1
|
Offit MB, Khanli HM, Wu T, Lehky TJ. Electrical impedance myography in healthy volunteers. Muscle Nerve 2024; 69:288-294. [PMID: 37787098 PMCID: PMC10922034 DOI: 10.1002/mus.27978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION/AIMS Electrical impedance myography (EIM) is a noninvasive technique being used in clinical studies to characterize muscle by phase, reactance, and resistance after application of a low-intensity current. The aim of this study was to obtain 50-kHz EIM data from healthy volunteers (HVs) for use in future clinical and research studies, perform reliability tests on EIM outcome measures, and compare findings with muscle ultrasound variables. METHODS Four arm and four leg muscles of HVs were evaluated using an EIM device with two sensors, P/N 20-0045 and P/N 014-009. Muscles were evaluated individually and eight-muscle average (8MU), four-muscle upper extremity average, and four-muscle lower extremity average. An intraclass correlation coefficient (ICC) was applied to assess interrater, intrarater, and intersensor reliability using a subset of HVs. Ultrasound studies on muscle thickness and elastography were also performed on a subset of HVs. RESULTS For the P/N 20-0045 sensor, the 8MU EIM mean and standard deviation (n = 41) was 14.54 ± 3.31 for phase, 7.04 ± 1.22 for reactance, and 28.91 ± 7.63 for resistance. Reliability for 8MU phase (n = 22) was good to excellent for both interrater (n = 22, ICC = 0.920, 95% CI 0.820 to 0.966) and intrarater (n = 22, ICC = 0.950, 95% CI 0.778 to 0.983). The P/N 014-009 sensor had similar reliability findings. Correlation analyses showed no association between EIM and muscle thickness. DISCUSSION EIM is a reproducible measure of muscle physiology. Obtaining EIM values from HVs allows us to gain a better understanding how EIM may be altered in diseased muscle.
Collapse
Affiliation(s)
- Michelle B. Offit
- Electromyography Section, National Institutes of Health of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Neurology Department, Georgetown University, Washington, DC, USA
| | - Hadi Mohammad Khanli
- Electromyography Section, National Institutes of Health of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Neurology Department, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Tianxia Wu
- Clinical Trials Unit, National Institutes of Health of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Tanya J. Lehky
- Electromyography Section, National Institutes of Health of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Virto N, Río X, Angulo-Garay G, García Molina R, Avendaño Céspedes A, Cortés Zamora EB, Gómez Jiménez E, Alcantud Córcoles R, Rodriguez Mañas L, Costa-Grille A, Matheu A, Marcos-Pérez D, Lazcano U, Vergara I, Arjona L, Saeteros M, Lopez-de-Ipiña D, Coca A, Abizanda Soler P, Sanabria SJ. Development of Continuous Assessment of Muscle Quality and Frailty in Older Patients Using Multiparametric Combinations of Ultrasound and Blood Biomarkers: Protocol for the ECOFRAIL Study. JMIR Res Protoc 2024; 13:e50325. [PMID: 38393761 PMCID: PMC10924264 DOI: 10.2196/50325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Frailty resulting from the loss of muscle quality can potentially be delayed through early detection and physical exercise interventions. There is a demand for cost-effective tools for the objective evaluation of muscle quality, in both cross-sectional and longitudinal assessments. Literature suggests that quantitative analysis of ultrasound data captures morphometric, compositional, and microstructural muscle properties, while biological assays derived from blood samples are associated with functional information. OBJECTIVE This study aims to assess multiparametric combinations of ultrasound and blood-based biomarkers to offer a cross-sectional evaluation of the patient frailty phenotype and to track changes in muscle quality associated with supervised exercise programs. METHODS This prospective observational multicenter study will include patients aged 70 years and older who are capable of providing informed consent. We aim to recruit 100 patients from hospital environments and 100 from primary care facilities. Each patient will undergo at least two examinations (baseline and follow-up), totaling a minimum of 400 examinations. In hospital environments, 50 patients will be measured before/after a 16-week individualized and supervised exercise program, while another 50 patients will be followed up after the same period without intervention. Primary care patients will undergo a 1-year follow-up evaluation. The primary objective is to compare cross-sectional evaluations of physical performance, functional capacity, body composition, and derived scales of sarcopenia and frailty with biomarker combinations obtained from muscle ultrasound and blood-based assays. We will analyze ultrasound raw data obtained with a point-of-care device, along with a set of biomarkers previously associated with frailty, using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Additionally, we will examine the sensitivity of these biomarkers to detect short-term muscle quality changes and functional improvement after a supervised exercise intervention compared with usual care. RESULTS At the time of manuscript submission, the enrollment of volunteers is ongoing. Recruitment started on March 1, 2022, and ends on June 30, 2024. CONCLUSIONS The outlined study protocol will integrate portable technologies, using quantitative muscle ultrasound and blood biomarkers, to facilitate an objective cross-sectional assessment of muscle quality in both hospital and primary care settings. The primary objective is to generate data that can be used to explore associations between biomarker combinations and the cross-sectional clinical assessment of frailty and sarcopenia. Additionally, the study aims to investigate musculoskeletal changes following multicomponent physical exercise programs. TRIAL REGISTRATION ClinicalTrials.gov NCT05294757; https://clinicaltrials.gov/ct2/show/NCT05294757. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/50325.
