasing evidence for the involvement of other neural and non-neuronal systems. In this review, we will discuss currently existing literature regarding the involvement of the sensory system in ALS. Human studies have reported intradermic small fibre loss, sensory axonal predominant neuropathy, as well as somatosensory cortex hyperexcitability. In line with this, ALS animal studies have demonstrated the involvement of several sensory components. Specifically, they have highlighted the impairment of sensory-motor networks as a potential mechanism for the disease. The elucidation of these "non-motor" systems involvement, which might also be part of the degeneration process, should prompt the scientific community to re-consider ALS as a pure motor neuron disease, which may in turn result in more holistic research approaches. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Javier Riancho
- Service of Neurology, Hospital Sierrallana-IDIVAL, Torrelavega, Spain.,Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain.,Centro de Investigación en Red de Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Madrid, Spain
| | - Lucía Paz-Fajardo
- Service of Internal Medicine, Hospital Sierrallana-IDIVAL, Torrelavega, Spain
| | - Adolfo López de Munaín
- Centro de Investigación en Red de Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Madrid, Spain.,Neurosciences Area, Biodonostia Research Institute, San Sebastián, Spain.,Neurology Department, Donostia University Hospital-OSAKIDETZA, San Sebastián, Spain.,Neurosciences Department, Basque Country University, San Sebastián, Spain
| |
Collapse
|
11
|
"Switchboard" malfunction in motor neuron diseases: Selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. NEUROIMAGE-CLINICAL 2020; 27:102300. [PMID: 32554322 PMCID: PMC7303672 DOI: 10.1016/j.nicl.2020.102300] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023]
Abstract
The thalamus is a key cerebral hub relaying a multitude of corticoefferent and corticoafferent connections and mediating distinct extrapyramidal, sensory, cognitive and behavioural functions. While the thalamus consists of dozens of anatomically well-defined nuclei with distinctive physiological roles, existing imaging studies in motor neuron diseases typically evaluate the thalamus as a single structure. Based on the unique cortical signatures observed in ALS and PLS, we hypothesised that similarly focal thalamic involvement may be observed if the nuclei are individually evaluated. A prospective imaging study was undertaken with 100 patients with ALS, 33 patients with PLS and 117 healthy controls to characterise the integrity of thalamic nuclei. ALS patients were further stratified for the presence of GGGGCC hexanucleotide repeat expansions in C9orf72. The thalamus was segmented into individual nuclei to examine their volumetric profile. Additionally, thalamic shape deformations were evaluated by vertex analyses and focal density alterations were examined by region-of-interest morphometry. Our data indicate that C9orf72 negative ALS patients and PLS patients exhibit ventral lateral and ventral anterior involvement, consistent with the ‘motor’ thalamus. Degeneration of the sensory nuclei was also detected in C9orf72 negative ALS and PLS. Both ALS groups and the PLS cohort showed focal changes in the mediodorsal-paratenial-reuniens nuclei, which mediate memory and executive functions. PLS patients exhibited distinctive thalamic changes with marked pulvinar and lateral geniculate atrophy compared to both controls and C9orf72 negative ALS. The considerable ventral lateral and ventral anterior pathology detected in both ALS and PLS support the emerging literature of extrapyramidal dysfunction in MND. The involvement of sensory nuclei is consistent with sporadic reports of sensory impairment in MND. The unique thalamic signature of PLS is in line with the distinctive clinical features of the phenotype. Our data confirm phenotype-specific patterns of thalamus involvement in motor neuron diseases with the preferential involvement of nuclei mediating motor and cognitive functions. Given the selective involvement of thalamic nuclei in ALS and PLS, future biomarker and natural history studies in MND should evaluate individual thalamic regions instead overall thalamic changes.
Collapse
|
12
|
Cengiz B, Fidanci H, Kiyak Keçeli Y, Baltaci H, KuruoĞlu R. Impaired short‐ and long‐latency afferent inhibition in amyotrophic lateral sclerosis. Muscle Nerve 2019; 59:699-704. [DOI: 10.1002/mus.26464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Bülent Cengiz
- Department of NeurologyGazi University Faculty of Medicine Beşevler, 06500, Ankara Turkey
- Clinical Neurophysiology Division of the Department of NeurologyGazi University Faculty of Medicine Ankara Turkey
| | - Halit Fidanci
- Clinical Neurophysiology Division of the Department of NeurologyGazi University Faculty of Medicine Ankara Turkey
| | - Yeliz Kiyak Keçeli
- Department of NeurologyGazi University Faculty of Medicine Beşevler, 06500, Ankara Turkey
| | - Hande Baltaci
- Department of NeurologyGazi University Faculty of Medicine Beşevler, 06500, Ankara Turkey
| | - Reha KuruoĞlu
- Department of NeurologyGazi University Faculty of Medicine Beşevler, 06500, Ankara Turkey
- Clinical Neurophysiology Division of the Department of NeurologyGazi University Faculty of Medicine Ankara Turkey
| |
Collapse
|
13
|
Matamala JM, Howells J, Dharmadasa T, Huynh W, Park SB, Burke D, Kiernan MC. Excitability of sensory axons in amyotrophic lateral sclerosis. Clin Neurophysiol 2018; 129:1472-1478. [PMID: 29661595 DOI: 10.1016/j.clinph.2018.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/22/2018] [Accepted: 03/11/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the excitability of sensory axons in patients with amyotrophic lateral sclerosis (ALS). METHODS Comprehensive sensory nerve excitability studies were prospectively performed on 28 sporadic ALS patients, compared to age-matched controls. Sensory nerve action potentials were recorded from digit 2 following median nerve stimulation at the wrist. Disease severity was measured using motor unit number estimation (MUNE), the revised ALS Functional Rating Scale (ALSFRS-R) and the MRC scale. RESULTS There were no significant differences in standard and extended measures of nerve excitability between ALS patients and controls. These unchanged excitability measures included accommodation to long-lasting hyperpolarization and the threshold changes after two supramaximal stimuli during the recovery cycle. Excitability parameters did not correlate with MUNE, ALSFRS-R, APB MRC scale or disease duration. CONCLUSIONS This cross-sectional study has identified normal axonal membrane properties in myelinated sensory axons of ALS patients. Previously described sensory abnormalities could be the result of axonal fallout, possibly due to a ganglionopathy, or to involvement of central sensory pathways rostral to gracile and cuneate nuclei. SIGNIFICANCE These results demonstrate the absence of generalized dysfunction of the membrane properties of sensory axons in ALS in the face of substantial deficits in motor function.
Collapse
Affiliation(s)
| | - James Howells
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Thanuja Dharmadasa
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Susanna B Park
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - David Burke
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| |
Collapse
|
14
|
Swash M. Sensorimotor integration is problematic in amyotrophic lateral sclerosis. Clin Neurophysiol 2018; 129:849-850. [DOI: 10.1016/j.clinph.2018.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|