1
|
Pharmacologic Treatment Options for Insomnia in Patients with Schizophrenia. MEDICINES 2018; 5:medicines5030088. [PMID: 30103483 PMCID: PMC6165340 DOI: 10.3390/medicines5030088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 11/18/2022]
Abstract
Background: Symptoms of sleep disorders, such as disturbances in sleep initiation and continuity, are commonly reported in patients with schizophrenia, especially in the acute phase of illness. Studies have shown that up to 80% of patients diagnosed with schizophrenia report symptoms of insomnia. Sleep disturbances have been shown to increase the risk of cognitive dysfunction and relapse in patients with schizophrenia. Currently, there are no medications approved specifically for the treatment of insomnia in patients with schizophrenia. Methods: A literature search was performed through OVID and PubMed to compile publications of pharmacotherapy options studied to treat insomnia in patients with schizophrenia. Articles were reviewed from 1 January 2000 through 1 March 2018 with some additional earlier articles selected if deemed by the authors to be particularly relevant. Results: Pharmacotherapies collected from the search results that were reviewed and evaluated included melatonin, eszopiclone, sodium oxybate, and antipsychotics. Conclusions: Overall, this review confirmed that there are a few evidence-based options to treat insomnia in patients with schizophrenia, including selecting a more sedating second-generation antipsychotic such as paliperidone, or adding melatonin or eszopiclone. Further randomized controlled trials are needed.
Collapse
|
2
|
Tucci M, Stocchero G, Pertile R, Favretto D. Detection of GHB at low levels in non-spiked beverages using solid phase extraction and gas chromatography–mass spectrometry. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2017. [DOI: 10.1016/j.toxac.2016.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Hassan Z, Bosch OG, Singh D, Narayanan S, Kasinather BV, Seifritz E, Kornhuber J, Quednow BB, Müller CP. Novel Psychoactive Substances-Recent Progress on Neuropharmacological Mechanisms of Action for Selected Drugs. Front Psychiatry 2017; 8:152. [PMID: 28868040 PMCID: PMC5563308 DOI: 10.3389/fpsyt.2017.00152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022] Open
Abstract
A feature of human culture is that we can learn to consume chemical compounds, derived from natural plants or synthetic fabrication, for their psychoactive effects. These drugs change the mental state and/or the behavioral performance of an individual and can be instrumentalized for various purposes. After the emergence of a novel psychoactive substance (NPS) and a period of experimental consumption, personal and medical benefits and harm potential of the NPS can be estimated on evidence base. This may lead to a legal classification of the NPS, which may range from limited medical use, controlled availability up to a complete ban of the drug form publically accepted use. With these measures, however, a drug does not disappear, but frequently continues to be used, which eventually allows an even better estimate of the drug's properties. Thus, only in rare cases, there is a final verdict that is no more questioned. Instead, the view on a drug can change from tolerable to harmful but may also involve the new establishment of a desired medical application to a previously harmful drug. Here, we provide a summary review on a number of NPS for which the neuropharmacological evaluation has made important progress in recent years. They include mitragynine ("Kratom"), synthetic cannabinoids (e.g., "Spice"), dimethyltryptamine and novel serotonergic hallucinogens, the cathinones mephedrone and methylone, ketamine and novel dissociative drugs, γ-hydroxybutyrate, γ-butyrolactone, and 1,4-butanediol. This review shows not only emerging harm potentials but also some potential medical applications.
Collapse
Affiliation(s)
- Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Suresh Narayanan
- School of Social Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | | | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
4
|
Bosch OG, Seifritz E. The behavioural profile of gamma-hydroxybutyrate, gamma-butyrolactone and 1,4-butanediol in humans. Brain Res Bull 2016; 126:47-60. [PMID: 26855327 DOI: 10.1016/j.brainresbull.2016.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 01/24/2023]
Abstract
Gamma-hydroxybutyrate (GHB) is a putative neurotransmitter, a drug of abuse, and a medical treatment for narcolepsy and other neuropsychiatric disorders. Its precursors gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD) are endogenously converted to GHB and thereby exert their psychobehavioural effects. In humans, GHB has a wide spectrum of properties ranging from stimulation and euphoria in lower doses, to sedation, deep sleep, and coma after ingestion of high doses. However, behavioural studies in healthy volunteers remain scarce and are usually limited to psychomotor performance testing. Most available data arise from either qualitative studies with illicit users or clinical trials examining therapeutic properties of GHB (then usually termed sodium oxybate). Here, we present an overview of the behavioural effects of GHB, GBL, and 1,4-BD in these three populations. GHB and its precursors strongly influence behaviours related to core human autonomic functions such as control of food intake, sexual behaviour, and sleep-wake regulation. These effects are instrumentalised by illicit users and clinically utilised in neuropsychiatric disorders such as narcolepsy, fibromyalgia, and binge-eating syndrome. Considering the industry withdrawal from psychopharmacology development, repurposing of drugs according to their behavioural and clinical profiles has gained increasing relevance. As such, GHB seems to be an attractive candidate as an experimental therapeutic in depression.
