1
|
Abdelshafy AM, Mahmoud AR, Abdelrahman TM, Mustafa MA, Atta OM, Abdelmegiud MH, Al-Asmari F. Biodegradation of chemical contamination by lactic acid bacteria: A biological tool for food safety. Food Chem 2024; 460:140732. [PMID: 39106807 DOI: 10.1016/j.foodchem.2024.140732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Chemical pollutants such as mycotoxins and pesticides exert harmful effects on human health such as inflammation, oxidative stress, and cancer. Several strategies were applied for food decontamination, including physicochemical and biological strategies. The present review comprehensively discussed the recent efforts related to the biodegradation of eight food chemical contaminants, including mycotoxins, acrylamide, biogenic amines, N-nitrosamines, polycyclic aromatic hydrocarbons, bisphenol A, pesticides, and heavy metals by lactic acid bacteria (LAB). Biological detoxification by LAB such as Lactobacillus is a promising approach to remove the risks related to the presence of chemical and environmental pollutants in foodstuffs. It is a safe, efficient, environmentally friendly, and low-cost strategy to remove hazardous compounds. LAB can directly decrease these chemical pollutants by degradation or adsorption. Also, it can indirectly reduce the content of these pollutants by reducing their precursors. Hence, LAB can contribute to reducing chemical pollutants in contaminated foods and enhance food safety.
Collapse
Affiliation(s)
- Asem M Abdelshafy
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Ahmed Rashad Mahmoud
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Talat M Abdelrahman
- Department of Plant Protection, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt.
| | - Mustafa Abdelmoneim Mustafa
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Omar Mohammad Atta
- Department of Botany and Microbiology, College of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Mahmoud H Abdelmegiud
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| |
Collapse
|
2
|
Emanowicz P, Średnicka P, Wójcicki M, Roszko M, Juszczuk-Kubiak E. Mitigating Dietary Bisphenol Exposure Through the Gut Microbiota: The Role of Next-Generation Probiotics in Bacterial Detoxification. Nutrients 2024; 16:3757. [PMID: 39519589 PMCID: PMC11547510 DOI: 10.3390/nu16213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenols, such as bisphenol A and its analogs, which include bisphenol S, bisphenol F, bisphenol AF, and tetramethyl bisphenol F, are chemical contaminants commonly found in food that raise serious health concerns. These xenobiotics can potentially have harmful effects on human health. The gut microbiota plays a crucial role in metabolizing and neutralizing these substances, which is essential for their detoxification and elimination. Probiotic supplementation has been studied for its ability to modulate the gut microbiota's composition and function, enhancing detoxification processes. Next-Generation Probiotics (NGPs) may exhibit better properties than traditional strains and are designed for targeted action on specific conditions, such as obesity. By modulating inflammatory responses and reducing the secretion of pro-inflammatory cytokines, they can significantly improve host health. Research on NGPs' ability to neutralize obesogenic bisphenols remains limited, but their potential makes this a promising area for future exploration. This review aims to understand the mechanisms of the chemical transformation of bisphenol through its interactions with the gut microbiota and the role of probiotics, particularly NGPs, in these processes. Understanding the interplay between bisphenols, gut microbiota, and NGPs may pave the way for strategies to counteract the negative health effects associated with daily and chronic exposure to bisphenols, which is crucial for food safety and consumer health protection.