Collapse
Affiliation(s)
- Naiara Virto
- Department of Physical Activity and Sport Science, Faculty of Education and Sport, University of Deusto, Bilbao, Spain
| | - Xabier Río
- Department of Physical Activity and Sport Science, Faculty of Education and Sport, University of Deusto, Bilbao, Spain
| | - Garazi Angulo-Garay
- Department of Physical Activity and Sport Science, Faculty of Education and Sport, University of Deusto, Bilbao, Spain
| | - Rafael García Molina
- Department of Geriatrics, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
- Center for Biomedical Research Network on Fragility and Healthy Aging (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Almudena Avendaño Céspedes
- Department of Geriatrics, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
- Center for Biomedical Research Network on Fragility and Healthy Aging (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Enfermería de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Elisa Belen Cortés Zamora
- Department of Geriatrics, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
- Center for Biomedical Research Network on Fragility and Healthy Aging (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Gómez Jiménez
- Department of Geriatrics, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Ruben Alcantud Córcoles
- Department of Geriatrics, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
- Center for Biomedical Research Network on Fragility and Healthy Aging (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Leocadio Rodriguez Mañas
- Center for Biomedical Research Network on Fragility and Healthy Aging (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
- Geriatrics Department, University Hospital of Getafe, Getafe, Spain
| | | | - Ander Matheu
- Center for Biomedical Research Network on Fragility and Healthy Aging (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
- Biodonostia, Health Research Institute, Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Diego Marcos-Pérez
- Department of Geriatrics, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Uxue Lazcano
- Biodonostia, Health Research Institute, Donostia, Spain
| | - Itziar Vergara
- Biodonostia, Health Research Institute, Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Osakidetza, Health Care Department, Research Unit APOSIs, Gipuzkoa, Spain
- Research Network in Chronicity, Primary Care and Health Promotion (RICAPPS), Barakaldo, Spain
| | - Laura Arjona
- Deusto Institute of Technology, University of Deusto, Bilbao, Spain
| | - Morelva Saeteros
- Deusto Institute of Technology, University of Deusto, Bilbao, Spain
| | | | - Aitor Coca
- Department of Physical Activity and Sports Sciences, Faculty of Health Sciences, Euneiz University, Vitoria-Gasteiz, Spain
| | - Pedro Abizanda Soler
- Department of Geriatrics, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
- Center for Biomedical Research Network on Fragility and Healthy Aging (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Sergio J Sanabria
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Deusto Institute of Technology, University of Deusto, Bilbao, Spain
- Department of Radiology, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
3
|
Dabaj I, Ducatez F, Marret S, Bekri S, Tebani A. Neuromuscular disorders in the omics era. Clin Chim Acta 2024; 553:117691. [PMID: 38081447 DOI: 10.1016/j.cca.2023.117691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023]
Abstract
Neuromuscular disorders encompass a spectrum of conditions characterized by primary lesions within the peripheral nervous system, which include the anterior horn cell, peripheral nerve, neuromuscular junction, and muscle. In pediatrics, most of these disorders are linked to genetic causes. Despite the considerable progress, the diagnosis of these disorders remains a challenging due to wide clinical presentation, disease heterogeneity and rarity. It is noteworthy that certain neuromuscular disorders, once deemed untreatable, can now be effectively managed through novel therapies. Biomarkers emerge as indispensable tools, serving as objective measures that not only refine diagnostic accuracy but also provide guidance for therapeutic decision-making and the ongoing monitoring of long-term outcomes. Herein a comprehensive review of biomarkers in neuromuscular disorders is provided. We highlight the role of omics-based technologies that further characterize neuromuscular pathophysiology as well as identify potential therapeutic targets to guide treatment strategies.