Collapse
Affiliation(s)
- Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Zurich University Hospital for Psychiatry, Lenggstrasse 31, 8032 Zurich, Switzerland.
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Zurich University Hospital for Psychiatry, Lenggstrasse 31, 8032 Zurich, Switzerland
| |
Collapse
|
5
|
Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin. Eur J Pharmacol 2014; 740:570-7. [PMID: 24973695 DOI: 10.1016/j.ejphar.2014.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/21/2022]
Abstract
γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive allosteric modulator of GABA function at δ-containing GABAA receptors, and the naturally occurring flavonoid catechin. These compounds increased [3H]NCS-382 binding to 185-272% in high micromolar concentrations. Monastrol and (+)-catechin significantly reduced [3H]NCS-382 dissociation rates and induced conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed modulation was critically probe-dependent. Both monastrol and (+)-catechin were agonists at recombinant α4β3δ receptors expressed in Xenopus laevis oocytes. When monastrol and GHB were co-applied no changes were seen compared to the individual responses. In summary, we have identified the compounds monastrol and catechin as the first allosteric modulators of GHB high-affinity binding sites. Despite their relatively weak affinity, these compounds may aid in further characterization of the GHB high-affinity sites that are likely to represent certain GABAA receptors.
Collapse
|
6
|
He B, Bi K, Jia Y, Wang J, Lv C, Liu R, Zhao L, Xu H, Chen X, Li Q. Rapid analysis of neurotransmitters in rat brain using ultra-fast liquid chromatography and tandem mass spectrometry: application to a comparative study in normal and insomnic rats. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:969-78. [PMID: 23893645 DOI: 10.1002/jms.3243] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/22/2013] [Accepted: 06/03/2013] [Indexed: 05/24/2023]
Abstract
Neurotransmitters and their metabolites in central nervous system were known to play a significant role in sedation and hypnosis. A rapid and sensitive UFLC-MS/MS method for simultaneous determination of serotonin, 5-hydroxyindole acetic acid (5-HIAA), tryptophan (Try), dopamine (DA), norepinephrine (NE), γ-aminobutyric acid (GABA), glutamic acid (Glu) and acetylcholine (Ach) in rat brain without derivatization, ion-pairing reagent or pre-concentration was developed. Analytes and IS were separated on a Inertsil ODS-EP column (150 mm × 4.6 mm, 5 µm particles) and analyzed in a single chromatographic run in less than 9.0 min, using gradient elution with the mobile phase consisting of methanol and 0.01% acetic acid in water at a flow rate of 1.2 ml min(-1) . The detection of the analytes was performed on 4000Q UFLC-MS/MS system with turbo ion spray source in positive ion and multiple reaction monitoring mode. The developed method provided excellent linear calibration curves for the assay of analytes (R(2) ≥ 0.9915). Limits of quantification were in the range of 1.0 ng ml(-1) to 1.0 µg ml(-1) for the analytes in rat brain. Intra- and inter-day precision and accuracy of analytes were well within acceptance criteria (15%). Mean extraction recoveries of analytes and IS from rat brain were all more than 80.0%. Furthermore, the validated method was successfully applied to comparing profiles of analytes in normal and insomnic rat brains. Results indicated that there were statistically significant differences for serotonin, 5-HIAA, DA, NE, Glu and Ach, but no significant difference for Try and GABA between two groups.
