1
|
Carneiro T, Goswami S, Smith CN, Giraldez MB, Maciel CB. Prolonged Monitoring of Brain Electrical Activity in the Intensive Care Unit. Neurol Clin 2025; 43:31-50. [PMID: 39547740 DOI: 10.1016/j.ncl.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Electroencephalography (EEG) has been used to assess brain electrical activity for over a century. More recently, technological advancements allowed EEG to be a widely available and powerful tool in the intensive care unit (ICU), where patients at risk for cerebral dysfunction and brain injury can be monitored in a continuous, real-time manner. In the last 2 decades, several organizations established guidelines for continuous EEG monitoring in the ICU, defining critical care EEG terminology and technical standards for technicians, machines, and electroencephalographers. This article provides an overview of the current role of continuous EEG monitoring in the ICU.
Collapse
Affiliation(s)
- Thiago Carneiro
- Department of Neurology, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-189, Gainesville, FL 32611, USA; Department of Neurosurgery, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-189, Gainesville, FL 32611, USA
| | - Shweta Goswami
- Cerebrovascular Center, Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue/Desk S80-806, Cleveland, OH 44195, USA
| | - Christine Nicole Smith
- Department of Neurology, University of Florida, 1149 Newell Drive, L3-100, Gainesville, FL 32611, USA; Department of Neurology, Malcom Randall Veterans Affairs Medical Center, 1601 Southwest Archer Road, Gainesville, FL 32608, USA
| | - Maria Bruzzone Giraldez
- Department of Neurology, University of Florida, 1149 Newell Drive, L3-100, Gainesville, FL 32611, USA
| | - Carolina B Maciel
- Departments of Neurology, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-120, Gainesville, FL 32611, USA; Departments of Neurosurgery, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-120, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Xiong Y, Pu D. The application value of dynamic electroencephalography combined with brainstem auditory evoked potential in evaluating the degree of vascular stenosis and prognosis in patients with ischemic stroke: A retrospective analysis. Medicine (Baltimore) 2025; 104:e41135. [PMID: 39792766 PMCID: PMC11729267 DOI: 10.1097/md.0000000000041135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
The aim was to explore the application value of dynamic electroencephalography (EEG) combined with brainstem auditory evoked potential (BAEP) in evaluating the degree of vascular stenosis and prognosis in patients with ischemic stroke (IS). This was a retrospective study using clinical data of patients with IS admitted to the First Affiliated Hospital of Chongqing Medical and Pharmaceutical College from March 2020 to March 2022. The degree of vascular stenosis and prognosis of patients were analyzed. In addition, the correlation between EEG, BAEP examination and the degree of vascular stenosis was studied. A total of 105 patients met the inclusion and exclusion criteria were included in this study. Among them, 43 cases were mild stenosis, 42 cases were moderate stenosis, and 20 cases were severe stenosis; 32 cases had poor prognosis and 73 cases had good prognosis. The quantitative electroencephalogram index (delta + theta)/(alpha + beta) ratio (DTABR), peak latency (PL) of waves I and V, and interval PL (IPL) of waves III to V and I to V in patients with moderate stenosis or severe stenosis were significantly higher than those in patients with mild stenosis (P < .05). Moreover, the above indicators were significantly higher in patients with severe stenosis than in patients with moderate stenosis (P < .05). According to Spearman test, the patients' DTABR, PL of wave I and wave V, and IPL of wave III to V and wave I to V were positively correlated with the degree of vascular stenosis, respectively (P < .05). The DTABR, wave I, wave V, wave III to V, and wave I to V of patients with poor prognosis were higher than those with good prognosis (P < .05). The DTABR, PL of waves I and V, and IPL of waves III to V and I to V in patients with poor prognosis were significantly higher than those in patients with good prognosis (P < .05). EEG combined with BAEP has high value in assessing the degree of vascular stenosis and prognosis in patients with IS, which provides a reference basis for clinical development or adjustment of subsequent intervention plans.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Neurology and Geriatrics, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Di Pu
- Department of Neurology and Geriatrics, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| |
Collapse
|
3
|
