1
|
Guidetti M, Marceglia S, Bocci T, Duncan R, Fasano A, Foote K, Hamani C, Krauss J, Kühn AA, Lena F, Limousin P, Lozano A, Maiorana N, Modugno N, Moro E, Okun M, Oliveri S, Santilli M, Schnitzler A, Temel Y, Timmermann L, Visser-Vandewalle V, Volkmann J, Priori A. Physical therapy in patients with Parkinson's disease treated with Deep Brain Stimulation: a Delphi panel study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.20.24314037. [PMID: 39399050 PMCID: PMC11469472 DOI: 10.1101/2024.09.20.24314037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Although deep brain stimulation of the subthalamic nucleus (STN-DBS) induces motor benefits in people with Parkinson's disease (PwPD), the size and duration of the effects of STN-DBS on motor axial (e.g., postural instability, trunk posture alterations) and gait impairments (e.g., freezing of gait - FOG) are still ambiguous. Physical therapy (PT) effectively complements pharmacological treatment to improve postural stability, gait performance, and other dopamine-resistant symptoms (e.g. festination, hesitation, axial motor dysfunctions, and FOG) in PwPD who are non-surgically treated. Despite the potential for positive adjuvant effects of PT following STN-DBS surgery, there is a paucity of science available on the topic. In such a scenario, gathering the opinion and expertise of leading investigators worldwide was pursued to study motor rehabilitation in PwPD following STN-DBS. After summarizing the few available findings through a systematic review, we identified clinical and academically experienced DBS clinicians (n=21) to discuss the challenges related to PT following STN-DBS. A 5-point Likert scale questionnaire was used and based on the results of the systematic review along with a Delphi method. Thirty-nine questions were submitted to the panel - half related to general considerations on PT following STN-DBS, half related to PT treatments. Despite the low-to-moderate quality, the few available rehabilitative studies suggested that PT could improve dynamic and static balance, gait performance and posture. Similarly, panellists strongly agreed that PT might help in improving motor symptoms and quality of life, and it may be possibly prescribed to maximize the effects of the stimulation. The experts agreed that physical therapists could be part of the multidisciplinary team taking care of the patients. Also, they agreed on prescribing of conventional PT, but not massage or manual therapy. Our results will inform the rehabilitation and the DBS community to engage, publish and deepen this area of research. Such efforts may spark guidelines for PT following STN-DBS.
Collapse
Affiliation(s)
- M. Guidetti
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - S. Marceglia
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - T. Bocci
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - R. Duncan
- Washington University in St. Louis, School of Medicine, Program in Physical Therapy, St. Louis, MO, USA
- Washington University in St. Louis, School of Medicine, Department of Neurology, St. Louis, MO, USA
| | - A. Fasano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson’s Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - K.D. Foote
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, 3011 SW Williston Rd, Gainesville, FL 32608, USA
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - C. Hamani
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, M4N 3M5, ON, Canada
- Harquail Centre for Neuromodulation, 2075 Bayview Avenue, Toronto, M4N 3M5, ON, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, M5T 1P5, ON, Canada
| | - J.K. Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - A. A. Kühn
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - F. Lena
- Department of Medicine and Health, University of Molise, 86100 Campobasso, Italy
- IRCCS INM Neuromed, 86077 Pozzilli, Italy
| | - P. Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - A.M. Lozano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - N.V. Maiorana
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - N. Modugno
- IRCCS INM Neuromed, 86077 Pozzilli, Italy
| | - E. Moro
- Division of Neurology, CHU of Grenoble, Grenoble Institute of Neurosciences, INSERM U1216, Grenoble Alpes University, Grenoble, France
| | - M.S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, United States
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, United States
| | - S. Oliveri
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | | | - A. Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Y. Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - L. Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - V. Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - J. Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - A. Priori
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| |
Collapse
|
2
|
Lee H, Kim HF, Hikosaka O. Implication of regional selectivity of dopamine deficits in impaired suppressing of involuntary movements in Parkinson's disease. Neurosci Biobehav Rev 2024; 162:105719. [PMID: 38759470 PMCID: PMC11167649 DOI: 10.1016/j.neubiorev.2024.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
To improve the initiation and speed of intended action, one of the crucial mechanisms is suppressing unwanted movements that interfere with goal-directed behavior, which is observed relatively aberrant in Parkinson's disease patients. Recent research has highlighted that dopamine deficits in Parkinson's disease predominantly occur in the caudal lateral part of the substantia nigra pars compacta (SNc) in human patients. We previously found two parallel circuits within the basal ganglia, primarily divided into circuits mediated by the rostral medial part and caudal lateral part of the SNc dopamine neurons. We have further discovered that the indirect pathway in caudal basal ganglia circuits, facilitated by the caudal lateral part of the SNc dopamine neurons, plays a critical role in suppressing unnecessary involuntary movements when animals perform voluntary goal-directed actions. We thus explored recent research in humans and non-human primates focusing on the distinct functions and networks of the caudal lateral part of the SNc dopamine neurons to elucidate the mechanisms involved in the impairment of suppressing involuntary movements in Parkinson's disease patients.
