1
|
Lewis A, Rattray B, Flood A. Does Cathodal Preconditioning Enhance the Effects of Subsequent Anodal Transcranial Direct Current Stimulation on Corticospinal Excitability and Grip Strength? J Strength Cond Res 2025; 39:e1-e12. [PMID: 39316764 DOI: 10.1519/jsc.0000000000004954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
ABSTRACT Lewis, A, Rattray, B, and Flood, A. Does cathodal preconditioning enhance the effects of subsequent anodal transcranial direct current stimulation on corticospinal excitability and grip strength? J Strength Cond Res 39(1): e1-e12, 2025-Inconsistent effects of transcranial direct current stimulation (tDCS) on corticospinal excitability (CSE) and exercise performance are commonly reported. Cathodal preconditioning, involving cathodal tDCS delivered before anodal tDCS over the same region, may enhance changes in CSE and exercise beyond that resulting from anodal tDCS alone. This study aimed to investigate whether the effects of anodal tDCS on CSE and isometric grip strength can be enhanced by cathodal preconditioning. Thirty-five healthy subjects aged 19-37 years completed a familiarization session followed by 4 stimulation conditions presented in a randomized cross-over design across 4 separate sessions. tDCS doses were applied at 2 mA over the primary motor cortex for 10 minutes. Corticospinal excitability was assessed using 120% of resting motor threshold and an input/output curve of motor evoked potentials of the first dorsal interosseous. Grip strength was evaluated as time to exhaustion (TTE) in a sustained isometric contraction. Relative to conventional sham stimulation, TTE was significantly increased by 15% after conventional anodal tDCS. Corticospinal excitability increased in response to tDCS, but this effect did not differ across conditions. Cathodal preconditioning before anodal stimulation did not increase CSE or grip strength beyond that seen in the other stimulation conditions. Our findings did not reveal any significant impact of stimulation type on CSE. Notably, anodal tDCS led to a significant improvement in grip strength endurance. However, cathodal preconditioning did not seem to increase the effect of subsequent anodal stimulation on CSE nor grip strength.
Collapse
Affiliation(s)
- Aidan Lewis
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australia; and
- University of Canberra Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
| | - Ben Rattray
- University of Canberra Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
| | - Andrew Flood
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australia; and
- University of Canberra Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
| |
Collapse
|
2
|
Meng H, Houston M, Zhang Y, Li S. Exploring the Prospects of Transcranial Electrical Stimulation (tES) as a Therapeutic Intervention for Post-Stroke Motor Recovery: A Narrative Review. Brain Sci 2024; 14:322. [PMID: 38671974 PMCID: PMC11047964 DOI: 10.3390/brainsci14040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Stroke survivors often have motor impairments and related functional deficits. Transcranial Electrical Stimulation (tES) is a rapidly evolving field that offers a wide range of capabilities for modulating brain function, and it is safe and inexpensive. It has the potential for widespread use for post-stroke motor recovery. Transcranial Direct Current Stimulation (tDCS), Transcranial Alternating Current Stimulation (tACS), and Transcranial Random Noise Stimulation (tRNS) are three recognized tES techniques that have gained substantial attention in recent years but have different mechanisms of action. tDCS has been widely used in stroke motor rehabilitation, while applications of tACS and tRNS are very limited. The tDCS protocols could vary significantly, and outcomes are heterogeneous. PURPOSE the current review attempted to explore the mechanisms underlying commonly employed tES techniques and evaluate their prospective advantages and challenges for their applications in motor recovery after stroke. CONCLUSION tDCS could depolarize and hyperpolarize the potentials of cortical motor neurons, while tACS and tRNS could target specific brain rhythms and entrain neural networks. Despite the extensive use of tDCS, the complexity of neural networks calls for more sophisticated modifications like tACS and tRNS.