Kaleem S, Harris WT, Oh S, Ch'ang JH. Current Challenges in Neurocritical Care: A Narrative Review. World Neurosurg 2025; 193:285-295. [PMID: 39732014 DOI: 10.1016/j.wneu.2024.09.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 12/30/2024]
Abstract
Neurocritical care as a field aims to treat patients who are neurologically critically ill due to a variety of pathologies. As a recently developed subspecialty, the field faces challenges, several of which are outlined in this review. The authors discuss aneurysmal subarachnoid hemorrhage, status epilepticus, and traumatic brain injury as specific disease processes with opportunities for growth in diagnosis, management, and treatment, as well as disorders of consciousness that can arise as a result of many neurological injuries. They also address logistical challenges, such as the need for specialized resources needed to successfully run a neurosciences intensive care unit (neuro-ICU), the variations in training of those who staff neuro-ICUs, and different interdisciplinary team structures. Although an immense amount of data is collected in the neuro-ICU, leveraging the data for clinical research is an area with room for further innovation. Additionally, developing accurate basic science models for these disease processes is an ongoing area of exploration. Finally, the authors explore psychosocial challenges present in the care of neurologically critically ill patients, including limitations in prognostication and religious and cultural perceptions of brain death.
Collapse
Affiliation(s)
- Safa Kaleem
- Department of Neurology, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA
| | - William T Harris
- Department of Neurology, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA
| | - Stephanie Oh
- Department of Neurology, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA
| | - Judy H Ch'ang
- Department of Neurology, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
4
|
Welte TM, Janner F, Lindner S, Gollwitzer S, Stritzelberger J, Lang JD, Reindl C, Sprügel MI, Olmes D, Schwab S, Blinzler C, Hamer HM. Evaluation of simplified wireless EEG recordings in the neurological emergency room. PLoS One 2024; 19:e0310223. [PMID: 39480766 PMCID: PMC11527185 DOI: 10.1371/journal.pone.0310223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/27/2024] [Indexed: 11/02/2024] Open
Abstract
OBJECTIVE In the neurological emergency room (nER), timely electroencephalography (EEG) diagnostic is often crucial in patients with altered state of consciousness as well as in patients presenting with a first seizure. Yet, routine-EEG (rEEG) is often not available, especially during off-hours. METHODS We analyzed the value of a commercially available, simplified wireless eight-channel EEG recording (swEEG, CerebAir® EEG headset, Nihon Kohden), applied by non-EEG-specialized medical students, in patients presenting in our nER with (suspicion of) epileptic seizures and/or loss of or altered state of consciousness between 08/2019 and 08/2022. We evaluated the feasibility and validity compared to a standard rEEG (21 electrodes according to the international 10/20 system) and also included the clinical follow-up of the patients. RESULTS 100 patients were included in our analysis (mean age 57.6 ± 20.4 years; 61 male). Median time of electrode application was 7 minutes (range 4-20 minutes), with significantly longer duration in patients with altered level of consciousness (median 8 minutes, p = 0.035). Electrode impedances also differed according to state of consciousness (p = 0.032), and were higher in females (p<0.001). 55 patients received additional rEEG, either during their acute nER stay (25) and/or during the next days (38). Considering normal EEG findings vs. pathological slowing vs. epileptiform activity, swEEG matched first rEEG results in 48/55 cases (87.3%). Overall, swEEG detected the same or additional pathological EEG patterns in 52/55 cases (94.5%). In 7/75 patients (9.3%) who did not receive rEEG, or had their rEEG scheduled to a later time point during their hospital stay, swEEG revealed important additional pathological findings (e.g. status epilepticus, interictal epileptiform discharges), which would have triggered acute therapeutic consequences or led to further diagnostics and investigations. CONCLUSION The introduced swEEG represents a practicable, valuable technique to be quickly applied by non-EEG-specialized ER staff to initiate timely diagnostic and guide further investigations and treatment in the nER. Moreover, it may help to avoid under-diagnostic with potentially harmful consequences caused by skipped or postponed regular 10/20 EEG examinations, and ultimately improve the outcome of patients.