Collapse
Affiliation(s)
- Hyunchan Lee
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA.
| | - Hyoung F Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA
| |
Collapse
|
3
|
Bange M, Gonzalez-Escamilla G, Herz DM, Tinkhauser G, Glaser M, Ciolac D, Pogosyan A, Kreis SL, Luhmann HJ, Tan H, Groppa S. Subthalamic stimulation modulates context-dependent effects of beta bursts during fine motor control. Nat Commun 2024; 15:3166. [PMID: 38605062 PMCID: PMC11009405 DOI: 10.1038/s41467-024-47555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Increasing evidence suggests a considerable role of pre-movement beta bursts for motor control and its impairment in Parkinson's disease. However, whether beta bursts occur during precise and prolonged movements and if they affect fine motor control remains unclear. To investigate the role of within-movement beta bursts for fine motor control, we here combine invasive electrophysiological recordings and clinical deep brain stimulation in the subthalamic nucleus in 19 patients with Parkinson's disease performing a context-varying task that comprised template-guided and free spiral drawing. We determined beta bursts in narrow frequency bands around patient-specific peaks and assessed burst amplitude, duration, and their immediate impact on drawing speed. We reveal that beta bursts occur during the execution of drawing movements with reduced duration and amplitude in comparison to rest. Exclusively when drawing freely, they parallel reductions in acceleration. Deep brain stimulation increases the acceleration around beta bursts in addition to a general increase in drawing velocity and improvements of clinical function. These results provide evidence for a diverse and task-specific role of subthalamic beta bursts for fine motor control in Parkinson's disease; suggesting that pathological beta bursts act in a context dependent manner, which can be targeted by clinical deep brain stimulation.
Collapse
Affiliation(s)
- Manuel Bange
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Damian M Herz
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dumitru Ciolac
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alek Pogosyan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Svenja L Kreis
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Olson MC, Shill H, Ponce F, Aslam S. Deep brain stimulation in PD: risk of complications, morbidity, and hospitalizations: a systematic review. Front Aging Neurosci 2023; 15:1258190. [PMID: 38046469 PMCID: PMC10690827 DOI: 10.3389/fnagi.2023.1258190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Parkinson's disease (PD) is a progressive and debilitating neurological disorder. While dopaminergic medication improves PD symptoms, continued management is complicated by continued symptom progression, increasing medication fluctuations, and medication-related dyskinesia. Deep brain stimulation (DBS) surgery is a well-accepted and widespread treatment often utilized to address these symptoms in advanced PD. However, DBS may also lead to complications requiring hospitalization. In addition, patients with PD and DBS may have specialized care needs during hospitalization. Methods This systematic review seeks to characterize the complications and risk of hospitalization following DBS surgery. Patient risk factors and modifications to DBS surgical techniques that may affect surgical risk are also discussed. Results It is found that, when candidates are carefully screened, DBS is a relatively low-risk procedure, but rate of hospitalization is somewhat increased for DBS patients. Discussion More research is needed to determine the relative influence of more advanced disease vs. DBS itself in increased rate of hospitalization, but education about DBS and PD is important to insure effective patient care within the hospital.