Collapse
Affiliation(s)
- Bosai He
- Laboratory co-established by the province and the state, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Comparative study of equimolar doses of gamma-hydroxybutyrate (GHB), 1,4-butanediol (1,4-BD) and gamma-butyrolactone (GBL) on catalepsy after acute and chronic administration. Food Chem Toxicol 2012; 51:337-42. [PMID: 23104245 DOI: 10.1016/j.fct.2012.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/01/2012] [Accepted: 10/12/2012] [Indexed: 11/21/2022]
Abstract
Gamma-hydroxybutyrate (GHB), and its precursors 1,4-butanediol (1,4-BD) and gamma-butyrolactone (GBL) are known drugs of abuse. The ability of acute and chronic administration of equimolar doses of GHB (200mg/kg), 1,4-BD (174mg/kg) and GBL (166mg/kg) to produce catalepsy in male Swiss Webster mice was examined. GHB, 1,4-BD, GBL produced catalepsy when injected acutely. Drug treatment was then continued for 14days. Tolerance development was determined on days 6, 14, and challenged with a higher dose on day 15 in those chronically pretreated mice, and compared with naïve mice. Chronic GHB produced tolerance to catalepsy, as evidenced from area under the curve (AUC) of catalepsy versus time (min-sec) on days 6 (678±254), 14 (272±247), which were less than those on day 1 (1923±269). However, less tolerance was seen from GBL or 1,4-BD, as AUCs on days 6 and 14 were not significantly lower than that of day 1. In conclusion, although equimolar doses were used, expecting similar levels of GHB in the body, 1,4-BD and GBL shared only some of the in vivo effects of GHB. The rate of metabolic conversion of 1,4-BD and GBL into GHB might be responsible for the differences in the tolerance development to these drugs.
Collapse
|
8
|
Bosch OG, Quednow BB, Seifritz E, Wetter TC. Reconsidering GHB: orphan drug or new model antidepressant? J Psychopharmacol 2012; 26:618-28. [PMID: 21926421 DOI: 10.1177/0269881111421975] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For six decades, the principal mode of action of antidepressant drugs is the inhibition of monoamine re-uptake from the synaptic cleft. Tricyclic antidepressants, selective serotonin re-uptake inhibitors (SSRIs) and the new generation of dual antidepressants all exert their antidepressant effects by this mechanism. In the early days of the monoaminergic era, other efforts have been made to ameliorate the symptoms of depression by pharmacological means. The gamma-aminobutyric acid (GABA) system was and possibly still is one of the main alternative drug targets. Gammahydroxybutyrate (GHB) was developed as an orally active GABA analogue. It was tested in animal models of depression and human studies. The effects on sleep, agitation, anhedonia and depression were promising. However, the rise of benzodiazepines and tricyclic antidepressants brought GHB out of the scope of possible treatment alternatives. GHB is a GABA(B) and GHB receptor agonist with a unique spectrum of behavioural, neuroendocrine and sleep effects, and improves daytime sleepiness in various disorders such as narcolepsy, Parkinson's disease and fibromyalgia. Although it was banned from the US market at the end of the 1990s because of its abuse and overdose potential, it later was approved for the treatment of narcolepsy. New research methods and an extended view on other neurotransmitter systems as possible treatment targets of antidepressant treatment brought GHB back to the scene. This article discusses the unique neurobiological effects of GHB, its misuse potential and possible role as a model substance for the development of novel pharmacological treatment strategies in depressive disorders.
Collapse
Affiliation(s)
- Oliver G Bosch
- Clinic of Affective Disorders and General Psychiatry, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
9
|
Swick TJ. Sodium oxybate: a potential new pharmacological option for the treatment of fibromyalgia syndrome. Ther Adv Musculoskelet Dis 2011; 3:167-78. [PMID: 22870476 PMCID: PMC3382678 DOI: 10.1177/1759720x11411599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fibromyalgia syndrome (FMS) is a common disorder, characterized by diffuse pain and tenderness, stiffness, fatigue, affective disorders and significant sleep pathology. A new set of diagnostic criteria have been developed which should make it easier for a busy clinician to diagnose the condition. US Food and Drug Administration (FDA) approved medications for the treatment of FMS have, for the most part, been geared to modulate the pain pathways to give the patient some degree of relief. A different kind of pharmacological agent, sodium oxybate (SXB), is described that is currently approved for the treatment of excessive daytime sleepiness and cataplexy in patients with narcolepsy. SXB, an endogenous metabolite of the inhibitory neurotransmitter gamma-hydroxybutyrate, is thought to act independently as a neurotransmitter with a presumed ability to modulate numerous other central nervous system neurotransmitters. In addition SXB has been shown to robustly increase slow wave sleep and decrease sleep fragmentation. Several large clinical trials have demonstrated SXB's ability to statistically improve pain, fatigue and a wide array of quality of life measurements of patients with fibromyalgia. SXB is not FDA approved to treat fibromyalgia.
Collapse
Affiliation(s)
- Todd J. Swick
- The Houston Sleep Center, 7500 San Felipe, Houston, TX 77063, USA.
| |
Collapse
|
10
|
Zvosec DL, Smith SW. Commenting on"a review of tolerability and abuse liability of gamma-hydroxybutyric acid for insomnia in patients with schizophrenia," by Kantrowitzet al. Clin Ther 2010; 32:780-785. [PMID: 20435247 DOI: 10.1016/j.clinthera.2010.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|