1
|
Rigoni I, Vorderwülbecke BJ, Carboni M, Roehri N, Spinelli L, Tononi G, Seeck M, Perogamvros L, Vulliémoz S. Network alterations in temporal lobe epilepsy during non-rapid eye movement sleep and wakefulness. Clin Neurophysiol 2024; 159:56-65. [PMID: 38335766 DOI: 10.1016/j.clinph.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Investigate sleep and temporal lobe epilepsy (TLE) effects on brain networks derived from electroencephalography (EEG). METHODS High-density EEG was recorded during non-rapid eye movement (NREM) sleep stage 2 (N2) and wakefulness in 23 patients and healthy controls (HC). Epochs without epileptic discharges were source-reconstructed in 72 brain regions and connectivity was estimated. We calculated network integration and segregation at global (global efficiency, GE; average clustering coefficient, avgCC) and hemispheric level. These were compared between groups across frequency bands and correlated with the individual proportion of wakefulness- or sleep-related seizures. RESULTS At the global level, patients had higher delta GE, delta avgCC and theta avgCC than controls, irrespective of the vigilance state. During wakefulness, theta GE of patients was higher than controls and, for patients, theta GE during wakefulness was higher than during N2. Wake-to-sleep differences in TLE were notable only in the ipsilateral hemisphere. Only measures from wakefulness recordings correlated with the proportion of wakefulness- or sleep-related seizures. CONCLUSIONS TLE network alterations are more prominent during wakefulness and at lower frequencies. Increased integration and segregation suggest a pathological 'small world' configuration with a possible inhibitory role. SIGNIFICANCE Network alterations in TLE occur and are easier to detect during wakefulness.
Collapse
Affiliation(s)
- I Rigoni
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland.
| | - B J Vorderwülbecke
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland; Epilepsy-Center Berlin-Brandenburg, Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - M Carboni
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| | - N Roehri
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| | - L Spinelli
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| | - G Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA
| | - M Seeck
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| | - L Perogamvros
- Center for Sleep Medicine, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - S Vulliémoz
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| |
Collapse
|
2
|
Santamaria L, Koopman ACM, Bekinschtein T, Lewis P. Effects of Targeted Memory Reactivation on Cortical Networks. Brain Sci 2024; 14:114. [PMID: 38391689 PMCID: PMC10886727 DOI: 10.3390/brainsci14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Sleep is a complex physiological process with an important role in memory consolidation characterised by a series of spatiotemporal changes in brain activity and connectivity. Here, we investigate how task-related responses differ between pre-sleep wake, sleep, and post-sleep wake. To this end, we trained participants on a serial reaction time task using both right and left hands using Targeted Memory Reactivation (TMR), in which auditory cues are associated with learned material and then re-presented in subsequent wake or sleep periods in order to elicit memory reactivation. The neural responses just after each cue showed increased theta band connectivity between frontal and other cortical regions, as well as between hemispheres, in slow wave sleep compared to pre- or post-sleep wake. This pattern was consistent across the cues associated with both right- and left-handed movements. We also searched for hand-specific connectivity and found that this could be identified in within-hemisphere connectivity after TMR cues during sleep and post-sleep sessions. The fact that we could identify which hand had been cued during sleep suggests that these connectivity measures could potentially be used to determine how successfully memory is reactivated by our manipulation. Collectively, these findings indicate that TMR modulates the brain cortical networks showing clear differences between wake and sleep connectivity patterns.
Collapse
Affiliation(s)
| | | | | | - Penelope Lewis
- School of Psychology, Cardiff University, Wales CF10 3AT, UK
| |
Collapse
|
3
|
Novitskaya Y, Dümpelmann M, Schulze-Bonhage A. Physiological and pathological neuronal connectivity in the living human brain based on intracranial EEG signals: the current state of research. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1297345. [PMID: 38107334 PMCID: PMC10723837 DOI: 10.3389/fnetp.2023.1297345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Over the past decades, studies of human brain networks have received growing attention as the assessment and modelling of connectivity in the brain is a topic of high impact with potential application in the understanding of human brain organization under both physiological as well as various pathological conditions. Under specific diagnostic settings, human neuronal signal can be obtained from intracranial EEG (iEEG) recording in epilepsy patients that allows gaining insight into the functional organisation of living human brain. There are two approaches to assess brain connectivity in the iEEG-based signal: evaluation of spontaneous neuronal oscillations during ongoing physiological and pathological brain activity, and analysis of the electrophysiological cortico-cortical neuronal responses, evoked by single pulse electrical stimulation (SPES). Both methods have their own advantages and limitations. The paper outlines available methodological approaches and provides an overview of current findings in studies of physiological and pathological human brain networks, based on intracranial EEG recordings.