Collapse
Affiliation(s)
- Ivana Dabaj
- Normandie Univ, UNIROUEN, INSERM U1245, Nord/Est/Ile de France Neuromuscular Reference Center CHU Rouen, Department of Neonatalogy, Pediatric Intensive Care, and Neuropediatrics, F-76000 Rouen, France.
| | - Franklin Ducatez
- Normandie Univ, UNIROUEN, INSERM U1245, Nord/Est/Ile de France Neuromuscular Reference Center CHU Rouen, Department of Neonatalogy, Pediatric Intensive Care, and Neuropediatrics, F-76000 Rouen, France
| | - Stéphane Marret
- Normandie Univ, UNIROUEN, INSERM U1245, Nord/Est/Ile de France Neuromuscular Reference Center CHU Rouen, Department of Neonatalogy, Pediatric Intensive Care, and Neuropediatrics, F-76000 Rouen, France
| | - Soumeya Bekri
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, F-76000 Rouen, France
| | - Abdellah Tebani
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, F-76000 Rouen, France
| |
Collapse
|
4
|
McDonald C, Camino E, Escandon R, Finkel RS, Fischer R, Flanigan K, Furlong P, Juhasz R, Martin AS, Villa C, Sweeney HL. Draft Guidance for Industry Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Related Dystrophinopathies - Developing Potential Treatments for the Entire Spectrum of Disease. J Neuromuscul Dis 2024; 11:499-523. [PMID: 38363616 DOI: 10.3233/jnd-230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Duchenne muscular dystrophy (DMD) and related dystrophinopathies are neuromuscular conditions with great unmet medical needs that require the development of effective medical treatments. Objective To aid sponsors in clinical development of drugs and therapeutic biological products for treating DMD across the disease spectrum by integrating advancements, patient registries, natural history studies, and more into a comprehensive guidance. Methods This guidance emerged from collaboration between the FDA, the Duchenne community, and industry stakeholders. It entailed a structured approach, involving multiple committees and boards. From its inception in 2014, the guidance underwent revisions incorporating insights from gene therapy studies, cardiac function research, and innovative clinical trial designs. Results The guidance provides a deeper understanding of DMD and its variants, focusing on patient engagement, diagnostic criteria, natural history, biomarkers, and clinical trials. It underscores patient-focused drug development, the significance of dystrophin as a biomarker, and the pivotal role of magnetic resonance imaging in assessing disease progression. Additionally, the guidance addresses cardiomyopathy's prominence in DMD and the burgeoning field of gene therapy. Conclusions The updated guidance offers a comprehensive understanding of DMD, emphasizing patient-centric approaches, innovative trial designs, and the importance of biomarkers. The focus on cardiomyopathy and gene therapy signifies the evolving realm of DMD research. It acts as a crucial roadmap for sponsors, potentially leading to improved treatments for DMD.
