1
|
Jaber K, Avigdor T, Mansilla D, Ho A, Thomas J, Abdallah C, Chabardes S, Hall J, Minotti L, Kahane P, Grova C, Gotman J, Frauscher B. A spatial perturbation framework to validate implantation of the epileptogenic zone. Nat Commun 2024; 15:5253. [PMID: 38897997 PMCID: PMC11187199 DOI: 10.1038/s41467-024-49470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Stereo-electroencephalography (SEEG) is the gold standard to delineate surgical targets in focal drug-resistant epilepsy. SEEG uses electrodes placed directly into the brain to identify the seizure-onset zone (SOZ). However, its major constraint is limited brain coverage, potentially leading to misidentification of the 'true' SOZ. Here, we propose a framework to assess adequate SEEG sampling by coupling epileptic biomarkers with their spatial distribution and measuring the system's response to a perturbation of this coupling. We demonstrate that the system's response is strongest in well-sampled patients when virtually removing the measured SOZ. We then introduce the spatial perturbation map, a tool that enables qualitative assessment of the implantation coverage. Probability modelling reveals a higher likelihood of well-implanted SOZs in seizure-free patients or non-seizure free patients with incomplete SOZ resections, compared to non-seizure-free patients with complete resections. This highlights the framework's value in sparing patients from unsuccessful surgeries resulting from poor SEEG coverage.
Collapse
Affiliation(s)
- Kassem Jaber
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
- Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC, USA
| | - Tamir Avigdor
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, QC, Canada
| | - Daniel Mansilla
- Neurophysiology Unit, Institute of Neurosurgery Dr. Asenjo, Santiago, Chile
| | - Alyssa Ho
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - John Thomas
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
- Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC, USA
| | - Chifaou Abdallah
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, QC, Canada
| | - Stephan Chabardes
- Grenoble Institute Neurosciences, Inserm, U1216, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Jeff Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Lorella Minotti
- Grenoble Institute Neurosciences, Inserm, U1216, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Philippe Kahane
- Grenoble Institute Neurosciences, Inserm, U1216, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, QC, Canada
- Multimodal Functional Imaging Lab, School of Health, Department of Physics, Concordia University, Montréal, QC, Canada
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jean Gotman
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada.
- Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC, USA.
- Department of Neurology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
2
|
Cai Z, Jiang X, Bagić A, Worrell GA, Richardson M, He B. Spontaneous HFO Sequences Reveal Propagation Pathways for Precise Delineation of Epileptogenic Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592202. [PMID: 38746136 PMCID: PMC11092614 DOI: 10.1101/2024.05.02.592202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Epilepsy, a neurological disorder affecting millions worldwide, poses great challenges in precisely delineating the epileptogenic zone - the brain region generating seizures - for effective treatment. High-frequency oscillations (HFOs) are emerging as promising biomarkers; however, the clinical utility is hindered by the difficulties in distinguishing pathological HFOs from non- epileptiform activities at single electrode and single patient resolution and understanding their dynamic role in epileptic networks. Here, we introduce an HFO-sequencing approach to analyze spontaneous HFOs traversing cortical regions in 40 drug-resistant epilepsy patients. This data- driven method automatically detected over 8.9 million HFOs, pinpointing pathological HFO- networks, and unveiled intricate millisecond-scale spatiotemporal dynamics, stability, and functional connectivity of HFOs in prolonged intracranial EEG recordings. These HFO sequences demonstrated a significant improvement in localization of epileptic tissue, with an 818.47% increase in concordance with seizure-onset zone (mean error: 2.92 mm), compared to conventional benchmarks. They also accurately predicted seizure outcomes for 90% AUC based on pre-surgical information using generalized linear models. Importantly, this mapping remained reliable even with short recordings (mean standard deviation: 3.23 mm for 30-minute segments). Furthermore, HFO sequences exhibited distinct yet highly repetitive spatiotemporal patterns, characterized by pronounced synchrony and predominant inward information flow from periphery towards areas involved in propagation, suggesting a crucial role for excitation-inhibition balance in HFO initiation and progression. Together, these findings shed light on the intricate organization of epileptic network and highlight the potential of HFO-sequencing as a translational tool for improved diagnosis, surgical targeting, and ultimately, better outcomes for vulnerable patients with drug-resistant epilepsy. One Sentence Summary Pathological fast brain oscillations travel like traffic along varied routes, outlining recurrently visited neural sites emerging as critical hotspots in epilepsy network.
