Lassi M, Dalise S, Bandini A, Spina V, Azzollini V, Vissani M, Micera S, Mazzoni A, Chisari C. Neurophysiological underpinnings of an intensive protocol for upper limb motor recovery in subacute and chronic stroke patients.
Eur J Phys Rehabil Med 2024;
60:13-26. [PMID:
37987741 DOI:
10.23736/s1973-9087.23.07922-4]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
BACKGROUND
Upper limb (UL) motor impairment following stroke is a leading cause of functional limitations in activities of daily living. Robot-assisted therapy supports rehabilitation, but how its efficacy and the underlying neural mechanisms depend on the time after stroke is yet to be assessed.
AIM
We investigated the response to an intensive protocol of robot-assisted rehabilitation in sub-acute and chronic stroke patients, by analyzing the underlying changes in clinical scores, electroencephalography (EEG) and end-effector kinematics. We aimed at identifying neural correlates of the participants' upper limb motor function recovery, following an intensive 2-week rehabilitation protocol.
DESIGN
Prospective cohort study.
SETTING
Inpatients and outpatients from the Neurorehabilitation Unit of Pisa University Hospital, Italy.
POPULATION
Sub-acute and chronic stroke survivors.
METHODS
Thirty-one stroke survivors (14 sub-acute, 17 chronic) with mild-to-moderate UL paresis were enrolled. All participants underwent ten rehabilitative sessions of task-oriented exercises with a planar end-effector robotic device. All patients were evaluated with the Fugl-Meyer Assessment Scale and the Wolf Motor Function Test, at recruitment (T0), end-of-treatment (T1), and one-month follow-up (T2). Along with clinical scales, kinematic parameters and quantitative EEG were collected for each patient. Kinematics metrics were related to velocity, acceleration and smoothness of the movement. Relative power in four frequency bands was extracted from the EEG signals. The evolution over time of kinematic and EEG features was analyzed, in correlation with motor recovery.
RESULTS
Both groups displayed significant gains in motility after treatment. Sub-acute patients displayed more pronounced clinical improvements, significant changes in kinematic parameters, and a larger increase in Beta-band in the motor area of the affected hemisphere. In both groups these improvements were associated to a decrease in the Delta-band of both hemispheres. Improvements were retained at T2.
CONCLUSIONS
The intensive two-week rehabilitation protocol was effective in both chronic and sub-acute patients, and improvements in the two groups shared similar dynamics. However, stronger cortical and behavioral changes were observed in sub-acute patients suggesting different reorganizational patterns.
CLINICAL REHABILITATION IMPACT
This study paves the way to personalized approaches to UL motor rehabilitation after stroke, as highlighted by different neurophysiological modifications following recovery in subacute and chronic stroke patients.
Collapse