Collapse
Affiliation(s)
| | - Eric Camino
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rafael Escandon
- DGBI Consulting, LLC, Bainbridge Island, Washington, DC, USA
| | | | - Ryan Fischer
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Kevin Flanigan
- Center for Experimental Neurotherapeutics, Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pat Furlong
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rose Juhasz
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Ann S Martin
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Chet Villa
- Trinity Health Michigan, Grand Rapids, MI, USA
| | - H Lee Sweeney
- Cincinnati Children's Hospital Medical Center within the UC Department of Pediatrics, Cincinnati, OH, USA
| |
Collapse
|
5
|
Hannaford A, Simon NG. Ulnar neuropathy. HANDBOOK OF CLINICAL NEUROLOGY 2024; 201:103-126. [PMID: 38697734 DOI: 10.1016/b978-0-323-90108-6.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Ulnar neuropathy at the elbow is the second most common compressive neuropathy. Less common, although similarly disabling, are ulnar neuropathies above the elbow, at the forearm, and the wrist, which can present with different combinations of intrinsic hand muscle weakness and sensory loss. Electrodiagnostic studies are moderately sensitive in diagnosing ulnar neuropathy, although their ability to localize the site of nerve injury is often limited. Nerve imaging with ultrasound can provide greater localization of ulnar injury and identification of specific anatomical pathology causing nerve entrapment. Specifically, imaging can now reliably distinguish ulnar nerve entrapment under the humero-ulnar arcade (cubital tunnel) from nerve injury at the retro-epicondylar groove. Both these pathologies have historically been diagnosed as either "ulnar neuropathy at the elbow," which is non-specific, or "cubital tunnel syndrome," which is often erroneous. Natural history studies are few and limited, although many cases of mild-moderate ulnar neuropathy at the elbow appear to remit spontaneously. Conservative management, perineural steroid injections, and surgical release have all been studied in treating ulnar neuropathy at the elbow. Despite this, questions remain about the most appropriate management for many patients, which is reflected in the absence of management guidelines.
Collapse
Affiliation(s)
- Andrew Hannaford
- Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Neil G Simon
- Northern Beaches Clinical School, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Mandeville R, Sanchez B, Johnston B, Bazarek S, Thum JA, Birmingham A, See RHB, Leochico CFD, Kumar V, Dowlatshahi AS, Brown J, Stashuk D, Rutkove SB. A scoping review of current and emerging techniques for evaluation of peripheral nerve health, degeneration, and regeneration: part 1, neurophysiology. J Neural Eng 2023; 20:041001. [PMID: 37279730 DOI: 10.1088/1741-2552/acdbeb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
Peripheral neuroregeneration research and therapeutic options are expanding exponentially. With this expansion comes an increasing need to reliably evaluate and quantify nerve health. Valid and responsive measures that can serve as biomarkers of the nerve status are essential for both clinical and research purposes for diagnosis, longitudinal follow-up, and monitoring the impact of any intervention. Furthermore, such biomarkers can elucidate regeneration mechanisms and open new avenues for research. Without these measures, clinical decision-making falls short, and research becomes more costly, time-consuming, and sometimes infeasible. As a companion to Part 2, which is focused on non-invasive imaging, Part 1 of this two-part scoping review systematically identifies and critically examines many current and emerging neurophysiological techniques that have the potential to evaluate peripheral nerve health, particularly from the perspective of regenerative therapies and research.
Collapse
Affiliation(s)
- Ross Mandeville
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Benjamin Sanchez
- Department Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Benjamin Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Stanley Bazarek
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Jasmine A Thum
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Austin Birmingham
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Reiner Henson B See
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Carl Froilan D Leochico
- Department of Physical Medicine and Rehabilitation, St. Luke's Medical Center, Global City, Taguig, The Philippines
- Department of Rehabilitation Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, The Philippines
| | - Viksit Kumar
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Arriyan S Dowlatshahi
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Justin Brown
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Daniel Stashuk
- Department of Systems Design Engineering, University of Waterloo, Ontario N2L 3G1, Canada
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| |
Collapse
|
7
|
Ashir A, Jerban S, Barrère V, Wu Y, Shah SB, Andre MP, Chang EY. Skeletal Muscle Assessment Using Quantitative Ultrasound: A Narrative Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:4763. [PMID: 37430678 PMCID: PMC10222479 DOI: 10.3390/s23104763] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 07/12/2023]
Abstract
Ultrasound (US) is an important imaging tool for skeletal muscle analysis. The advantages of US include point-of-care access, real-time imaging, cost-effectiveness, and absence of ionizing radiation. However, US can be highly dependent on the operator and/or US system, and a portion of the potentially useful information carried by raw sonographic data is discarded in image formation for routine qualitative US. Quantitative ultrasound (QUS) methods provide analysis of the raw or post-processed data, revealing additional information about normal tissue structure and disease status. There are four QUS categories that can be used on muscle and are important to review. First, quantitative data derived from B-mode images can help determine the macrostructural anatomy and microstructural morphology of muscle tissues. Second, US elastography can provide information about muscle elasticity or stiffness through strain elastography or shear wave elastography (SWE). Strain elastography measures the induced tissue strain caused either by internal or external compression by tracking tissue displacement with detectable speckle in B-mode images of the examined tissue. SWE measures the speed of induced shear waves traveling through the tissue to estimate the tissue elasticity. These shear waves may be produced using external mechanical vibrations or internal "push pulse" ultrasound stimuli. Third, raw radiofrequency signal analyses provide estimates of fundamental tissue parameters, such as the speed of sound, attenuation coefficient, and backscatter coefficient, which correspond to information about muscle tissue microstructure and composition. Lastly, envelope statistical analyses apply various probability distributions to estimate the number density of scatterers and quantify coherent to incoherent signals, thus providing information about microstructural properties of muscle tissue. This review will examine these QUS techniques, published results on QUS evaluation of skeletal muscles, and the strengths and limitations of QUS in skeletal muscle analysis.