Collapse
Affiliation(s)
- Tamara M. Welte
- Full member of ERN EpiCARE, Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Felix Janner
- Full member of ERN EpiCARE, Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sara Lindner
- Full member of ERN EpiCARE, Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stephanie Gollwitzer
- Full member of ERN EpiCARE, Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jenny Stritzelberger
- Full member of ERN EpiCARE, Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes D. Lang
- Full member of ERN EpiCARE, Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Caroline Reindl
- Full member of ERN EpiCARE, Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian I. Sprügel
- Full member of ERN EpiCARE, Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - David Olmes
- Full member of ERN EpiCARE, Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Schwab
- Full member of ERN EpiCARE, Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Blinzler
- Full member of ERN EpiCARE, Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Hajo M. Hamer
- Full member of ERN EpiCARE, Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Veciana de Las Heras M, Sala-Padro J, Pedro-Perez J, García-Parra B, Hernández-Pérez G, Falip M. Utility of Quantitative EEG in Neurological Emergencies and ICU Clinical Practice. Brain Sci 2024; 14:939. [PMID: 39335433 PMCID: PMC11430096 DOI: 10.3390/brainsci14090939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The electroencephalogram (EEG) is a cornerstone tool for the diagnosis, management, and prognosis of selected patient populations. EEGs offer significant advantages such as high temporal resolution, real-time cortical function assessment, and bedside usability. The quantitative EEG (qEEG) added the possibility of long recordings being processed in a compressive manner, making EEG revision more efficient for experienced users, and more friendly for new ones. Recent advancements in commercially available software, such as Persyst, have significantly expanded and facilitated the use of qEEGs, marking the beginning of a new era in its application. As a result, there has been a notable increase in the practical, real-world utilization of qEEGs in recent years. This paper aims to provide an overview of the current applications of qEEGs in daily neurological emergencies and ICU practice, and some elementary principles of qEEGs using Persyst software in clinical settings. This article illustrates basic qEEG patterns encountered in critical care and adopts the new terminology proposed for spectrogram reporting.
Collapse
Affiliation(s)
- Misericordia Veciana de Las Heras
- Neurology Service, Neurophysiology Department, Hospital Universitari de Bellvitge-IDIBELL, Universitat de Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jacint Sala-Padro
- Neurology Service, Epilepsy Unit, Hospital Universitari de Bellvitge-IDIBELL, Universitat de Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Pedro-Perez
- Neurology Service, Neurophysiology Department, Hospital Universitari de Bellvitge-IDIBELL, Universitat de Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Beliu García-Parra
- Neurology Service, Neurophysiology Department, Hospital Universitari de Bellvitge-IDIBELL, Universitat de Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Guillermo Hernández-Pérez
- Neurology Service, Epilepsy Unit, Hospital Universitari de Bellvitge-IDIBELL, Universitat de Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Merce Falip
- Neurology Service, Epilepsy Unit, Hospital Universitari de Bellvitge-IDIBELL, Universitat de Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
6
|
Gobert F, Dailler F, Rheims S, André-Obadia N, Balança B. Electrophysiological monitoring of neurological functions at the acute phase of brain injury: An overview of current knowledge and future perspectives in the adult population. EUROPEAN JOURNAL OF ANAESTHESIOLOGY AND INTENSIVE CARE 2024; 3:e0044. [PMID: 39917609 PMCID: PMC11798378 DOI: 10.1097/ea9.0000000000000044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
The continuous monitoring of physiological parameters is now considered as a standard of care in intensive care units (ICU). While multiple techniques are available to guide hemodynamic or respiratory management, the monitoring of neurological function in unconscious patients is usually limited to discontinuous bedside neurological examination or morphological brain imaging. However, cortical activity is accessible at the bedside with electroencephalography (EEG), electrocorticography (ECoG) or evoked potentials. The analysis of the unprocessed signal requires a trained neurophysiologist and could be time consuming. During the past decades, advances in neurophysiological signal acquisition make it possible to calculate quantified EEG parameters in real-time. New monitors also provide ICU friendly display for a dynamic and live assessment of neurological function changes. In this review, we will describe the technical aspects of EEG, ECoG and evoked potentials required for a good signal quality before interpretation. We will discuss how to use those electrophysiological techniques in the ICU to assess neurological function in comatose patients at the acute phase of brain injuries such as traumatic brain injuries, haemorrhagic or ischemic stroke. We will discuss, which quantitative EEG or evoked potentials monitoring parameters can be used at the bedside to guide sedation, evaluate neurological function during awaking and look for new neurological (encephalic or brainstem) injuries. We will present the state of the art and discuss some analyses, which may develop shortly.