Collapse
Affiliation(s)
- Markey C. Olson
- Department of Neurology, Muhammad Ali Movement Disorders Clinic, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neurosurgery, Barrow Brain and Spine, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Holly Shill
- Department of Neurology, Muhammad Ali Movement Disorders Clinic, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Francisco Ponce
- Department of Neurosurgery, Barrow Brain and Spine, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Sana Aslam
- Department of Neurology, Muhammad Ali Movement Disorders Clinic, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
5
|
Xie J, Chen Z, He T, Zhu H, Chen T, Liu C, Fu X, Shen H, Li T. Deep brain stimulation in the globus pallidus alleviates motor activity defects and abnormal electrical activities of the parafascicular nucleus in parkinsonian rats. Front Aging Neurosci 2022; 14:1020321. [PMID: 36248005 PMCID: PMC9555567 DOI: 10.3389/fnagi.2022.1020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment for Parkinson’s disease (PD). The most common sites targeted for DBS in PD are the globus pallidus internal (GPi) and subthalamic nucleus (STN). However, STN-DBS and GPi-DBS have limited improvement in some symptoms and even aggravate disease symptoms. Therefore, discovering new targets is more helpful for treating refractory symptoms of PD. Therefore, our study selected a new brain region, the lateral globus pallidus (GP), as the target of DBS, and the study found that GP-DBS can improve motor symptoms. It has been reported that the thalamic parafascicular (PF) nucleus is strongly related to PD pathology. Moreover, the PF nucleus and GP have very close direct and indirect fiber connections. However, whether GP-DBS can change the activity of the PF remains unclear. Therefore, in this study, we monitored the activity changes in the PF nucleus in PD rats during a quiet awake state after GP-DBS. We found that GP-DBS could reverse the electrical activity of the PF nucleus in PD model rats, including the discharge pattern of the neurons and the local field potential (0.7–12 and 12–70 Hz). Based on the results mentioned above, PF activity in PD model rats could be changed by GP-DBS. Thus, the normalization of PF neuronal activity may be a potential mechanism for GP-DBS in the treatment of PD; these findings lay the foundation for PD treatment strategies.
Collapse
Affiliation(s)
- Jinlu Xie
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zheng Chen
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Tingting He
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Hengya Zhu
- Department of Neurology, Huzhou Central Hospital, Affiliated Center Hospital of Huzhou University, Huzhou, China
| | - Tingyu Chen
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Chongbin Liu
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Xuyan Fu
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Hong Shen
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Tao Li
- Department of Physical Education, Kyungnam University, Changwon, South Korea
- *Correspondence: Tao Li,
| |
Collapse
|
6
|
Short-Term Motor Outcomes in Parkinson’s Disease after Subthalamic Nucleus Deep Brain Stimulation Combined with Post-Operative Rehabilitation: A Pre-Post Comparison Study. PARKINSON'S DISEASE 2022; 2022:8448638. [PMID: 35992727 PMCID: PMC9391177 DOI: 10.1155/2022/8448638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/01/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
Background The effects of subthalamic nuclear deep brain stimulation therapy (STN-DBS) and combined postoperative rehabilitation for patients with Parkinson's disease with postural instability have yet to be well reported. This study investigated the effects of short-term postoperative rehabilitation with STN-DBS on physical function in patients with Parkinson's disease. Methods Patients diagnosed with Parkinson's disease who were admitted to our hospital for STN-DBS surgery were included in this study. Data were prospectively collected and retrospectively analyzed. Postoperative rehabilitation consisted of muscle-strengthening exercises, stretching, and balance exercises for 40–60 minutes per day for approximately 14 days. The Mini-Balance Evaluation Systems Test (Mini-BESTest), Timed Up and Go test (TUG) seconds and steps, Trunk Impairment Scale (TIS), seconds for 10 times toe-tapping, lower limb extension torque using StrengthErgo240, and center of pressure sway in the quiet standing posture were evaluated preoperatively, postoperatively, and at discharge. Mini-BESTest changes were also evaluated in the two groups classified by the presence or absence of postural instability. One-way and two-way repeated measures analyses of variance were performed for each of the three periods of change, and paired t-tests with the Bonferroni method were performed as multiple comparison tests. A stepwise multiple regression model was used to identify factors associated with balance improvement. Results A total of 60 patients with Parkinson's disease were included, and there were significant increases in Mini-BESTest, TIS, StrengthErgo240, and postural sway during closed-eye standing compared to pre- and postoperative conditions at discharge (p < 0.05), and they decreased significantly compared to the postoperative period (p < 0.05). On stepwise multiple regression analysis, decreased steps of TUG and improvement of TIS scores were related to improvement of the Mini-BESTest (p < 0.05). In addition, Mini-BESTest scores in both groups with and without postural instability were significantly increased at discharge compared to preoperative and postoperative conditions (p < 0.01). Conclusion Postoperative rehabilitation combined with STN-DBS may provide short-term improvements in physical function compared with the preoperative medicated status. The improvements in gait step length and trunk function may be important factors for obtaining improvement of postoperative postural stability.