Collapse
Affiliation(s)
- Aria Ashir
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Radiology, Santa Barbara Cottage Hospital, Santa Barbara, CA 93105, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
| | - Victor Barrère
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
| | - Yuanshan Wu
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Sameer B. Shah
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Michael P. Andre
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
| |
Collapse
|
8
|
Gong Z, Lo WLA, Wang R, Li L. Electrical impedance myography combined with quantitative assessment techniques in paretic muscle of stroke survivors: Insights and challenges. Front Aging Neurosci 2023; 15:1130230. [PMID: 37020859 PMCID: PMC10069712 DOI: 10.3389/fnagi.2023.1130230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Aging is a non-modifiable risk factor for stroke and the global burden of stroke is continuing to increase due to the aging society. Muscle dysfunction, common sequela of stroke, has long been of research interests. Therefore, how to accurately assess muscle function is particularly important. Electrical impedance myography (EIM) has proven to be feasible to assess muscle impairment in patients with stroke in terms of micro structures, such as muscle membrane integrity, extracellular and intracellular fluids. However, EIM alone is not sufficient to assess muscle function comprehensively given the complex contributors to paretic muscle after an insult. This article discusses the potential to combine EIM and other common quantitative methods as ways to improve the assessment of muscle function in stroke survivors. Clinically, these combined assessments provide not only a distinct advantage for greater accuracy of muscle assessment through cross-validation, but also the physiological explanation on muscle dysfunction at the micro level. Different combinations of assessments are discussed with insights for different purposes. The assessments of morphological, mechanical and contractile properties combined with EIM are focused since changes in muscle structures, tone and strength directly reflect the muscle function of stroke survivors. With advances in computational technology, finite element model and machine learning model that incorporate multi-modal evaluation parameters to enable the establishment of predictive or diagnostic model will be the next step forward to assess muscle function for individual with stroke.
Collapse
Affiliation(s)
- Ze Gong
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruoli Wang
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Le Li
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Le Li,
| |
Collapse
|
9
|
Chrzanowski SM, Nagy JA, Pandeya S, Rutkove SB. Electrical Impedance Myography Correlates with Functional Measures of Disease Progression in D2-mdx Mice and Boys with Duchenne Muscular Dystrophy. J Neuromuscul Dis 2023; 10:81-90. [PMID: 36442205 DOI: 10.3233/jnd-210787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sensitive, objective, and longitudinal outcome measures applicable to both pre-clinical and clinical interventions are needed to assess muscle health in Duchenne muscular dystrophy (DMD). Electrical impedance myography (EIM) has the potential to non-invasively measure disease progression in mice and boys with DMD. OBJECTIVE We sought to evaluate how electrical impedance values (i.e., phase, reactance, and resistance) correlate to established measures of disease in both D2-mdx and wild type (WT) mice and boys with and without DMD. METHODS Histological, functional, and EIM data collected from previous studies of WT and D2-mdx mice at 6, 13, 21 and 43 weeks of age were reanalyzed. In parallel, previously collected functional outcome measures and EIM values were reanalyzed from boys with and without DMD at four different age groups from 2 to 14 years old. RESULTS In mice, disease progression as detected by histological, functional, and EIM measures, was appreciable over this time period and grip strength best correlated to longitudinal phase and reactance impedance values. In boys, disease progression quantified through commonly utilized functional outcome measures was significant and longitudinal phase demonstrated the strongest correlation with functional outcome measures. CONCLUSION Similar changes in EIM values, specifically in longitudinal reactance and phase, were found to show significant correlations to functional measures in both mice and boys. Thus, EIM demonstrates applicability in both pre-clinical and clinical settings and can be used as a safe, non-invasive, and longitudinal proxy biomarker to assess muscle health in DMD.