Collapse
Affiliation(s)
- Florent Gobert
- From the Département d'anesthésie réanimation neurologique, Hospices Civils de Lyon, Hôpital Pierre Wertheimer (FG, FD, BB), Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292 (FG, SR, NA-O, BB) and Département de neurophysiologie clinique et épileptologie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Bron, France (SR, NA-O)
| | - Frédéric Dailler
- From the Département d'anesthésie réanimation neurologique, Hospices Civils de Lyon, Hôpital Pierre Wertheimer (FG, FD, BB), Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292 (FG, SR, NA-O, BB) and Département de neurophysiologie clinique et épileptologie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Bron, France (SR, NA-O)
| | - Sylvain Rheims
- From the Département d'anesthésie réanimation neurologique, Hospices Civils de Lyon, Hôpital Pierre Wertheimer (FG, FD, BB), Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292 (FG, SR, NA-O, BB) and Département de neurophysiologie clinique et épileptologie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Bron, France (SR, NA-O)
| | - Nathalie André-Obadia
- From the Département d'anesthésie réanimation neurologique, Hospices Civils de Lyon, Hôpital Pierre Wertheimer (FG, FD, BB), Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292 (FG, SR, NA-O, BB) and Département de neurophysiologie clinique et épileptologie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Bron, France (SR, NA-O)
| | - Baptiste Balança
- From the Département d'anesthésie réanimation neurologique, Hospices Civils de Lyon, Hôpital Pierre Wertheimer (FG, FD, BB), Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292 (FG, SR, NA-O, BB) and Département de neurophysiologie clinique et épileptologie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Bron, France (SR, NA-O)
| |
Collapse
|
7
|
Hoh BL, Ko NU, Amin-Hanjani S, Chou SHY, Cruz-Flores S, Dangayach NS, Derdeyn CP, Du R, Hänggi D, Hetts SW, Ifejika NL, Johnson R, Keigher KM, Leslie-Mazwi TM, Lucke-Wold B, Rabinstein AA, Robicsek SA, Stapleton CJ, Suarez JI, Tjoumakaris SI, Welch BG. 2023 Guideline for the Management of Patients With Aneurysmal Subarachnoid Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke 2023; 54:e314-e370. [PMID: 37212182 DOI: 10.1161/str.0000000000000436] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
AIM The "2023 Guideline for the Management of Patients With Aneurysmal Subarachnoid Hemorrhage" replaces the 2012 "Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage." The 2023 guideline is intended to provide patient-centric recommendations for clinicians to prevent, diagnose, and manage patients with aneurysmal subarachnoid hemorrhage. METHODS A comprehensive search for literature published since the 2012 guideline, derived from research principally involving human subjects, published in English, and indexed in MEDLINE, PubMed, Cochrane Library, and other selected databases relevant to this guideline, was conducted between March 2022 and June 2022. In addition, the guideline writing group reviewed documents on related subject matter previously published by the American Heart Association. Newer studies published between July 2022 and November 2022 that affected recommendation content, Class of Recommendation, or Level of Evidence were included if appropriate. Structure: Aneurysmal subarachnoid hemorrhage is a significant global public health threat and a severely morbid and often deadly condition. The 2023 aneurysmal subarachnoid hemorrhage guideline provides recommendations based on current evidence for the treatment of these patients. The recommendations present an evidence-based approach to preventing, diagnosing, and managing patients with aneurysmal subarachnoid hemorrhage, with the intent to improve quality of care and align with patients' and their families' and caregivers' interests. Many recommendations from the previous aneurysmal subarachnoid hemorrhage guidelines have been updated with new evidence, and new recommendations have been created when supported by published data.