Collapse
Affiliation(s)
- Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| |
Collapse
|
3
|
Shulhai AM, Bianco V, Donini V, Esposito S, Street ME. Which is the current knowledge on man-made endocrine- disrupting chemicals in follicular fluid? An overview of effects on ovarian function and reproductive health. Front Endocrinol (Lausanne) 2024; 15:1435121. [PMID: 39415794 PMCID: PMC11479995 DOI: 10.3389/fendo.2024.1435121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
The increase in female reproductive disorders, such as polycystic ovary syndrome, endometriosis, and diminished ovarian reserve that lead to subfertility and infertility, has encouraged researchers to search and discover their underlying causes and risk factors. One of the crucial factors that may influence the increasing number of reproductive issues is environmental pollution, particularly exposure to man-made endocrine-disrupting chemicals (EDCs). EDCs can interfere with the ovarian microenvironment, impacting not only granulosa cell function but also other surrounding ovarian cells and follicular fluid (FF), which all play essential roles for oocyte development, maturation, and overall reproductive function. FF surrounds developing oocytes within an ovarian follicle and represents a dynamic milieu. EDCs are usually found in biological fluids, and FF is therefore of interest in this respect. This narrative review examines the current knowledge on specific classes of EDCs, including industrial chemicals, pesticides, and plasticizers, and their known effects on hormonal signaling pathways, gene expression, mitochondrial function, oxidative stress induction, and inflammation in FF. We describe the impact of EDCs on the development of reproductive disorders, oocyte quality, menstrual cycle regulation, and their effect on assisted reproductive technique outcomes. The potential transgenerational effects of EDCs on offspring through animal and first-human studies has been considered also. While significant progress has been made, the current understanding of EDCs' effects on ovarian function, particularly in humans, remains limited, underscoring the need for further research to clarify actions and effects of EDCs in the ovary.
Collapse
Affiliation(s)
- Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Department of Pediatrics №2, Ivan Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentina Bianco
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Donini
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Susanna Esposito
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| |
Collapse
|
4
|
Wang X, Li P, Lv X, Deng L, Zhou Y, Zhang X. Elucidating the molecular interactions and immune modulation of bisphenols exposure in the pathogenesis of polycystic ovary syndrome. Reprod Toxicol 2024; 130:108723. [PMID: 39313041 DOI: 10.1016/j.reprotox.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Bisphenols (BPs) are known endocrine disruptors potentially contributing to the pathogenesis of Polycystic Ovary Syndrome (PCOS). This study aims to elucidate the molecular interactions between BPs and PCOS-related genes and their combined effects on PCOS development. We identified common genes associated with BPs and PCOS using the CTD. Differential expression analysis was performed on three GEO datasets, leading to the identification of differentially expressed genes (DEGs). Protein-Protein Interaction (PPI) network construction, enrichment analysis, single-gene Gene Set Enrichment Analysis (GSEA), and immune cell infiltration analysis were carried out. A nomogram was developed for PCOS risk prediction, and molecular docking studies were performed using AutoDock Vina, with interaction visualizations via PyMOL. We identified 139 common genes between BPs exposure and PCOS, enrichment analysis highlighted pathways related to hormone metabolism, ovarian steroidogenesis, and p53 signaling. Four hub DEGs (PBK, CCNE2, LPCAT2, S100P) were identified, and a nomogram incorporating these genes demonstrated excellent predictive accuracy. GSEA revealed roles in cell adhesion, immune response, and metabolism. ssGSEA analysis showed significant differences in immune cell infiltration between PCOS and control groups, with notable correlations between hub DEGs and immune cells. Molecular docking indicated strong binding affinities between the hub DEGs and BPAF, suggesting potential disruptions induced by BPs. BPs exposure is associated with significant molecular and immunological changes in PCOS, impacting genes involved in hormone regulation, immune response, and metabolic pathways. The strong binding affinities between BPs and key PCOS-related genes reveal their potential role in exacerbating PCOS, providing insights for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xiaofei Wang
- Jinjiang Maternal and Child Health Hospital, Chengdu, Sichuan Province, China
| | - Penghao Li
- Jinxin Xinan Women and Children's Hospital, Sichuan Province, China
| | - Xingyu Lv
- Jinxin Xinan Women and Children's Hospital, Sichuan Province, China
| | - Ling Deng
- Jinjiang Maternal and Child Health Hospital, Chengdu, Sichuan Province, China
| | - Yan Zhou
- The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xuehong Zhang
- The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China.