Collapse
Affiliation(s)
- Yulia Novitskaya
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Dümpelmann
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Yun R, Rembado I, Perlmutter SI, Rao RPN, Fetz EE. Local field potentials and single unit dynamics in motor cortex of unconstrained macaques during different behavioral states. Front Neurosci 2023; 17:1273627. [PMID: 38075283 PMCID: PMC10702227 DOI: 10.3389/fnins.2023.1273627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024] Open
Abstract
Different sleep stages have been shown to be vital for a variety of brain functions, including learning, memory, and skill consolidation. However, our understanding of neural dynamics during sleep and the role of prominent LFP frequency bands remain incomplete. To elucidate such dynamics and differences between behavioral states we collected multichannel LFP and spike data in primary motor cortex of unconstrained macaques for up to 24 h using a head-fixed brain-computer interface (Neurochip3). Each 8-s bin of time was classified into awake-moving (Move), awake-resting (Rest), REM sleep (REM), or non-REM sleep (NREM) by using dimensionality reduction and clustering on the average spectral density and the acceleration of the head. LFP power showed high delta during NREM, high theta during REM, and high beta when the animal was awake. Cross-frequency phase-amplitude coupling typically showed higher coupling during NREM between all pairs of frequency bands. Two notable exceptions were high delta-high gamma and theta-high gamma coupling during Move, and high theta-beta coupling during REM. Single units showed decreased firing rate during NREM, though with increased short ISIs compared to other states. Spike-LFP synchrony showed high delta synchrony during Move, and higher coupling with all other frequency bands during NREM. These results altogether reveal potential roles and functions of different LFP bands that have previously been unexplored.
Collapse
Affiliation(s)
- Richy Yun
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Center for Neurotechnology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Irene Rembado
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Steve I. Perlmutter
- Center for Neurotechnology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Rajesh P. N. Rao
- Center for Neurotechnology, University of Washington, Seattle, WA, United States
- Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, United States
| | - Eberhard E. Fetz
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Center for Neurotechnology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Togo M, Matsumoto R, Usami K, Kobayashi K, Takeyama H, Nakae T, Shimotake A, Kikuchi T, Yoshida K, Matsuhashi M, Kunieda T, Miyamoto S, Takahashi R, Ikeda A. Distinct connectivity patterns in human medial parietal cortices: Evidence from standardized connectivity map using cortico-cortical evoked potential. Neuroimage 2022; 263:119639. [PMID: 36155245 DOI: 10.1016/j.neuroimage.2022.119639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
The medial parietal cortices are components of the default mode network (DMN), which are active in the resting state. The medial parietal cortices include the precuneus and the dorsal posterior cingulate cortex (dPCC). Few studies have mentioned differences in the connectivity in the medial parietal cortices, and these differences have not yet been precisely elucidated. Electrophysiological connectivity is essential for understanding cortical function or functional differences. Since little is known about electrophysiological connections from the medial parietal cortices in humans, we evaluated distinct connectivity patterns in the medial parietal cortices by constructing a standardized connectivity map using cortico-cortical evoked potential (CCEP). This study included nine patients with partial epilepsy or a brain tumor who underwent chronic intracranial electrode placement covering the medial parietal cortices. Single-pulse electrical stimuli were delivered to the medial parietal cortices (38 pairs of electrodes). Responses were standardized using the z-score of the baseline activity, and a response density map was constructed in the Montreal Neurological Institutes (MNI) space. The precuneus tended to connect with the inferior parietal lobule (IPL), the occipital cortex, superior parietal lobule (SPL), and the dorsal premotor area (PMd) (the four most active regions, in descending order), while the dPCC tended to connect to the middle cingulate cortex, SPL, precuneus, and IPL. The connectivity pattern differs significantly between the precuneus and dPCC stimulation (p<0.05). Regarding each part of the medial parietal cortices, the distributions of parts of CCEP responses resembled those of the functional connectivity database. Based on how the dPCC was connected to the medial frontal area, SPL, and IPL, its connectivity pattern could not be explained by DMN alone, but suggested a mixture of DMN and the frontoparietal cognitive network. These findings improve our understanding of the connectivity profile within the medial parietal cortices. The electrophysiological connectivity is the basis of propagation of electrical activities in patients with epilepsy. In addition, it helps us to better understand the epileptic network arising from the medial parietal cortices.