Collapse
Affiliation(s)
- Stephen M Chrzanowski
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Janice A Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sarbesh Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
10
|
Yu HK, Liu X, Pan M, Chen JW, Liu C, Wu Y, Li ZB, Wang HY. Performance of Passive Muscle Stiffness in Diagnosis and Assessment of Disease Progression in Duchenne Muscular Dystrophy. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:414-421. [PMID: 34893358 DOI: 10.1016/j.ultrasmedbio.2021.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/07/2021] [Accepted: 09/02/2021] [Indexed: 06/14/2023]
Abstract
The aim of this study was to evaluate the performance of passive muscle stiffness in diagnosing and assessing disease progression in Duchenne muscular dystrophy (DMD). Boys with DMD and age-matched controls were recruited. Shear wave elastography (SWE) videos were collected by performing dynamic stretching of the gastrocnemius medius (GM). At ankle angles from plantar flexion (PF) 30° to dorsiflexion (DF) 20°, the shear modulus of the GM was measured for each 10° of ankle movement. Shear modulus at each ankle angle was compared between the DMD and control group. Correlation between passive muscle stiffness and motor function grading was also analyzed. A total of 26 patients with DMD and 20 healthy boys were enrolled. At multiple stretch levels, passive muscle stiffness of the GM was significantly higher in patients with DMD than in those in the control group (all p values <0.05). The shear modulus of GM at an ankle angle of DF 10° had the largest area under the receiver operating characteristic curve in differentiating DMD patients from normal subjects (AUC = 0.902, 95% confidence interval: 0.814-0.990). Motor function grading was a significant determinant of passive muscle stiffness at an ankle angle of DF 10° (B = 21.409, t = 3.372, p = 0.003). Passive muscle stiffness may potentially serve as a useful non-invasive tool to monitor disease progression in DMD patients.
Collapse
Affiliation(s)
- Hong-Kui Yu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao Liu
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Min Pan
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Jin-Wei Chen
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chen Liu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Wu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi-Bin Li
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hong-Ying Wang
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Approaching Gravity as a Continuum Using the Rat Partial Weight-Bearing Model. Life (Basel) 2020; 10:life10100235. [PMID: 33049988 PMCID: PMC7599661 DOI: 10.3390/life10100235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
For decades, scientists have relied on animals to understand the risks and consequences of space travel. Animals remain key to study the physiological alterations during spaceflight and provide crucial information about microgravity-induced changes. While spaceflights may appear common, they remain costly and, coupled with limited cargo areas, do not allow for large sample sizes onboard. In 1979, a model of hindlimb unloading (HU) was successfully created to mimic microgravity and has been used extensively since its creation. Four decades later, the first model of mouse partial weight-bearing (PWB) was developed, aiming at mimicking partial gravity environments. Return to the Lunar surface for astronauts is now imminent and prompted the need for an animal model closer to human physiology; hence in 2018, our laboratory created a new model of PWB for adult rats. In this review, we will focus on the rat model of PWB, from its conception to the current state of knowledge. Additionally, we will address how this new model, used in conjunction with HU, will help implement new paradigms allowing scientists to anticipate the physiological alterations and needs of astronauts. Finally, we will discuss the outstanding questions and future perspectives in space research and propose potential solutions using the rat PWB model.