Collapse
Affiliation(s)
- Hao Meng
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA;
| | - Sheng Li
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| |
Collapse
|
3
|
Hao W, Dai X, Wei M, Li S, Peng M, Xue Q, Lin H, Wang H, Song P, Wang Y. Efficacy of transcranial photobiomodulation in the treatment for major depressive disorder: A TMS-EEG and pilot study. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12957. [PMID: 38470033 DOI: 10.1111/phpp.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/30/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) was a prevalent mental condition that may be accompanied by decreased excitability of left frontal pole (FP) and abnormal brain connections. An 820 nm tPBM can induce an increase in stimulated cortical excitability. The purpose of our study was to establish how clinical symptoms and time-varying brain network connectivity of MDD were affected by transcranial photobiomodulation (tPBM). METHODS A total of 11 patients with MDD received 820 nm tPBM targeting the left FP for 14 consecutive days. The severity of symptoms was evaluated by neuropsychological assessments at baseline, after treatment, 4-week and 8-week follow-up; 8-min transcranial magnetic stimulation combined electroencephalography (TMS-EEG) was performed for five healthy controls and five patients with MDD before and after treatment, and time-varying EEG network was analyzed using the adaptive-directed transfer function. RESULTS All of scales scores in the 11 patients decreased significantly after 14-day tPBM (p < .01) and remained at 8-week follow-up. The time-varying brain network analysis suggested that the brain regions with enhanced connection information outflow in MDD became gradually more similar to healthy controls after treatment. CONCLUSIONS This study showed that tPBM of the left FP could improve symptoms of patients with MDD and normalize the abnormal network connections.
Collapse
Affiliation(s)
- Wensi Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaona Dai
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Min Wei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Siran Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mao Peng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qing Xue
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huicong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Penghui Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Hebei Hospital of Xuanwu Hospital, Capital Medical University, Shijiazhuang, China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, China
| |
Collapse
|
5
|
Wang H, Song P, Hou Y, Liu J, Hao W, Hu S, Dai X, Zhan S, Li N, Peng M, Wang H, Lin H, Wang Y. 820-nm Transcranial Near-infrared Stimulation on the Left DLPFC Relieved Anxiety: A Randomized, Double-blind, Sham-controlled Study. Brain Res Bull 2023:110682. [PMID: 37301483 DOI: 10.1016/j.brainresbull.2023.110682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Generalized anxiety disorder (GAD) is a chronic mood disease associated with abnormal brain network connections, including decreased activity in the left dorsolateral prefrontal cortex (DLPFC). Cortical excitability can be increased with 820-nm transcranial near-infrared stimulation (tNIRS), while transcranial magnetic stimulation with electroencephalography (TMS-EEG) can help evaluate time-varying brain network connectivity. A randomized, double-blind, sham-controlled trial was conducted to assess the efficacy of tNIRS on the left DLPFC and the impact on time-varying brain network connections in GAD patients. METHODS A total of 36 GAD patients were randomized to receive active or sham tNIRS for 2 weeks. Clinical psychological scales were assessed before, after, and at the 2-, 4-, and 8-week follow-ups. TMS-EEG was performed for 20minutes before and immediately after tNIRS treatment. The healthy controls did not receive tNIRS and only had TMS-EEG data collected once in the resting state. RESULTS The Hamilton Anxiety Scale (HAMA) scores of the active stimulation group decreased post-treatment compared with the sham group (P=0.021). The HAMA scores of the active stimulation group at the 2-, 4-, and 8-week follow-up assessments were lower than those before treatment (P<0.05). The time-varying EEG network pattern showed an information outflow from the left DLPFC and the left posterior temporal region after active treatment. CONCLUSION Herein, 820-nm tNIRS targeting the left DLPFC had significant positive effects on therapy for GAD that lasted at least 2 months. tNIRS may reverse the abnormality of time-varying brain network connections in GAD.
Collapse
Affiliation(s)
- Huicong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Penghui Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Yue Hou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China; Hebei Hospital of Xuanwu Hospital, Capital Medical University, Shijiazhuang, 050000 China; Neuromedical Technology Innovation Center of Hebei Province, 050000 China
| | - Jianghong Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Wensi Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xiaona Dai
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shuqin Zhan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Ning Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Mao Peng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Hongxing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China; Center for sleep and consciousness disorders, Beijing Institute for Brain Disorders, Beijing 100053, China; Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China; Hebei Hospital of Xuanwu Hospital, Capital Medical University, Shijiazhuang, 050000 China; Neuromedical Technology Innovation Center of Hebei Province, 050000 China.
| |
Collapse
|