Collapse
|
7
|
Xiong NX, Zhou YX. Letter to the Editor. Patient complaints. J Neurosurg 2022; 136:1211-1212. [PMID: 35366643 DOI: 10.3171/2021.8.jns212055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yi-Xuan Zhou
- 1Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Lv H, Yang N. Clinical effect of application of nursing concept of rehabilitation surgery for improvement of quality of postoperative recovery in orthopedics. J Orthop Surg Res 2021; 16:471. [PMID: 34330306 PMCID: PMC8323299 DOI: 10.1186/s13018-021-02610-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/12/2021] [Indexed: 11/10/2022] Open
Abstract
Objective To analyze the application of concept nursing of accelerated rehabilitation surgery in orthopedic postoperative recovery. Methods A total of 120 patients who received orthopedic surgery were divided into the control group undergoing routine orthopedic nursing and the observation group undergoing the concept of accelerated rehabilitation surgery nursing. Results Patients in the observation group had shorter in-bed activity time and out-of-bed activity time, average time of hospital stay, and lower total treatment costs. The incidence of incision infection, respiratory system infection, digestive tract infection, urinary tract infection, deep vein thrombosis, and other complications in the observation group was much lower. The recovery scores of joint function in the observation group at 1, 3, 6, and 12 months after the operation were all better, and the recovery rate of joint function within 1 year after the operation was higher. Conclusion Following the concept of accelerated rehabilitation surgery nursing during the perioperative period can improve the quality of postoperative orthopedic recovery.
Collapse
Affiliation(s)
- Hong Lv
- Inner Mongolia Sports Hospital, No.2 South Tongdao Road, Huimin District, Hohhot, 010030, Inner Mongolia Autonomous Region, China.
| | - Ning Yang
- Inner Mongolia Sports Hospital, No.2 South Tongdao Road, Huimin District, Hohhot, 010030, Inner Mongolia Autonomous Region, China
| |
Collapse
|
9
|
Muthuraman M, Bange M, Koirala N, Ciolac D, Pintea B, Glaser M, Tinkhauser G, Brown P, Deuschl G, Groppa S. Cross-frequency coupling between gamma oscillations and deep brain stimulation frequency in Parkinson's disease. Brain 2020; 143:3393-3407. [PMID: 33150359 PMCID: PMC7116448 DOI: 10.1093/brain/awaa297] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/30/2022] Open
Abstract
The disruption of pathologically enhanced beta oscillations is considered one of the key mechanisms mediating the clinical effects of deep brain stimulation on motor symptoms in Parkinson's disease. However, a specific modulation of other distinct physiological or pathological oscillatory activities could also play an important role in symptom control and motor function recovery during deep brain stimulation. Finely tuned gamma oscillations have been suggested to be prokinetic in nature, facilitating the preferential processing of physiological neural activity. In this study, we postulate that clinically effective high-frequency stimulation of the subthalamic nucleus imposes cross-frequency interactions with gamma oscillations in a cortico-subcortical network of interconnected regions and normalizes the balance between beta and gamma oscillations. To this end we acquired resting state high-density (256 channels) EEG from 31 patients with Parkinson's disease who underwent deep brain stimulation to compare spectral power and power-to-power cross-frequency coupling using a beamformer algorithm for coherent sources. To show that modulations exclusively relate to stimulation frequencies that alleviate motor symptoms, two clinically ineffective frequencies were tested as control conditions. We observed a robust reduction of beta and increase of gamma power, attested in the regions of a cortical (motor cortex, supplementary motor area, premotor cortex) and subcortical network (subthalamic nucleus and cerebellum). Additionally, we found a clear cross-frequency coupling of narrowband gamma frequencies to the stimulation frequency in all of these nodes, which negatively correlated with motor impairment. No such dynamics were revealed within the control posterior parietal cortex region. Furthermore, deep brain stimulation at clinically ineffective frequencies did not alter the source power spectra or cross-frequency coupling in any region. These findings demonstrate that clinically effective deep brain stimulation of the subthalamic nucleus differentially modifies different oscillatory activities in a widespread network of cortical and subcortical regions. Particularly the cross-frequency interactions between finely tuned gamma oscillations and the stimulation frequency may suggest an entrainment mechanism that could promote dynamic neural processing underlying motor symptom alleviation.
