1
|
He Q, Yang Z, Xue B, Song X, Zhang C, Yin C, Li Z, Deng Z, Sun S, Qiao H, Xie J, Hou Z. Epilepsy alters brain networks in patients with insular glioma. CNS Neurosci Ther 2024; 30:e14805. [PMID: 38887197 PMCID: PMC11183176 DOI: 10.1111/cns.14805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
AIMS We intend to elucidate the alterations of cerebral networks in patients with insular glioma-related epilepsy (GRE) based on resting-state functional magnetic resonance images. METHODS We collected 62 insular glioma patients, who were subsequently categorized into glioma-related epilepsy (GRE) and glioma with no epilepsy (GnE) groups, and recruited 16 healthy individuals matched to the patient's age and gender to form the healthy control (HC) group. Graph theoretical analysis was applied to reveal differences in sensorimotor, default mode, visual, and executive networks among different subgroups. RESULTS No significant alterations in functional connectivity were found in either hemisphere insular glioma. Using graph theoretical analysis, differences were found in visual, sensorimotor, and default mode networks (p < 0.05). When the glioma located in the left hemisphere, the degree centrality was reduced in the GE group compared to the GnE group. When the glioma located in the right insula, the degree centrality, nodal efficiency, nodal local efficiency, and nodal clustering coefficient of the GE group were lower than those of the GnE group. CONCLUSION The impact of insular glioma itself and GRE on the brain network is widespread. The networks altered by insular GRE differ depending on the hemisphere location. GRE reduces the nodal properties of brain networks than that in insular glioma.
Collapse
Affiliation(s)
- Qifeng He
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zuocheng Yang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - BoWen Xue
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xinyu Song
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chuanhao Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - ChuanDong Yin
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhenye Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhenghai Deng
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shengjun Sun
- Department of Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Radiology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Hui Qiao
- Department of Neurophysiology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zonggang Hou
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Firestone E, Sonoda M, Kuroda N, Sakakura K, Jeong JW, Lee MH, Wada K, Takayama Y, Iijima K, Iwasaki M, Miyazaki T, Asano E. Sevoflurane-induced high-frequency oscillations, effective connectivity and intraoperative classification of epileptic brain areas. Clin Neurophysiol 2023; 150:17-30. [PMID: 36989866 PMCID: PMC10192072 DOI: 10.1016/j.clinph.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE To determine how sevoflurane anesthesia modulates intraoperative epilepsy biomarkers on electrocorticography, including high-frequency oscillation (HFO) effective connectivity (EC), and to investigate their relation to epileptogenicity and anatomical white matter. METHODS We studied eight pediatric drug-resistant focal epilepsy patients who achieved seizure control after invasive monitoring and resective surgery. We visualized spatial distributions of the electrocorticography biomarkers at an oxygen baseline, three time-points while sevoflurane was increasing, and at a plateau of 2 minimum alveolar concentration (MAC) sevoflurane. HFO EC was combined with diffusion-weighted imaging, in dynamic tractography. RESULTS Intraoperative HFO EC diffusely increased as a function of sevoflurane concentration, although most in epileptogenic sites (defined as those included in the resection); their ability to classify epileptogenicity was optimized at sevoflurane 2 MAC. HFO EC could be visualized on major white matter tracts, as a function of sevoflurane level. CONCLUSIONS The results strengthened the hypothesis that sevoflurane-activated HFO biomarkers may help intraoperatively localize the epileptogenic zone. SIGNIFICANCE Our results help characterize how HFOs at non-epileptogenic and epileptogenic networks respond to sevoflurane. It may be warranted to establish a normative HFO atlas incorporating the modifying effects of sevoflurane and major white matter pathways, as critical reference in epilepsy presurgical evaluation.