Collapse
|
3
|
Medina Villalon S, Makhalova J, López-Madrona VJ, Garnier E, Badier JM, Bartolomei F, Bénar CG. Combining independent component analysis and source localization for improving spatial sampling of stereoelectroencephalography in epilepsy. Sci Rep 2024; 14:4071. [PMID: 38374380 PMCID: PMC10876572 DOI: 10.1038/s41598-024-54359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
Stereoelectroencephalography is a powerful intracerebral EEG recording method for the presurgical evaluation of epilepsy. It consists in implanting depth electrodes in the patient's brain to record electrical activity and map the epileptogenic zone, which should be resected to render the patient seizure-free. Stereoelectroencephalography has high spatial accuracy and signal-to-noise ratio but remains limited in the coverage of the explored brain regions. Thus, the implantation might provide a suboptimal sampling of epileptogenic regions. We investigate the potential of improving a suboptimal stereoelectroencephalography recording by performing source localization on stereoelectroencephalography signals. We propose combining independent component analysis, connectivity measures to identify components of interest, and distributed source modelling. This approach was tested on two patients with two implantations each, the first failing to characterize the epileptogenic zone and the second giving a better diagnosis. We demonstrate that ictal and interictal source localization performed on the first stereoelectroencephalography recordings matches the findings of the second stereo-EEG exploration. Our findings suggest that independent component analysis followed by source localization on the topographies of interest is a promising method for retrieving the epileptogenic zone in case of suboptimal implantation.
Collapse
Affiliation(s)
- Samuel Medina Villalon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | - Elodie Garnier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Christian G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
4
|
Withers CP, Diamond JM, Yang B, Snyder K, Abdollahi S, Sarlls J, Chapeton JI, Theodore WH, Zaghloul KA, Inati SK. Identifying sources of human interictal discharges with travelling wave and white matter propagation. Brain 2023; 146:5168-5181. [PMID: 37527460 PMCID: PMC11046055 DOI: 10.1093/brain/awad259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
Interictal epileptiform discharges have been shown to propagate from focal epileptogenic sources as travelling waves or through more rapid white matter conduction. We hypothesize that both modes of propagation are necessary to explain interictal discharge timing delays. We propose a method that, for the first time, incorporates both propagation modes to identify unique potential sources of interictal activity. We retrospectively analysed 38 focal epilepsy patients who underwent intracranial EEG recordings and diffusion-weighted imaging for epilepsy surgery evaluation. Interictal discharges were detected and localized to the most likely source based on relative delays in time of arrival across electrodes, incorporating travelling waves and white matter propagation. We assessed the influence of white matter propagation on distance of spread, timing and clinical interpretation of interictal activity. To evaluate accuracy, we compared our source localization results to earliest spiking regions to predict seizure outcomes. White matter propagation helps to explain the timing delays observed in interictal discharge sequences, underlying rapid and distant propagation. Sources identified based on differences in time of receipt of interictal discharges are often distinct from the leading electrode location. Receipt of activity propagating rapidly via white matter can occur earlier than more local activity propagating via slower cortical travelling waves. In our cohort, our source localization approach was more accurate in predicting seizure outcomes than the leading electrode location. Inclusion of white matter in addition to travelling wave propagation in our model of discharge spread did not improve overall accuracy but allowed for identification of unique and at times distant potential sources of activity, particularly in patients with persistent postoperative seizures. Since distant white matter propagation can occur more rapidly than local travelling wave propagation, combined modes of propagation within an interictal discharge sequence can decouple the commonly assumed relationship between spike timing and distance from the source. Our findings thus highlight the clinical importance of recognizing the presence of dual modes of propagation during interictal discharges, as this may be a cause of clinical mislocalization.