Collapse
Affiliation(s)
- Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Manuel Bange
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nabin Koirala
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dumitru Ciolac
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bogdan Pintea
- Department of Neurosurgery, Bergmannsheil Clinic, Ruhr University Bochum, Bochum, Germany
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Mainz, Germany
| | - Gerd Tinkhauser
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Günther Deuschl
- Department of Neurology, Christian Albrecht’s University, Kiel, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
10
|
Gonzalez-Escamilla G, Muthuraman M, Ciolac D, Coenen VA, Schnitzler A, Groppa S. Neuroimaging and electrophysiology meet invasive neurostimulation for causal interrogations and modulations of brain states. Neuroimage 2020; 220:117144. [DOI: 10.1016/j.neuroimage.2020.117144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
|
11
|
Gooßes M, Saliger J, Folkerts AK, Nielsen J, Zierer J, Schmoll P, Niepold A, Colbach L, Leemhuis J, Engels L, van Krüchten M, Ophey A, Allert N, Karbe H, Kalbe E. Feasibility of Music-Assisted Treadmill Training in Parkinson's Disease Patients With and Without Deep Brain Stimulation: Insights From an Ongoing Pilot Randomized Controlled Trial. Front Neurol 2020; 11:790. [PMID: 33013612 PMCID: PMC7498575 DOI: 10.3389/fneur.2020.00790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023] Open
Abstract
Background: Music-assisted treadmill training (MATT) is a new therapeutic approach for Parkinson's disease (PD) patients, combining treadmill training with rhythmic auditory cueing and visual feedback. PD studies have shown larger positive effects on motor outcomes than usual treadmill training. However, effects on cognition, in contrast, are less clear. Existing studies provided intensive training protocols and included only stable medicated patients. Thus, a pilot randomized controlled trial was designed to analyze the feasibility of a shorter training protocol as well as preliminary effects on cognition, motor function, and patient-centered outcomes in a rehabilitation setting where PD patients with and without deep brain stimulation (DBS) undergo adaptation of medication and DBS settings. Here, we present the results from the feasibility analysis of the still ongoing trial. Methods: Non-demented PD patients with and without DBS were recruited during their inpatient rehabilitation and randomized to an experimental group (EG; 20 min MATT) or an active control group (CG; 20 min bike ergometer training). The trainings took place for 8 consecutive days and were added to the usual rehabilitation. Feasibility was assessed with the following parameters: patients' study protocol acceptance, study protocol transferability into clinical routine, training-induced adverse events, and patients' training perception. Results: Thirty-two patients (EG: n = 15; CG: n = 17; 72% DBS) were included. The study protocol was well-accepted (inclusion rate: 84%). It was transferable into clinical routines; dropout rates of 40% (EG) and 18% (CG) were observed. However, an in-depth analysis of the dropout cohort did not reveal intervention-related dropout reasons. The MATT and the standard ergometer training showed no adverse events and were positively perceived by PD patients with and without DBS. Conclusion: MATT was shown to be a feasible, safe, and enjoyable treatment option in PD patients with and without DBS. Furthermore, the dropout cohort analysis revealed some exciting first insights into possible dropout reasons that go beyond the form of intervention. Therefore, research would benefit from a common practice of dropout analyses, as this would enhance our understanding of patients' therapy adherence and expectations.