Collapse
Affiliation(s)
- Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba 3058575, Japan
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Min-Hee Lee
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA
| | - Keiko Wada
- Department of Anesthesiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan; Department of Anesthesiology and Critical Care, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan; Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Tomoyuki Miyazaki
- Department of Anesthesiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan; Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
3
|
Obaid S, Chen JS, Ibrahim GM, Bouthillier A, Dimentberg E, Surbeck W, Guadagno E, Brunette-Clément T, Shlobin NA, Shulkin A, Hale AT, Tomycz LD, Von Lehe M, Perry MS, Chassoux F, Bouilleret V, Taussig D, Fohlen M, Dorfmuller G, Hagiwara K, Isnard J, Oluigbo CO, Ikegaya N, Nguyen DK, Fallah A, Weil AG. Predictors of outcomes after surgery for medically intractable insular epilepsy: A systematic review and individual participant data meta-analysis. Epilepsia Open 2023; 8:12-31. [PMID: 36263454 PMCID: PMC9978079 DOI: 10.1002/epi4.12663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022] Open
Abstract
Insular epilepsy (IE) is an increasingly recognized cause of drug-resistant epilepsy amenable to surgery. However, concerns of suboptimal seizure control and permanent neurological morbidity hamper widespread adoption of surgery for IE. We performed a systematic review and individual participant data meta-analysis to determine the efficacy and safety profile of surgery for IE and identify predictors of outcomes. Of 2483 unique citations, 24 retrospective studies reporting on 312 participants were eligible for inclusion. The median follow-up duration was 2.58 years (range, 0-17 years), and 206 (66.7%) patients were seizure-free at last follow-up. Younger age at surgery (≤18 years; HR = 1.70, 95% CI = 1.09-2.66, P = .022) and invasive EEG monitoring (HR = 1.97, 95% CI = 1.04-3.74, P = .039) were significantly associated with shorter time to seizure recurrence. Performing MR-guided laser ablation or radiofrequency ablation instead of open resection (OR = 2.05, 95% CI = 1.08-3.89, P = .028) was independently associated with suboptimal or poor seizure outcome (Engel II-IV) at last follow-up. Postoperative neurological complications occurred in 42.5% of patients, most commonly motor deficits (29.9%). Permanent neurological complications occurred in 7.8% of surgeries, including 5% and 1.4% rate of permanent motor deficits and dysphasia, respectively. Resection of the frontal operculum was independently associated with greater odds of motor deficits (OR = 2.75, 95% CI = 1.46-5.15, P = .002). Dominant-hemisphere resections were independently associated with dysphasia (OR = 13.09, 95% CI = 2.22-77.14, P = .005) albeit none of the observed language deficits were permanent. Surgery for IE is associated with a good efficacy/safety profile. Most patients experience seizure freedom, and neurological deficits are predominantly transient. Pediatric patients and those requiring invasive monitoring or undergoing stereotactic ablation procedures experience lower rates of seizure freedom. Transgression of the frontal operculum should be avoided if it is not deemed part of the epileptogenic zone. Well-selected candidates undergoing dominant-hemisphere resection are more likely to exhibit transient language deficits; however, the risk of permanent deficit is very low.
Collapse
Affiliation(s)
- Sami Obaid
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada.,Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Jia-Shu Chen
- The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - George M Ibrahim
- Division of Neurosurgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alain Bouthillier
- Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Evan Dimentberg
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada.,Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Werner Surbeck
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Elena Guadagno
- Harvey E. Beardmore Division of Pediatric Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Tristan Brunette-Clément
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada.,Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Nathan A Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aidan Shulkin
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada
| | - Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Luke D Tomycz
- The Epilepsy Institute of New Jersey, Jersey City, New Jersey, USA
| | - Marec Von Lehe
- Department of Neurosurgery, Brandenburg Medical School, Neuruppin, Germany
| | - Michael Scott Perry
- Comprehensive Epilepsy Program, Jane and John Justin Neuroscience Center, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Francine Chassoux
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Université Paris-Descartes Paris, Paris, France
| | - Viviane Bouilleret
- Université Paris Saclay-APHP, Unité de Neurophysiologie Clinique et d'Épileptologie(UNCE), Le Kremlin Bicêtre, France
| | - Delphine Taussig
- Université Paris Saclay-APHP, Unité de Neurophysiologie Clinique et d'Épileptologie(UNCE), Le Kremlin Bicêtre, France.,Pediatric Neurosurgery Department, Rothschild Foundation Hospital, Paris, France
| | - Martine Fohlen
- Pediatric Neurosurgery Department, Rothschild Foundation Hospital, Paris, France
| | - Georg Dorfmuller
