1
|
Allal-Sumoto TK, Şahin D, Mizuhara H. Neural activity related to productive vocabulary knowledge effects during second language comprehension. Neurosci Res 2024; 203:8-17. [PMID: 38242177 DOI: 10.1016/j.neures.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Second language learners and educators often believe that improving one's listening ability hinges on acquiring an extensive vocabulary and engaging in thorough listening practice. Our previous study suggested that listening comprehension is also impacted by the ability to produce vocabulary. Nevertheless, it remained uncertain whether quick comprehension could be attributed to a simple acceleration of processing or to changes in neural activity. To identify neural activity changes during sentence listening comprehension according to different levels of lexical knowledge (productive, only comprehensive, uncomprehensive), we measured participants' electrical activity in the brain via electroencephalography (EEG) and conducted a time-frequency-based EEG power analysis. Additionally, we employed a decoding model to verify the predictability of vocabulary knowledge levels based on neural activity. The decoding results showed that EEG activity could discriminate between listening to sentences containing phrases that include productive knowledge and ones without. The positive impact of productive vocabulary knowledge on sentence comprehension, driven by distinctive neural processing during sentence comprehension, was unequivocally evident. Our study emphasizes the importance of productive vocabulary knowledge acquisition to enhance the process of second language listening comprehension.
Collapse
Affiliation(s)
| | - Duygu Şahin
- Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo, Kyoto 606-8501, Japan
| | - Hiroaki Mizuhara
- Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Wang R, Wang H, Shi L, Han C, Che Y. Epileptic Seizure Detection Using Geometric Features Extracted from SODP Shape of EEG Signals and AsyLnCPSO-GA. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1540. [PMID: 36359630 PMCID: PMC9689850 DOI: 10.3390/e24111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Epilepsy is a neurological disorder that is characterized by transient and unexpected electrical disturbance of the brain. Seizure detection by electroencephalogram (EEG) is associated with the primary interest of the evaluation and auxiliary diagnosis of epileptic patients. The aim of this study is to establish a hybrid model with improved particle swarm optimization (PSO) and a genetic algorithm (GA) to determine the optimal combination of features for epileptic seizure detection. First, the second-order difference plot (SODP) method was applied, and ten geometric features of epileptic EEG signals were derived in each frequency band (δ, θ, α and β), forming a high-dimensional feature vector. Secondly, an optimization algorithm, AsyLnCPSO-GA, combining a modified PSO with asynchronous learning factor (AsyLnCPSO) and the genetic algorithm (GA) was proposed for feature selection. Finally, the feature combinations were fed to a naïve Bayesian classifier for epileptic seizure and seizure-free identification. The method proposed in this paper achieved 95.35% classification accuracy with a tenfold cross-validation strategy when the interfrequency bands were crossed, serving as an effective method for epilepsy detection, which could help clinicians to expeditiously diagnose epilepsy based on SODP analysis and an optimization algorithm for feature selection.
Collapse
Affiliation(s)
- Ruofan Wang
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Haodong Wang
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Lianshuan Shi
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Chunxiao Han
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Yanqiu Che
- Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| |
Collapse
|
3
|
Janmohamed M, Nhu D, Kuhlmann L, Gilligan A, Tan CW, Perucca P, O’Brien TJ, Kwan P. Moving the field forward: detection of epileptiform abnormalities on scalp electroencephalography using deep learning—clinical application perspectives. Brain Commun 2022; 4:fcac218. [PMID: 36092304 PMCID: PMC9453433 DOI: 10.1093/braincomms/fcac218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The application of deep learning approaches for the detection of interictal epileptiform discharges is a nascent field, with most studies published in the past 5 years. Although many recent models have been published demonstrating promising results, deficiencies in descriptions of data sets, unstandardized methods, variation in performance evaluation and lack of demonstrable generalizability have made it difficult for these algorithms to be compared and progress to clinical validity. A few recent publications have provided a detailed breakdown of data sets and relevant performance metrics to exemplify the potential of deep learning in epileptiform discharge detection. This review provides an overview of the field and equips computer and data scientists with a synopsis of EEG data sets, background and epileptiform variation, model evaluation parameters and an awareness of the performance metrics of high impact and interest to the trained clinical and neuroscientist EEG end user. The gold standard and inter-rater disagreements in defining epileptiform abnormalities remain a challenge in the field, and a hierarchical proposal for epileptiform discharge labelling options is recommended. Standardized descriptions of data sets and reporting metrics are a priority. Source code-sharing and accessibility to public EEG data sets will increase the rigour, quality and progress in the field and allow validation and real-world clinical translation.