Collapse
|
8
|
Hernández-Hernández MA, Cherchi MS, Torres-Díez E, Orizaola P, Martín-Láez R, Fernández-Torre JL. Bispectral index monitoring to detect delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Crit Care 2022; 72:154154. [PMID: 36152563 DOI: 10.1016/j.jcrc.2022.154154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Evaluate the bispectral index (BIS) monitoring to detect delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH). MATERIALS AND METHODS A single-center prospective study in patients with aSAH. BIS monitoring was recorded during 25-120 min in two periods, within the initial 72 h (BIS1) and between days 4 and 6 (BIS2) from admission. The median for each exported BIS parameter was analyzed. Transcranial Doppler (TCD) sonography was simultaneously performed with BIS1 (TCD1) and BIS2 (TCD2) monitoring. A multivariate logistic regression model was built to identify the variables associated with DCI. RESULTS Sixty-four patients were included and 16 (25%) developed DCI. During BIS2 monitoring, significant differences were found in BIS value (left, p = 0.01; right, p = 0.009), 95% spectral edge frequency (left and right, p = 0.04), and total power (left and right, p = 0.04). In multivariable analysis, vasospasm on TCD2 (OR 42.8 [95% CI 3.1-573]; p = 0.005), a median BIS2 value <85 in one or both sides (OR 6.2 [95% CI 1.28-30]; p = 0.023), and age (OR 1.08 [95% CI 1.00-1.17]; p = 0.04) were associated with the development of DCI. CONCLUSIONS BIS value is the most useful BIS parameter for detecting DCI after aSAH. Pending further validation, BIS monitoring might be even more accurate than TCD.
Collapse
Affiliation(s)
- Miguel A Hernández-Hernández
- Department of Intensive Medicine, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Biomedical Research Institute (IDIVAL), Santander, Spain
| | - Marina S Cherchi
- Department of Intensive Medicine, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Biomedical Research Institute (IDIVAL), Santander, Spain.
| | - Eduardo Torres-Díez
- Interventional Neuroradiology, Department of Radiology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Pedro Orizaola
- Department of Clinical Neurophysiology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Rubén Martín-Láez
- Biomedical Research Institute (IDIVAL), Santander, Spain; Department of Neurosurgery and Surgical Spine Unit, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - José L Fernández-Torre
- Biomedical Research Institute (IDIVAL), Santander, Spain; Department of Clinical Neurophysiology, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Department of Physiology and Pharmacology, University of Cantabria (UNICAN), Santander, Spain
| |
Collapse
|
9
|
Hwang J, Cho SM, Ritzl EK. Recent applications of quantitative electroencephalography in adult intensive care units: a comprehensive review. J Neurol 2022; 269:6290-6309. [DOI: 10.1007/s00415-022-11337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
|
10
|
Motwani K, Dodd WS, Laurent D, Lucke-Wold B, Chalouhi N. Delayed cerebral ischemia: A look at the role of endothelial dysfunction, emerging endovascular management, and glymphatic clearance. Clin Neurol Neurosurg 2022; 218:107273. [PMID: 35537284 DOI: 10.1016/j.clineuro.2022.107273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
Delayed cerebral ischemia (DCI) contributes to extensive morbidity and mortality for patients with aneurysmal subarachnoid hemorrhage (SAH). Recent contributions to the basic and translational investigation of DCI have shed light on emerging concepts that may aid in the development of novel therapeutics. A clear association between cerebral vasospasm (CV) and DCI exists, but it is also known that DCI can affect brain parenchyma remote from sites of vasospasm. In this review, we highlight the most recent contributions to the understanding of the underlying pathophysiology of DCI including the emerging role of the glymphatic system. Furthermore, we discuss treatments for DCI, including both pharmacologic therapies and endovascular treatment of vasospasm. There continues to be a disconnect between interventions and targeted treatment against pathophysiology. This review is intended to serve as a catalyst for further research and discovery that can aid in improved treatment options for DCI.