- Pediatric Neurosurgery Department, Rothschild Foundation Hospital, Paris, France
| | - Koichi Hagiwara
- Epilepsy and Sleep Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Jean Isnard
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Hospital for Neurology and Neurosurgery, Lyon, France
| | - Chima O Oluigbo
- Department of Neurosurgery, Children's National Medical Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Naoki Ikegaya
- Departments of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Dang K Nguyen
- Division of Neurology, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Aria Fallah
- Department of Neurosurgery and Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Alexander G Weil
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada.,Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada.,Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Solanki C, Williams J, Andrews C, Fayed I, Wu C. Insula in epilepsy - "untying the gordian knot": A systematic review. Seizure 2023; 106:148-161. [PMID: 36878050 DOI: 10.1016/j.seizure.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023] Open
Abstract
PURPOSE Despite significant advances in epileptology, there are still many uncertainties about the role of the insula in epilepsy. Until recently, most insular onset seizures were wrongly attributed to the temporal lobe. Further, there are no standardised approaches to the diagnosis and treatment of insular onset seizures. This systematic review gathers the available information about insular epilepsy and synthesizes current knowledge as a basis for future research. METHOD Adhering to the PRISMA guidelines, studies were meticulously extracted from the PubMed database. The empirical data pertaining to the semiology of insular seizures, insular networks in epilepsy, techniques of mapping the insula, and the surgical intricacies of non-lesional insular epilepsy were reviewed from published studies. The corpus of information available was then subjected to a process of concise summarization and astute synthesis. RESULTS Out of 235 studies identified for full-text review, 86 studies were included in the systematic review. The insula emerges as a brain region with a number of functional subdivisions. The semiology of insular seizures is diverse and depends on the involvement of particular subdivisions. The semiological heterogeneity of insular seizures is explained by the extensive connectivity of the insula and its subdivisions with all four lobes of the brain, deep grey matter structures, and remote brainstem areas. The mainstay of the diagnosis of seizure onset in the insula is stereoelectroencephalography (SEEG). The surgical resection of the insular epileptogenic zone (when possible) is the most effective treatment. Open surgery on the insula is challenging but magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) also holds promise. CONCLUSION The physiological and functional roles of the insula in epilepsy have remained obfuscated. The dearth of precisely defined diagnostic and therapeutic protocols acts as an impediment to scientific advancement. This review could potentially facilitate forthcoming research endeavours by establishing a foundational framework for uniform data collection protocols, thereby enhancing the feasibility of comparing findings across future studies and promoting progress in this domain.
Collapse
Affiliation(s)
- Chirag Solanki
- Consultant Neurosurgeon, Department of Neurosurgery, Sterling Hospital, Ahmedabad, Gujarat, India.
| | - Justin Williams
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, United States.
| | - Carrie Andrews
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, United States.
| | - Islam Fayed
- Stereotactic and Functional Neurosurgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, United States.
| | - Chengyuan Wu
- Associate Professor of Neurosurgery and Radiology, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, United States.
| |
Collapse
|
5
|
Li X, Zhang H, Lai H, Wang J, Wang W, Yang X. High-Frequency Oscillations and Epileptogenic Network. Curr Neuropharmacol 2022; 20:1687-1703. [PMID: 34503414 PMCID: PMC9881061 DOI: 10.2174/1570159x19666210908165641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is a network disease caused by aberrant neocortical large-scale connectivity spanning regions on the scale of several centimeters. High-frequency oscillations, characterized by the 80-600 Hz signals in electroencephalography, have been proven to be a promising biomarker of epilepsy that can be used in assessing the severity and susceptibility of epilepsy as well as the location of the epileptogenic zone. However, the presence of a high-frequency oscillation network remains a topic of debate as high-frequency oscillations have been previously thought to be incapable of propagation, and the relationship between high-frequency oscillations and the epileptogenic network has rarely been discussed. Some recent studies reported that high-frequency oscillations may behave like networks that are closely relevant to the epileptogenic network. Pathological highfrequency oscillations are network-driven phenomena and elucidate epileptogenic network development; high-frequency oscillations show different characteristics coincident with the epileptogenic network dynamics, and cross-frequency coupling between high-frequency oscillations and other signals may mediate the generation and propagation of abnormal discharges across the network.