| |
Collapse
|
5
|
Vitku J, Varausova A, Skodova T, Kolatorova L, Vosatkova M, Vcelak J, Vrbikova J, Simkova M, Svojtkova M. The Role of 11-Oxygenated Androgens and Endocrine Disruptors in Androgen Excess Disorders in Women. Int J Mol Sci 2024; 25:9691. [PMID: 39273637 PMCID: PMC11395667 DOI: 10.3390/ijms25179691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) and idiopathic hirsutism (IH) are androgen excess disorders requiring the determination of classic androgen levels for diagnosis. 11-oxygenated androgens have high androgenic potential, yet their clinical value in those disorders is not clear. Additionally, the role of endocrine disruptors (EDs), particularly in IH, remains understudied. We analyzed 25 steroids and 18 EDs in plasma samples from women with IH, PCOS, and controls using LC-MS/MS. Cytokine levels and metabolic parameters were assessed. Comparisons included non-obese women with PCOS (n = 10), women with IH (n = 12) and controls (n = 20), and non-obese versus obese women with PCOS (n = 9). Higher levels of 11-oxygenated androgens were observed in women with PCOS compared to those with IH, but not controls. Conversely, 11-oxygenated androgen levels were lower in women with IH compared to controls. Cytokine levels did not differ between women with IH and controls. Bisphenol A (BPA) levels were higher in obese women with PCOS compared to non-obese women with PCOS. Bisphenol S occurrence was higher in women with PCOS (90%) compared to controls (65%) and IH (50%). Significant correlations were found between androgens (11-ketotestosterone, androstenedione, testosterone) and insulin and HOMA-IR, as well as between immunomodulatory 7-oxygenated metabolites of DHEA and nine interleukins. Our data confirms that PCOS is a multiendocrine gland disorder. Higher BPA levels in obese women might exacerbate metabolic abnormalities. IH was not confirmed as an inflammatory state, and no differences in BPA levels suggest BPA does not play a role in IH pathogenesis.
Collapse
Affiliation(s)
- Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Anezka Varausova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Tereza Skodova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Michala Vosatkova
- Department of Clinical Biochemistry, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Josef Vcelak
- Department of Molecular Endocrinology, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Jana Vrbikova
- Department of Clinical Endocrinology, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Marketa Simkova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Michaela Svojtkova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| |
Collapse
|
6
|
Alyousif SSH, Ozbakir B, Ozay AC, Tulay P. The association of CYP11A1 gene polymorphisms with the polycystic ovary syndrome patients. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231293. [PMID: 39045925 PMCID: PMC11262315 DOI: 10.1590/1806-9282.20231293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE The objective of this study was to investigate the allele frequencies of polymorphisms in genes CYP11A1 rs4886595 and CYP11A1 rs4887139 that are responsible for the steroidogenesis mechanism in polycystic ovary syndrome patients and control females. METHODS Samples were obtained from the Department of Obstetrics and Gynecology in the Near East University Hospital from September 2019 to December 2019. Only the nonobese patients between the ages of 18-40 years were included in this study following informed consent. Obese patients and patients more than 40 years of age were excluded from the study. Nonobese women and normal ovulation were included in the control group. DNA was isolated from blood samples. Real-time polymerase chain reaction (PCR) was used to analyze single nucleotide polymorphisms (SNPs) in various genes linked to polycystic ovary syndrome. The studies were carried out using the samples obtained from 120 women, of whom 55 were nonobese and had normal ovulation, and 65 were polycystic ovary syndrome patients. The allelic frequencies of SNPs in genes linked to polycystic ovary syndrome were calculated using real-time PCR outcomes. RESULTS The variation of the CYP11A1 rs4887139 G>A did not show any significance, while the variation of CYP11A1 rs4886595 C>A showed significant differences between the patient and the control groups (p=0.01), respectively. CONCLUSION Future research ought to focus on elucidating the susceptible causes of polycystic ovary syndrome with a wide range of SNPs and more sample size. The genome-wide association studies in polycystic ovary syndrome patients of different origin will be important to identify candidate genes as well as proteins that are implied in polycystic ovary syndrome risk.