Collapse
|
12
|
Semple C, Riveros D, Sung DM, Nagy JA, Rutkove SB, Mortreux M. Using Electrical Impedance Myography as a Biomarker of Muscle Deconditioning in Rats Exposed to Micro- and Partial-Gravity Analogs. Front Physiol 2020; 11:557796. [PMID: 33041858 PMCID: PMC7522465 DOI: 10.3389/fphys.2020.557796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
As astronauts prepare to undertake new extra-terrestrial missions, innovative diagnostic tools are needed to better assess muscle deconditioning during periods of weightlessness and partial gravity. Electrical impedance myography (EIM) has been used to detect muscle deconditioning in rodents exposed to microgravity during spaceflight or using the standard ground-based model of hindlimb unloading via tail suspension (HU). Here, we used EIM to assess muscle changes in animals exposed to two new models: hindlimb suspension using a pelvic harness (HLS) and a partial weight-bearing (PWB) model that mimics partial gravity (including Lunar and Martian gravities). We also used a simple needle array electrode in lieu of surface or ex vivo EIM approaches previously employed. Our HLS results confirmed earlier findings obtained after spaceflight and tail suspension. Indeed, one EIM measure (i.e., phase-slope) that was previously reported as highly sensitive, was significantly decreased after HLS (day 0: 14.60 ± 0.97, day 7: 11.03 ± 0.81, and day 14: 10.13 ± 0.55 | Deg/MHz|, p < 0.0001), and was associated with a significant decrease in muscle grip force. Although EIM parameters such as 50 kHz phase, reactance, and resistance remained variable over 14 days in PWB animals, we identified major PWB-dependent effects at 7 days. Moreover, the data at both 7 and 14 days correlated to previously observed changes in rear paw grip force using the same PWB model. In conclusion, our data suggest that EIM has the potential to serve as biomarker of muscle deconditioning during exposure to both micro- and partial- gravity during future human space exploration.
Collapse
Affiliation(s)
- Carson Semple
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Daniela Riveros
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Dong-Min Sung
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Janice A Nagy
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Seward B Rutkove
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Marie Mortreux
- Department of Neurology, Harvard Medical School - Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
13
|
Alix JJP, McDonough HE, Sonbas B, French SJ, Rao DG, Kadirkamanathan V, McDermott CJ, Healey TJ, Shaw PJ. Multi-dimensional electrical impedance myography of the tongue as a potential biomarker for amyotrophic lateral sclerosis. Clin Neurophysiol 2020; 131:799-808. [PMID: 32066098 DOI: 10.1016/j.clinph.2019.12.418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In amyotrophic lateral sclerosis (ALS) bulbar disease biomarkers are lacking. We evaluated a novel tongue electrical impedance myography (EIM) system, utilising both 2D and 3D electrode configurations for detection of tongue pathology. METHODS Longitudinal multi-frequency phase angle spectra were recorded from 41 patients with ALS (baseline, 3 and 6 months) and 30 healthy volunteers (baseline and 6 months). ALS functional rating scale-revised (ALSFRS-R) data and quantitative tongue strength measurements were collected. EIM data were analysed for reliability (intra-class correlation coefficient; ICC) and differences between patients and volunteers ascertained using both univariate (Mann-Whitney U test) and multivariate techniques (feature selection and L2 norm). RESULTS The device produced highly reliable data (pooled ICC: 0.836). Significant EIM differences were apparent between ALS patients and healthy volunteers (P < 0.001). EIM data demonstrated a significant relationship to tongue strength and bulbar ALSFRS-R scores (P < 0.015). The EIM recordings revealed a group level longitudinal change over 6 months and consistently identified patients in whom symptoms or tongue strength changed. CONCLUSIONS The novel EIM tongue system produces reliable data and can differentiate between healthy muscle and ALS-related disease. SIGNIFICANCE Tongue EIM utilising multiple frequencies and electrode configurations has potential as a bulbar disease biomarker in ALS.
Collapse
Affiliation(s)
- James J P Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Clinical Neurophysiology, Sheffield Teaching Hospitals NHS Foundation Trust, UK.
| | - Harry E McDonough
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
| | - Buket Sonbas
- Department of Automatic Control and Systems Engineering, University of Sheffield
| | - Sophie J French
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
| | - D Ganesh Rao
- Department of Clinical Neurophysiology, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | | | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - T Jamie Healey
- Department of Clinical Engineering, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| |
Collapse
|