Collapse
Affiliation(s)
- Xiaonan Li
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | | | | | - Jiaoyang Wang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Wei Wang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaofeng Yang
- Bioland Laboratory, Guangzhou, China; ,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China,Address correspondence to this author at the Bioland Laboratory, Guangzhou, China; Tel: 86+ 18515855127; E-mail:
| |
Collapse
|
6
|
Localization of seizure onset zone with epilepsy propagation networks based on graph convolutional network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Ren J, Yao Q, Tian M, Li F, Chen Y, Chen Q, Xiang J, Shi J. Altered effective connectivity in migraine patients during emotional stimuli: a multi-frequency magnetoencephalography study. J Headache Pain 2022; 23:6. [PMID: 35032999 PMCID: PMC8903691 DOI: 10.1186/s10194-021-01379-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine is a common and disabling primary headache, which is associated with a wide range of psychiatric comorbidities. However, the mechanisms of emotion processing in migraine are not fully understood yet. The present study aimed to investigate the neural network during neutral, positive, and negative emotional stimuli in the migraine patients. METHODS A total of 24 migraine patients and 24 age- and sex-matching healthy controls were enrolled in this study. Neuromagnetic brain activity was recorded using a whole-head magnetoencephalography (MEG) system upon exposure to human facial expression stimuli. MEG data were analyzed in multi-frequency ranges from 1 to 100 Hz. RESULTS The migraine patients exhibited a significant enhancement in the effective connectivity from the prefrontal lobe to the temporal cortex during the negative emotional stimuli in the gamma frequency (30-90 Hz). Graph theory analysis revealed that the migraine patients had an increased degree and clustering coefficient of connectivity in the delta frequency range (1-4 Hz) upon exposure to positive emotional stimuli and an increased degree of connectivity in the delta frequency range (1-4 Hz) upon exposure to negative emotional stimuli. Clinical correlation analysis showed that the history, attack frequency, duration, and neuropsychological scales of the migraine patients had a negative correlation with the network parameters in certain frequency ranges. CONCLUSIONS The results suggested that the individuals with migraine showed deviant effective connectivity in viewing the human facial expressions in multi-frequencies. The prefrontal-temporal pathway might be related to the altered negative emotional modulation in migraine. These findings suggested that migraine might be characterized by more universal altered cerebral processing of negative stimuli. Since the significant result in this study was frequency-specific, more independent replicative studies are needed to confirm these results, and to elucidate the neurocircuitry underlying the association between migraine and emotional conditions.
Collapse
Affiliation(s)
- Jing Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Qun Yao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Minjie Tian
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Feng Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yueqiu Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45220, USA
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
8
|
Li M, Ma X, Mai C, Fan Z, Wang Y, Ren Y. Knowledge Atlas of Insular Epilepsy: A Bibliometric Analysis. Neuropsychiatr Dis Treat 2022; 18:2891-2903. [PMID: 36540673 PMCID: PMC9760072 DOI: 10.2147/ndt.s392953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE In order to determine research hotspots and prospective directions, this work used VOSviewer and CiteSpace to assess the current state of insular epilepsy research. METHODS We looked for pertinent research about insular epilepsy published between the first of January 2000 and the thirtieth of April 2022 in the Web of Science Core Collection (WoSCC) database. CiteSpace and VOSviewer were used to build a knowledge atlas by analyzing authors, institutions, countries, keywords with citation bursts, keyword clustering, keyword co-occurrence, publishing journals, reference co-citation patterns, and other factors. RESULTS A total of 305 publications on insular epilepsy were found. Nguyen DK had the most articles published (37), whereas Mauguière F and Isnard J had the highest average number of citations/publications (39.37 and 38.09, respectively). The leading countries and institutions in this field were the United States (82 papers) and Université de Montréal (40 papers). Authors, countries, and institutions appear to be actively collaborating. Hot topics and research frontiers included surgical treatment, functional network connectivity, and the application of neuroimaging methods to study insular epilepsy. CONCLUSION In summary, the most influential articles, authors, journals, organizations, and countries on the subject of insular epilepsy were determined by this analysis. This study investigated the area of insular epilepsy research and forecasted upcoming trends using co-occurrence and evolution methods.