Collapse
Affiliation(s)
- Kartik Motwani
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - William S Dodd
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Dimitri Laurent
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | | | - Nohra Chalouhi
- Department of Neurosurgery, University of Florida, Gainesville, USA
| |
Collapse
|
11
|
Murphey DK, Anderson ER. The Past, Present, and Future of Tele-EEG. Semin Neurol 2022; 42:31-38. [PMID: 35576928 DOI: 10.1055/s-0041-1742242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tele-electroencephalogram (EEG) has become more pervasive over the last 20 years due to advances in technology, both independent of and driven by personnel shortages. The professionalization of EEG services has both limited growth and controlled the quality of tele-EEG. Growing data on the conditions that benefit from brain monitoring have informed increased critical care EEG and ambulatory EEG utilization. Guidelines that marshal responsible use of still-limited resources and changes in broadband and billing practices have also shaped the tele-EEG landscape. It is helpful to characterize the drivers of tele-EEG to navigate barriers to sustainable growth and to build dynamic systems that anticipate challenges in any of the domains that expand access and enhance quality of these diagnostic services. We explore the historical factors and current trends in tele-EEG in the United States in this review.
Collapse
|
12
|
Gene Differential Expression and Interaction Networks Illustrate the Biomarkers and Molecular Mechanisms of Atherosclerotic Cerebral Infarction. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3912697. [PMID: 35070236 PMCID: PMC8769835 DOI: 10.1155/2022/3912697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022]
Abstract
Atherosclerotic cerebral infarction (ACI) seriously threatens the health of the senile patients, and the strategies are urgent for the diagnosis and treatment of ACI. This study investigated the mRNA profiling of the patients with ischemic stroke and atherosclerosis via excavating the datasets in the GEO database and attempted to reveal the biomarkers and molecular mechanism of ACI. In this study, GES16561 and GES100927 were obtained from Gene Expression Omnibus (GEO) database, and the related differentially expressed genes (DEGs) were analyzed with R language. Furthermore, the DEGs were analyzed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Besides, the protein-protein interaction (PPI) network of DEGs was analyzed by STRING database and Cytoscape. The results showed that 133 downregulated DEGs and 234 upregulated DEGs were found in GES16561, 25 downregulated DEGs and 104 upregulated DEGs were found in GSE100927, and 6 common genes were found in GES16561 and GES100927. GO enrichment analysis showed that the functional models of the common genes were involved in neutrophil activation, neutrophil degranulation, neutrophil activation, and immune response. KEGG enrichment analysis showed that the DEGs in both GSE100927 and GSE16561 were connected with the pathways including Cell adhesion molecules (CAMs), Cytokine-cytokine receptor interaction, Phagosome, Antigen processing and presentation, and Staphylococcus aureus infection. The PPI network analysis showed that 9 common DEGs were found in GSE100927 and GSE16561, and a cluster with 6 nodes and 12 edges was also identified by PPI network analysis. In conclusion, this study suggested that FCGR3A and MAPK pathways were connected with ACI.