Collapse
Affiliation(s)
- Mubeen Janmohamed
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
- Department of Neurology, Alfred Health , Melbourne, VIC 3004 , Australia
- Department of Neurology, The Royal Melbourne Hospital , Melbourne, VIC 3050 , Australia
| | - Duong Nhu
- Department of Data Science and AI, Faculty of IT, Monash University , Clayton, VIC 3800 , Australia
| | - Levin Kuhlmann
- Department of Data Science and AI, Faculty of IT, Monash University , Clayton, VIC 3800 , Australia
| | - Amanda Gilligan
- Neurosciences Clinical Institute, Epworth Healthcare Hospital , Melbourne, VIC 3121 , Australia
| | - Chang Wei Tan
- Department of Data Science and AI, Faculty of IT, Monash University , Clayton, VIC 3800 , Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
- Department of Neurology, Alfred Health , Melbourne, VIC 3004 , Australia
- Department of Medicine, Austin Health, The University of Melbourne , Melbourne, VIC 3084 , Australia
- Comprehensive Epilepsy Program, Department of Neurology, Austin Health , Melbourne, VIC 3084 , Australia
| | - Terence J O’Brien
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
- Department of Neurology, Alfred Health , Melbourne, VIC 3004 , Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
- Department of Neurology, Alfred Health , Melbourne, VIC 3004 , Australia
| |
Collapse
|
4
|
Peterson SM, Rao RPN, Brunton BW. Learning neural decoders without labels using multiple data streams. J Neural Eng 2022; 19. [PMID: 35905727 DOI: 10.1088/1741-2552/ac857c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Recent advances in neural decoding have accelerated the development of brain-computer interfaces aimed at assisting users with everyday tasks such as speaking, walking, and manipulating objects. However, current approaches for training neural decoders commonly require large quantities of labeled data, which can be laborious or infeasible to obtain in real-world settings. Alternatively, self-supervised models that share self-generated pseudo-labels between two data streams have shown exceptional performance on unlabeled audio and video data, but it remains unclear how well they extend to neural decoding. APPROACH We learn neural decoders without labels by leveraging multiple simultaneously recorded data streams, including neural, kinematic, and physiological signals. Specifically, we apply cross-modal, self-supervised deep clustering to train decoders that can classify movements from brain recordings. After training, we then isolate the decoders for each input data stream and compare the accuracy of decoders trained using cross-modal deep clustering against supervised and unimodal, self-supervised models. MAIN RESULTS We find that sharing pseudo-labels between two data streams during training substantially increases decoding performance compared to unimodal, self-supervised models, with accuracies approaching those of supervised decoders trained on labeled data. Next, we extend cross-modal decoder training to three or more modalities, achieving state-of-the-art neural decoding accuracy that matches or slightly exceeds the performance of supervised models. Significance: We demonstrate that cross-modal, self-supervised decoding can be applied to train neural decoders when few or no labels are available and extend the cross-modal framework to share information among three or more data streams, further improving self-supervised training.
Collapse
Affiliation(s)
- Steven M Peterson
- Biology, University of Washington, 4000 15th Ave NE, Seattle, Washington, 98195, UNITED STATES
| | - Rajesh P N Rao
- Department of Computer Science and Engineering College of Engineering, University of Washington, Box 352350, Seattle, Washington, 98195, UNITED STATES
| | - Bingni W Brunton
- University of Washington, 4000 15th Ave NE, Seattle, Washington, 98195, UNITED STATES
| |
Collapse
|
5
|
Prasanna J, Subathra MSP, Mohammed MA, Damaševičius R, Sairamya NJ, George ST. Automated Epileptic Seizure Detection in Pediatric Subjects of CHB-MIT EEG Database-A Survey. J Pers Med 2021; 11:1028. [PMID: 34683169 PMCID: PMC8537151 DOI: 10.3390/jpm11101028] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a neurological disorder of the brain that causes frequent occurrence of seizures. Electroencephalography (EEG) is a tool that assists neurologists in detecting epileptic seizures caused by an unexpected flow of electrical activities in the brain. Automated detection of an epileptic seizure is a crucial task in diagnosing epilepsy which overcomes the drawback of a visual diagnosis. The dataset analyzed in this article, collected from Children's Hospital Boston (CHB) and the Massachusetts Institute of Technology (MIT), contains long-term EEG records from 24 pediatric patients. This review paper focuses on various patient-dependent and patient-independent personalized medicine approaches involved in the computer-aided diagnosis of epileptic seizures in pediatric subjects by analyzing EEG signals, thus summarizing the existing body of knowledge and opening up an enormous research area for biomedical engineers. This review paper focuses on the features of four domains, such as time, frequency, time-frequency, and nonlinear features, extracted from the EEG records, which were fed into several classifiers to classify between seizure and non-seizure EEG signals. Performance metrics such as classification accuracy, sensitivity, and specificity were examined, and challenges in automatic seizure detection using the CHB-MIT database were addressed.
Collapse
Affiliation(s)
- J. Prasanna
- Department of Electronics and Instrumentation Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India; (J.P.); (N.J.S.)
| | - M. S. P. Subathra
- Department of Robotics Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India;
| | - Mazin Abed Mohammed
- Information Systems Department, College of Computer Science and Information Technology, University of Anbar, Ramadi 31000, Anbar, Iraq;
| | - Robertas Damaševičius
- Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania
- Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Nanjappan Jothiraj Sairamya
- Department of Electronics and Instrumentation Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India; (J.P.); (N.J.S.)
| | - S. Thomas George
- Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| |
Collapse
|
6
|
Liu G, Xiao R, Xu L, Cai J. Minireview of Epilepsy Detection Techniques Based on Electroencephalogram Signals. Front Syst Neurosci 2021; 15:685387. [PMID: 34093143 PMCID: PMC8173051 DOI: 10.3389/fnsys.2021.685387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders typically characterized by recurrent and uncontrollable seizures, which seriously affects the quality of life of epilepsy patients. The effective tool utilized in the clinical diagnosis of epilepsy is the Electroencephalogram (EEG). The emergence of machine learning promotes the development of automated epilepsy detection techniques. New algorithms are continuously introduced to shorten the detection time and improve classification accuracy. This minireview summarized the latest research of epilepsy detection techniques that focused on acquiring, preprocessing, feature extraction, and classification of epileptic EEG signals. The application of seizure prediction and localization based on EEG signals in the diagnosis of epilepsy was also introduced. And then, the future development trend of epilepsy detection technology has prospected at the end of the article.
Collapse
Affiliation(s)
- Guangda Liu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
| | - Ruolan Xiao
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
| | - Lanyu Xu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
| | - Jing Cai
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
| |
Collapse
|