Collapse
Affiliation(s)
- Manli Li
- Department of Physiology, Sanquan College of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Xiaoli Ma
- Department of Physiology, Sanquan College of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Chendi Mai
- Department of Physiology, Sanquan College of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Zhiru Fan
- Department of Physiology, Sanquan College of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yankai Ren
- Department of Physiology, Sanquan College of Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
9
|
Papadelis C, Perry MS. Localizing the Epileptogenic Zone with Novel Biomarkers. Semin Pediatr Neurol 2021; 39:100919. [PMID: 34620466 PMCID: PMC8501232 DOI: 10.1016/j.spen.2021.100919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
Several noninvasive methods, such as high-density EEG or magnetoencephalography, are currently used to delineate the epileptogenic zone (EZ) during the presurgical evaluation of patients with drug resistant epilepsy (DRE). Yet, none of these methods can reliably identify the EZ by their own. In most cases a multimodal approach is needed. Challenging cases often require the implantation of intracranial electrodes, either through stereo-taxic EEG or electro-corticography. Recently, a growing body of literature introduces novel biomarkers of epilepsy that can be used for analyzing both invasive as well as noninvasive electrophysiological data. Some of these biomarkers are able to delineate the EZ with high precision, augment the presurgical evaluation, and predict the surgical outcome of patients with DRE undergoing surgery. However, the use of these epilepsy biomarkers in clinical practice is limited. Here, we summarize and discuss the latest technological advances in the presurgical neurophysiological evaluation of children with DRE with emphasis on electric and magnetic source imaging, high frequency oscillations, and functional connectivity.
Collapse
Affiliation(s)
- Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX; School of Medicine, Texas Christian University and University of North Texas Health Science Center, Fort Worth, TX; Department of Bioengineering, University of Texas at Arlington, Arlington, TX; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| | - M Scott Perry
- Jane and John Justin Neurosciences Center, Cook Children’s Health Care System, Fort Worth, TX, USA
| |
Collapse
|
10
|
Xu N, Shan W, Qi J, Wu J, Wang Q. Presurgical Evaluation of Epilepsy Using Resting-State MEG Functional Connectivity. Front Hum Neurosci 2021; 15:649074. [PMID: 34276321 PMCID: PMC8283278 DOI: 10.3389/fnhum.2021.649074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Epilepsy is caused by abnormal electrical discharges (clinically identified by electrophysiological recording) in a specific part of the brain [originating in only one part of the brain, namely, the epileptogenic zone (EZ)]. Epilepsy is now defined as an archetypical hyperexcited neural network disorder. It can be investigated through the network analysis of interictal discharges, ictal discharges, and resting-state functional connectivity. Currently, there is an increasing interest in embedding resting-state connectivity analysis into the preoperative evaluation of epilepsy. Among the various neuroimaging technologies employed to achieve brain functional networks, magnetoencephalography (MEG) with the excellent temporal resolution is an ideal tool for estimating the resting-state connectivity between brain regions, which can reveal network abnormalities in epilepsy. What value does MEG resting-state functional connectivity offer for epileptic presurgical evaluation? Regarding this topic, this paper introduced the origin of MEG and the workflow of constructing source-space functional connectivity based on MEG signals. Resting-state functional connectivity abnormalities correlate with epileptogenic networks, which are defined by the brain regions involved in the production and propagation of epileptic activities. This paper reviewed the evidence of altered epileptic connectivity based on low- or high-frequency oscillations (HFOs) and the evidence of the advantage of using simultaneous MEG and intracranial electroencephalography (iEEG) recordings. More importantly, this review highlighted that MEG-based resting-state functional connectivity has the potential to predict postsurgical outcomes. In conclusion, resting-state MEG functional connectivity has made a substantial progress toward serving as a candidate biomarker included in epileptic presurgical evaluations.