Collapse
|
13
|
Yao S, Zhu J, Li S, Zhang R, Zhao J, Yang X, Wang Y. Bibliometric Analysis of Quantitative Electroencephalogram Research in Neuropsychiatric Disorders From 2000 to 2021. Front Psychiatry 2022; 13:830819. [PMID: 35677873 PMCID: PMC9167960 DOI: 10.3389/fpsyt.2022.830819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND With the development of quantitative electroencephalography (QEEG), an increasing number of studies have been published on the clinical use of QEEG in the past two decades, particularly in the diagnosis, treatment, and prognosis of neuropsychiatric disorders. However, to date, the current status and developing trends of this research field have not been systematically analyzed from a macroscopic perspective. The present study aimed to identify the hot spots, knowledge base, and frontiers of QEEG research in neuropsychiatric disorders from 2000 to 2021 through bibliometric analysis. METHODS QEEG-related publications in the neuropsychiatric field from 2000 to 2021 were retrieved from the Web of Science Core Collection (WOSCC). CiteSpace and VOSviewer software programs, and the online literature analysis platform (bibliometric.com) were employed to perform bibliographic and visualized analysis. RESULTS A total of 1,904 publications between 2000 and 2021 were retrieved. The number of QEEG-related publications in neuropsychiatric disorders increased steadily from 2000 to 2021, and research in psychiatric disorders requires more attention in comparison to research in neurological disorders. During the last two decades, QEEG has been mainly applied in neurodegenerative diseases, cerebrovascular diseases, and mental disorders to reveal the pathological mechanisms, assist clinical diagnosis, and promote the selection of effective treatments. The recent hot topics focused on QEEG utilization in neurodegenerative disorders like Alzheimer's and Parkinson's disease, traumatic brain injury and related cerebrovascular diseases, epilepsy and seizure, attention-deficit hyperactivity disorder, and other mental disorders like major depressive disorder and schizophrenia. In addition, studies to cross-validate QEEG biomarkers, develop new biomarkers (e.g., functional connectivity and complexity), and extract compound biomarkers by machine learning were the emerging trends. CONCLUSION The present study integrated bibliometric information on the current status, the knowledge base, and future directions of QEEG studies in neuropsychiatric disorders from a macroscopic perspective. It may provide valuable insights for researchers focusing on the utilization of QEEG in this field.
Collapse
Affiliation(s)
- Shun Yao
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jieying Zhu
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuiyan Li
- Department of Rehabilitation Medicine, School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Ruibin Zhang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiubo Zhao
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xueling Yang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - You Wang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Labak CM, Shammassian BH, Zhou X, Alkhachroum A. Multimodality Monitoring for Delayed Cerebral Ischemia in Subarachnoid Hemorrhage: A Mini Review. Front Neurol 2022; 13:869107. [PMID: 35493831 PMCID: PMC9043346 DOI: 10.3389/fneur.2022.869107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage is a disease with high mortality and morbidity due in large part to delayed effects of the hemorrhage, including vasospasm, and delayed cerebral ischemia. These two are now recognized as overlapping yet distinct entities, and supportive therapies for delayed cerebral ischemia are predicated on identifying DCI as quickly as possible. The purpose of this overview is to highlight diagnostic tools that are being used in the identification of DCI in the neurocritical care settings.
Collapse
Affiliation(s)
- Collin M. Labak
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Neurosurgery, University Hospitals Cleveland Medicine Center, Cleveland, OH, United States
| | - Berje Haroutuon Shammassian
- Department of Neurology, Division of Neurocritical Care, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, United States
| | - Xiaofei Zhou
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Neurosurgery, University Hospitals Cleveland Medicine Center, Cleveland, OH, United States
| | - Ayham Alkhachroum
- Department of Neurology, Division of Neurocritical Care, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, United States
- *Correspondence: Ayham Alkhachroum
| |
Collapse
|