Collapse
Affiliation(s)
- C Price Withers
- Neurophysiology of Epilepsy Unit, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua M Diamond
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Braden Yang
- Neurophysiology of Epilepsy Unit, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn Snyder
- Neurophysiology of Epilepsy Unit, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shervin Abdollahi
- Neurophysiology of Epilepsy Unit, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joelle Sarlls
- NIH MRI Research Facility, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julio I Chapeton
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - William H Theodore
- Clinical Epilepsy Section, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara K Inati
- Neurophysiology of Epilepsy Unit, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Dessert GE, Thio BJ, Grill WM. Optimization of patient-specific stereo-EEG recording sensitivity. Brain Commun 2023; 5:fcad304. [PMID: 38025277 PMCID: PMC10655844 DOI: 10.1093/braincomms/fcad304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/11/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Stereo-EEG is a minimally invasive technique used to localize the origin of epileptic activity (the epileptogenic zone) in patients with drug-resistant epilepsy. However, current stereo-EEG trajectory planning methods are agnostic to the spatial recording sensitivity of implanted electrodes. In this study, we used image-based patient-specific computational models to design optimized stereo-EEG electrode configurations. Patient-specific optimized electrode configurations exhibited substantially higher recording sensitivity than clinically implanted configurations, and this may lead to a more accurate delineation of the epileptogenic zone. The optimized configurations also achieved equally good or better recording sensitivity with fewer electrodes compared with clinically implanted configurations, and this may reduce the risk for complications, including intracranial haemorrhage. This approach improves localization of the epileptogenic zone by transforming the clinical use of stereo-EEG from a discrete ad hoc sampling to an intelligent mapping of the regions of interest.
Collapse
Affiliation(s)
- Grace E Dessert
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brandon J Thio
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA
| |
Collapse
|
6
|
Maher C, Yang Y, Truong ND, Wang C, Nikpour A, Kavehei O. Seizure detection with reduced electroencephalogram channels: research trends and outlook. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230022. [PMID: 37153360 PMCID: PMC10154941 DOI: 10.1098/rsos.230022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Epilepsy is a prevalent condition characterized by recurrent, unpredictable seizures. Monitoring with surface electroencephalography (EEG) is the gold standard for diagnosing epilepsy, but a time-consuming, uncomfortable and sometimes ineffective process for patients. Further, using EEG over a brief monitoring period has variable success, dependent on patient tolerance and seizure frequency. The availability of hospital resources and hardware and software specifications inherently restrict the options for comfortable, long-term data collection, resulting in limited data for training machine-learning models. This mini-review examines the current patient journey, providing an overview of the current state of EEG monitoring with reduced electrodes and automated channel reduction methods. Opportunities for improving data reliability through multi-modal data fusion are suggested. We assert the need for further research in electrode reduction to advance brain monitoring solutions towards portable, reliable devices that simultaneously offer patient comfort, perform ultra-long-term monitoring and expedite the diagnosis process.
Collapse
Affiliation(s)
- Christina Maher
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yikai Yang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nhan Duy Truong
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chenyu Wang
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
- Translational Research Collective, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2050, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, New South Wales 2050, Australia
| | - Armin Nikpour
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Translational Research Collective, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Omid Kavehei
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
7
|
Cai Z, He B. Ictal source localization from intracranial recordings. Clin Neurophysiol 2022; 144:121-122. [PMID: 36257896 PMCID: PMC9936740 DOI: 10.1016/j.clinph.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Zhengxiang Cai
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|