Collapse
Affiliation(s)
- Na Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Qi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| |
Collapse
|
11
|
Bagić AI, Funke ME, Kirsch HE, Tenney JR, Zillgitt AJ, Burgess RC. The 10 Common Evidence-Supported Indications for MEG in Epilepsy Surgery: An Illustrated Compendium. J Clin Neurophysiol 2021; 37:483-497. [PMID: 33165222 DOI: 10.1097/wnp.0000000000000726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Unfamiliarity with the indications for and benefits of magnetoencephalography (MEG) persists, even in the epilepsy community, and hinders its acceptance to clinical practice, despite the evidence. The wide treatment gap for patients with drug-resistant epilepsy and immense underutilization of epilepsy surgery had similar effects. Thus, educating referring physicians (epileptologists, neurologists, and neurosurgeons) both about the value of epilepsy surgery and about the potential benefits of MEG can achieve synergy and greatly improve the process of selecting surgical candidates. As a practical step toward a comprehensive educational process to benefit potential MEG users, current MEG referrers, and newcomers to MEG, the authors have elected to provide an illustrated guide to 10 everyday situations where MEG can help in the evaluation of people with drug-resistant epilepsy. They are as follows: (1) lacking or imprecise hypothesis regarding a seizure onset; (2) negative MRI with a mesial temporal onset suspected; (3) multiple lesions on MRI; (4) large lesion on MRI; (5) diagnostic or therapeutic reoperation; (6) ambiguous EEG findings suggestive of "bilateral" or "generalized" pattern; (7) intrasylvian onset suspected; (8) interhemispheric onset suspected; (9) insular onset suspected; and (10) negative (i.e., spikeless) EEG. Only their practical implementation and furtherance of personal and collective education will lead to the potentially impactful synergy of the two-MEG and epilepsy surgery. Thus, while fulfilling our mission as physicians, we must not forget that ignoring the wealth of evidence about the vast underutilization of epilepsy surgery - and about the usefulness and value of MEG in selecting surgical candidates - is far from benign neglect.
Collapse
Affiliation(s)
- Anto I Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, U.S.A
| | - Michael E Funke
- MEG Center, McGovern Medical School, UT Houston, Houston, Texas, U.S.A
| | - Heidi E Kirsch
- UCSF Biomagnetic Imaging Laboratory, UCSF, San Francisco, California, U.S.A
| | - Jeffrey R Tenney
- MEG Center, Cincinnati Children's Hospital Medical Center , Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Andrew J Zillgitt
- Department of Neurology, Beaumont Health Adult Comprehensive Epilepsy Center, Neurosicence Center, Royal Oak, Michigan, U.S.A.; and
| | - Richard C Burgess
- Magnetoencephalography Laboratory, Cleveland Clinic Epilepsy Center, Cleveland, Ohio, U.S.A
| |
Collapse
|
12
|
Fan Y, Dong L, Liu X, Wang H, Liu Y. Recent advances in the noninvasive detection of high-frequency oscillations in the human brain. Rev Neurosci 2020; 32:305-321. [PMID: 33661582 DOI: 10.1515/revneuro-2020-0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 01/10/2023]
Abstract
In recent decades, a significant body of evidence based on invasive clinical research has showed that high-frequency oscillations (HFOs) are a promising biomarker for localization of the seizure onset zone (SOZ), and therefore, have the potential to improve postsurgical outcomes in patients with epilepsy. Emerging clinical literature has demonstrated that HFOs can be recorded noninvasively using methods such as scalp electroencephalography (EEG) and magnetoencephalography (MEG). Not only are HFOs considered to be a useful biomarker of the SOZ, they also have the potential to gauge disease severity, monitor treatment, and evaluate prognostic outcomes. In this article, we review recent clinical research on noninvasively detected HFOs in the human brain, with a focus on epilepsy. Noninvasively detected scalp HFOs have been investigated in various types of epilepsy. HFOs have also been studied noninvasively in other pathologic brain disorders, such as migraine and autism. Herein, we discuss the challenges reported in noninvasive HFO studies, including the scarcity of MEG and high-density EEG equipment in clinical settings, low signal-to-noise ratio, lack of clinically approved automated detection methods, and the difficulty in differentiating between physiologic and pathologic HFOs. Additional studies on noninvasive recording methods for HFOs are needed, especially prospective multicenter studies. Further research is fundamental, and extensive work is needed before HFOs can routinely be assessed in clinical settings; however, the future appears promising.
Collapse
Affiliation(s)
- Yuying Fan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liping Dong
- Library of China Medical University, Shenyang, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Human brain connectivity: Clinical applications for clinical neurophysiology. Clin Neurophysiol 2020; 131:1621-1651. [DOI: 10.1016/j.clinph.2020.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
|