Collapse
Affiliation(s)
- Mareike Gooßes
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Jochen Saliger
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Ann-Kristin Folkerts
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörn Nielsen
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Jürgen Zierer
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Paula Schmoll
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Annika Niepold
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Liz Colbach
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Janna Leemhuis
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lea Engels
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria van Krüchten
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Anja Ophey
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Niels Allert
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Hans Karbe
- Neurological Rehabilitation Center Godeshoehe, Bonn, Germany
| | - Elke Kalbe
- Medical Psychology | Neuropsychology and Gender Studies, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Lapa S, Claus I, Reitz SC, Quick-Weller J, Sauer S, Colbow S, Nasari C, Dziewas R, Kang JS, Baudrexel S, Warnecke T. Effect of thalamic deep brain stimulation on swallowing in patients with essential tremor. Ann Clin Transl Neurol 2020; 7:1174-1180. [PMID: 32548923 PMCID: PMC7359107 DOI: 10.1002/acn3.51099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Objective Deep brain stimulation (DBS) of the ventral intermediate nucleus (VIM) is a mainstay treatment for severe and drug‐refractory essential tremor (ET). Although stimulation‐induced dysarthria has been extensively described, possible impairment of swallowing has not been systematically investigated yet. Methods Twelve patients with ET and bilateral VIM‐DBS with self‐reported dysphagia after VIM‐DBS were included. Swallowing function was assessed clinically and using by flexible endoscopic evaluation of swallowing in the stim‐ON and in the stim‐OFF condition. Presence, severity, and improvement of dysphagia were recorded. Results During stim‐ON, the presence of dysphagia could be objectified in all patients, 42% showing mild, 42% moderate, and 16 % severe dysphagia. During stim‐OFF, all patients experienced a statistically significant improvement of swallowing function. Interpretation VIM‐DBS may have an impact on swallowing physiology in ET‐patients. Further studies to elucidate the prevalence and underlying pathophysiological mechanisms are warranted.
Collapse
Affiliation(s)
- Sriramya Lapa
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| | - Inga Claus
- Department of Neurology, University Hospital Muenster, Muenster, Germany
| | - Sarah C Reitz
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Sonja Sauer
- Department of Neurology, University Hospital Muenster, Muenster, Germany
| | - Sigrid Colbow
- Department of Neurology, University Hospital Muenster, Muenster, Germany
| | - Christiane Nasari
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| | - Rainer Dziewas
- Department of Neurology, University Hospital Muenster, Muenster, Germany
| | - Jun-Suk Kang
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| | - Simon Baudrexel
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| | - Tobias Warnecke
- Department of Neurology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
13
|
Porta M, Servello D, Zekaj E, Gonzalez-Escamilla G, Groppa S. Pre-dopa Deep Brain Stimulation: Is Early Deep Brain Stimulation Able to Modify the Natural Course of Parkinson's Disease? Front Neurosci 2020; 14:492. [PMID: 32581675 PMCID: PMC7292013 DOI: 10.3389/fnins.2020.00492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/20/2020] [Indexed: 12/23/2022] Open
Abstract
Deep brain stimulation (DBS) is an established therapy for the management of Parkinson’s disease (PD). However, DBS is indicated as the disease progresses and motor complications derived from pharmacological therapy arise. Here, we evaluate the potential of DBS prior to levodopa (L-Dopa) in improving quality of life (QoL), challenging the state of the art for DBS therapy. We present data on clinical manifestation, decision finding during early indication to DBS, and trajectories after DBS. We further discuss current paradigms for DBS and hypothesize on possible mechanisms. Six patients, between 50 and 67 years old, presenting at least 5 years of PD symptoms, and without L-Dopa therapy initiation, received subthalamic nucleus (STN) DBS implantation. In the six PD cases, indication for DBS was not driven by motor complications, as supported by current guidelines, but by relevant QoL impairment and patient’s reluctance to initiate L-Dopa treatment. All patients treated with STN-DBS prior to L-Dopa presented improvement in motor and non-motor symptoms and significant QoL improvement. All patients reduced the intake of dopamine agonists, and five are currently free from L-Dopa medication, with no reported adverse events. We introduce a multicenter observational study to investigate whether early DBS treatment may affect the natural course of PD. Early application of DBS instead of L-Dopa administration could have a pathophysiological basis and be prompted by a significant incline on QoL through disease progression; however, the clinical value of this proposed paradigm shift should be addressed in clinical trials aimed at modulating the natural course of PD.