Collapse
Affiliation(s)
| | - Burcu Ozbakir
- Near East University, Faculty of Medicine, Department of Obstetrics and Gynecology – Nicosia, Cyprus
- Near East University, DESAM Research Institute – Nicosia, Cyprus
| | - Ali Cenk Ozay
- Cyprus International University, Department of Obstetrics and Gynecology – Nicosia, Cyprus
| | - Pinar Tulay
- Near East University, Faculty of Medicine, Department of Medical Genetics – Nicosia, Cyprus
- Near East University, DESAM Research Institute – Nicosia, Cyprus
- Near East University, Center of Excellence, Genetics and Cancer Diagnosis-Research Center – Nicosia, Cyprus
| |
Collapse
|
7
|
Busari KA, Tulay P. Polycystic ovary syndrome: emerging stem cell therapies. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231436. [PMID: 39045951 PMCID: PMC11288272 DOI: 10.1590/1806-9282.20231436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 07/25/2024]
Affiliation(s)
- Karimat Adeola Busari
- Near East University, Faculty of Medicine, Department of Medical Genetics – Nicosia, Cyprus
| | - Pinar Tulay
- Near East University, Faculty of Medicine, Department of Medical Genetics – Nicosia, Cyprus
- Near East University, DESAM Research Institute – Nicosia, Cyprus
- Near East University, Center of Excellence, Genetics and Cancer Diagnosis-Research Center – Nicosia, Cyprus
| |
Collapse
|
8
|
Qi T, Jing D, Zhang K, Shi J, Qiu H, Kan C, Han F, Wu C, Sun X. Environmental toxicology of bisphenol A: Mechanistic insights and clinical implications on the neuroendocrine system. Behav Brain Res 2024; 460:114840. [PMID: 38157990 DOI: 10.1016/j.bbr.2023.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol A (BPA) is a widely used environmental estrogen found in a variety of products, including food packaging, canned goods, baby bottle soothers, reusable cups, medical devices, tableware, dental sealants, and other consumer goods. This substance has been found to have detrimental effects on both the environment and human health, particularly on the reproductive, immune, embryonic development, nervous, endocrine, and respiratory systems. This paper aims to provide a comprehensive review of the effects of BPA on the neuroendocrine system, with a primary focus on its impact on the brain, neurons, oligodendrocytes, neural stem cell proliferation, DNA damage, and behavioral development. Additionally, the review explores the clinical implications of BPA, specifically examining its role in the onset and progression of various diseases associated with the neuroendocrine metabolic system. By delving into the mechanistic analysis and clinical implications, this review aims to serve as a valuable resource for studying the impacts of BPA exposure on organisms.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Dongqing Jing
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chunyan Wu
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
9
|
Sabry R, Gallo JF, Rooney C, Scandlan OLM, Davis OS, Amin S, Faghih M, Karnis M, Neal MS, Favetta LA. Genetic and Epigenetic Profiles of Polycystic Ovarian Syndrome and In Vitro Bisphenol Exposure in a Human Granulosa Cell Model. Biomedicines 2024; 12:237. [PMID: 38275408 PMCID: PMC10813104 DOI: 10.3390/biomedicines12010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Higher levels of bisphenols are found in granulosa cells of women with polycystic ovary syndrome (PCOS), posing the question: Is bisphenol exposure linked to PCOS pathophysiology? Human granulosa cells were obtained from women with and without PCOS, and genes and microRNAs associated with PCOS were investigated. The first phase compared healthy women and those with PCOS, revealing distinct patterns: PCOS subjects had lower 11β-HSD1 (p = 0.0217) and CYP11A1 (p = 0.0114) levels and elevated miR-21 expression (p = 0.02535), elucidating the molecular landscape of PCOS, and emphasizing key players in its pathogenesis. The second phase focused on healthy women, examining the impact of bisphenols (BPA, BPS, BPF) on the same genes. Results revealed alterations in gene expression profiles, with BPS exposure increasing 11β-HSD1 (p = 0.02821) and miR-21 (p = 0.01515) expression, with the latest mirroring patterns in women with PCOS. BPA exposure led to elevated androgen receptor (AR) expression (p = 0.0298), while BPF exposure was associated with higher levels of miR-155. Of particular interest was the parallel epigenetic expression profile between BPS and PCOS, suggesting a potential link. These results contribute valuable insights into the nuanced impact of bisphenol exposure on granulosa cell genes, allowing the study to speculate potential shared mechanisms with the pathophysiology of PCOS.
Collapse
Affiliation(s)
- Reem Sabry
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Jenna F. Gallo
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
| | - Charlie Rooney
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Olivia L. M. Scandlan
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Ola S. Davis
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Shilpa Amin
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Mehrnoosh Faghih
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Megan Karnis
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael S. Neal
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Laura A. Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| |
Collapse
|