Collapse
Affiliation(s)
- Masaya Togo
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan; Division of Neurology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan; Division of Neurology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kiyohide Usami
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Hirofumi Takeyama
- Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Japan; Department of Neurology, Japanese Red Cross Otsu Hospital, Japan
| | - Takuro Nakae
- Department of Neurosurgery, Shiga General Hospital, Japan
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Masao Matsuhashi
- Departments of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Akio Ikeda
- Departments of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
6
|
Cortico-cortical and thalamo-cortical connectivity during non-REM and REM sleep: Insights from intracranial recordings in humans. Clin Neurophysiol 2022; 143:84-94. [PMID: 36166901 DOI: 10.1016/j.clinph.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To study changes of thalamo-cortical and cortico-cortical connectivity during wakefulness, non-Rapid Eye Movement (non-REM) sleep, including N2 and N3 stages, and REM sleep, using stereoelectroencephalography (SEEG) recording in humans. METHODS We studied SEEG recordings of ten patients during wakefulness, non-REM sleep and REM sleep, in seven brain regions of interest including the thalamus. We calculated directed and undirected functional connectivity using a measure of non-linear correlation coefficient h2. RESULTS The thalamus was more connected to other brain regions during N2 stage and REM sleep than during N3 stage during which cortex was more connected than the thalamus. We found two significant directed links: the first from the prefrontal region to the lateral parietal region in the delta band during N3 sleep and the second from the thalamus to the insula during REM sleep. CONCLUSIONS These results showed that cortico-cortical connectivity is more prominent in N3 stage than in N2 and REM sleep. During REM sleep we found significant thalamo-insular connectivity, with a driving role of the thalamus. SIGNIFICANCE We found a pattern of cortical connectivity during N3 sleep concordant with antero-posterior traveling slow waves. The thalamus seemed particularly involved as a hub of connectivity during REM sleep.
Collapse
|
7
|
Arbune AA, Nikanorova M, Terney D, Beniczky S. REM-sleep related hypermotor seizures: Video documentation and ictal source imaging. Brain Dev 2020; 42:503-507. [PMID: 32340922 DOI: 10.1016/j.braindev.2020.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/23/2020] [Accepted: 04/05/2020] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Rapid eye movement (REM) sleep has an inhibitory effect on epileptiform EEG discharges, and seizures occur extremely rarely in REM sleep. CASE STUDY We present the case and video recordings of a 10-year-old boy, with sleep-related hypermotor seizures starting from REM sleep, identified from videoEEG recordings. The semiology comprised intense fear, tachycardia, tachypnea, followed by hypermotor manifestations. Further investigations included brain MRI and source localization of the EEG signals. Multiple antiepileptic drugs were tried, the patient obtaining a good control of the seizures in the last 2.5 years with eslicarbazepine. DISCUSSION AND CONCLUSION The ictal EEG source imaging showed seizure onset in the anterior part of the right insula, with propagation to the orbitofrontal area, confirmed by the semiological sequence. Although rare, focal seizures can be triggered by REM sleep and our findings suggest that deficient maturation of brain areas involved in sleep modulation might induce insufficient desynchronization during REM sleep, thus allowing seizure emergence.
Collapse
Affiliation(s)
- Anca Adriana Arbune
- Department of Clinical Neurosciences, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark.
| | - Marina Nikanorova
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark
| | - Daniella Terney
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark; Department of Clinical Neurophysiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
George DD, Ojemann SG, Drees C, Thompson JA. Stimulation Mapping Using Stereoelectroencephalography: Current and Future Directions. Front Neurol 2020; 11:320. [PMID: 32477236 PMCID: PMC7238877 DOI: 10.3389/fneur.2020.00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Electrical stimulation mapping (ESM) using stereoelectroencephalography (SEEG) is an essential component in the workup of surgical epilepsy. Since the initial application of ESM in the mid-1960s, it remains unparalleled in defining eloquent brain areas and delimiting seizure foci for the purposes of surgical planning. Here, we briefly review the current state of SEEG stimulation, with a focus on the techniques used for identifying the epileptogenic zone and eloquent cortex. We also summarize clinical data on the efficacy of SEEG stimulation in surgical outcomes and functional mapping. Finally, we briefly highlight future applications of SEEG ESM, including novel functional mapping approaches, identifying rare seizure semiologies, neurophysiologic investigations for understanding cognitive function, and its role in SEEG-guided radiofrequency thermal coagulation.
Collapse
Affiliation(s)
- Derek D George
- School of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Cornelia Drees
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
9
|
Usami K. Does single stimulus elucidate the complex mystery of sleep? Clin Neurophysiol 2019; 131:463-464. [PMID: 31836421 DOI: 10.1016/j.clinph.2019.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Kiyohide Usami
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|