Collapse
Affiliation(s)
- Mauro Porta
- Center for Movement Disorders and Tourette Syndrome, Galeazzi Hospital, Milan, Italy
| | | | - Edvin Zekaj
- Functional Neurosurgery Unit, Galeazzi Hospital, Milan, Italy
| | - Gabriel Gonzalez-Escamilla
- Movement Disorders and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
14
|
Gait in Parkinson’s Disease. PARKINSON'S DISEASE 2019; 2019:1962123. [PMID: 31772732 PMCID: PMC6854230 DOI: 10.1155/2019/1962123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022]
|
15
|
Muthuraman M, Koirala N, Ciolac D, Pintea B, Glaser M, Groppa S, Tamás G, Groppa S. Deep Brain Stimulation and L-DOPA Therapy: Concepts of Action and Clinical Applications in Parkinson's Disease. Front Neurol 2018; 9:711. [PMID: 30210436 PMCID: PMC6119713 DOI: 10.3389/fneur.2018.00711] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
L-DOPA is still the most effective pharmacological therapy for the treatment of motor symptoms in Parkinson's disease (PD) almost four decades after it was first used. Deep brain stimulation (DBS) is a safe and highly effective treatment option in patients with PD. Even though a clear understanding of the mechanisms of both treatment methods is yet to be obtained, the combination of both treatments is the most effective standard evidenced-based therapy to date. Recent studies have demonstrated that DBS is a therapy option even in the early course of the disease, when first complications arise despite a rigorous adjustment of the pharmacological treatment. The unique feature of this therapeutic approach is the ability to preferentially modulate specific brain networks through the choice of stimulation site. The clinical effects have been unequivocally confirmed in recent studies; however, the impact of DBS and the supplementary effect of L-DOPA on the neuronal network are not yet fully understood. In this review, we present emerging data on the presumable mechanisms of DBS in patients with PD and discuss the pathophysiological similarities and differences in the effects of DBS in comparison to dopaminergic medication. Targeted, selective modulation of brain networks by DBS and pharmacodynamic effects of L-DOPA therapy on the central nervous system are presented. Moreover, we outline the perioperative algorithms for PD patients before and directly after the implantation of DBS electrodes and strategies for the reduction of side effects and optimization of motor and non-motor symptoms.
Collapse
Affiliation(s)
- Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Nabin Koirala
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Dumitru Ciolac
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemiţanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Bogdan Pintea
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stanislav Groppa
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemiţanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
16
|
Mandarelli G, Moretti G, Pasquini M, Nicolò G, Ferracuti S. Informed Consent Decision-Making in Deep Brain Stimulation. Brain Sci 2018; 8:E84. [PMID: 29751598 PMCID: PMC5977075 DOI: 10.3390/brainsci8050084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) has proved useful for several movement disorders (Parkinson’s disease, essential tremor, dystonia), in which first and/or second line pharmacological treatments were inefficacious. Initial evidence of DBS efficacy exists for refractory obsessive-compulsive disorder, treatment-resistant major depressive disorder, and impulse control disorders. Ethical concerns have been raised about the use of an invasive surgical approach involving the central nervous system in patients with possible impairment in cognitive functioning and decision-making capacity. Most of the disorders in which DBS has been used might present with alterations in memory, attention, and executive functioning, which may have an impact on the mental capacity to give informed consent to neurosurgery. Depression, anxiety, and compulsivity are also common in DBS candidate disorders, and could also be associated with an impaired capacity to consent to treatment or clinical research. Despite these issues, there is limited empirical knowledge on the decision-making levels of these patients. The possible informed consent issues of DBS will be discussed by focusing on the specific treatable diseases.
Collapse
Affiliation(s)
- Gabriele Mandarelli
- Department of Human Neurosciences (Former Department of Neurology and Psychiatry), "Sapienza" University of Rome, 00185 Rome, Italy.
| | - Germana Moretti
- Department of Mental Health, ASL Roma 5, 00034 Colleferro, Italy.
| | - Massimo Pasquini
- Department of Human Neurosciences (Former Department of Neurology and Psychiatry), "Sapienza" University of Rome, 00185 Rome, Italy.
| | - Giuseppe Nicolò
- Department of Mental Health, ASL Roma 5, 00034 Colleferro, Italy.
| | - Stefano Ferracuti
- Department of Human Neurosciences (Former Department of Neurology and Psychiatry), "Sapienza" University of Rome, 00185 Rome, Italy.
| |
Collapse
|