1
|
Obraitis D, Li D. Blood virome research in myalgic encephalomyelitis/chronic fatigue syndrome: challenges and opportunities. Curr Opin Virol 2024; 68-69:101437. [PMID: 39537445 DOI: 10.1016/j.coviro.2024.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/22/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with a complex clinical presentation and an unknown etiology. Various viral infections have been proposed as potential triggers of ME/CFS onset, but no specific pathogen has been identified in all cases of postinfectious ME/CFS. The symptomatology of the postacute sequelae of SARS-CoV-2, or long COVID, mirrors that of ME/CFS, with nearly half of long COVID patients meeting ME/CFS diagnostic criteria. The influx of newly diagnosed patients has reinvigorated interest in ME/CFS pathogenesis research, with an emphasis on viral triggers. This review summarizes the current understanding of ME/CFS research on viral triggers, including blood virome screening studies. To further elucidate the molecular basis of ME/CFS, there is a need to develop innovative bioinformatics tools capable of analyzing complex virome data and integrating multiomics information.
Collapse
Affiliation(s)
- Dominic Obraitis
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neuroscience and Behavior Program, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Dawei Li
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Apostolou E, Rosén A. Epigenetic reprograming in myalgic encephalomyelitis/chronic fatigue syndrome: A narrative of latent viruses. J Intern Med 2024; 296:93-115. [PMID: 38693641 DOI: 10.1111/joim.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic disease presenting with severe fatigue, post-exertional malaise, and cognitive disturbances-among a spectrum of symptoms-that collectively render the patient housebound or bedbound. Epigenetic studies in ME/CFS collectively confirm alterations and/or malfunctions in cellular and organismal physiology associated with immune responses, cellular metabolism, cell death and proliferation, and neuronal and endothelial cell function. The sudden onset of ME/CFS follows a major stress factor that, in approximately 70% of cases, involves viral infection, and ME/CFS symptoms overlap with those of long COVID. Viruses primarily linked to ME/CFS pathology are the symbiotic herpesviruses, which follow a bivalent latent-lytic lifecycle. The complex interaction between viruses and hosts involves strategies from both sides: immune evasion and persistence by the viruses, and immune activation and viral clearance by the host. This dynamic interaction is imperative for herpesviruses that facilitate their persistence through epigenetic regulation of their own and the host genome. In the current article, we provide an overview of the epigenetic signatures demonstrated in ME/CFS and focus on the potential strategies that latent viruses-particularly Epstein-Barr virus-may employ in long-term epigenetic reprograming in ME/CFS. Epigenetic studies could aid in elucidating relevant biological pathways impacted in ME/CFS and reflect the physiological variations among the patients that stem from environmental triggers, including exogenous viruses and/or altered viral activity.
Collapse
Affiliation(s)
- Eirini Apostolou
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anders Rosén
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Xiong R, Fleming E, Caldwell R, Vernon SD, Kozhaya L, Gunter C, Bateman L, Unutmaz D, Oh J. BioMapAI: Artificial Intelligence Multi-Omics Modeling of Myalgic Encephalomyelitis / Chronic Fatigue Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600378. [PMID: 38979186 PMCID: PMC11230215 DOI: 10.1101/2024.06.24.600378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Chronic diseases like ME/CFS and long COVID exhibit high heterogeneity with multifactorial etiology and progression, complicating diagnosis and treatment. To address this, we developed BioMapAI, an explainable Deep Learning framework using the richest longitudinal multi-'omics dataset for ME/CFS to date. This dataset includes gut metagenomics, plasma metabolome, immune profiling, blood labs, and clinical symptoms. By connecting multi-'omics to asymptom matrix, BioMapAI identified both disease- and symptom-specific biomarkers, reconstructed symptoms, and achieved state-of-the-art precision in disease classification. We also created the first connectivity map of these 'omics in both healthy and disease states and revealed how microbiome-immune-metabolome crosstalk shifted from healthy to ME/CFS. Thus, we proposed several innovative mechanistic hypotheses for ME/CFS: Disrupted microbial functions - SCFA (butyrate), BCAA (amino acid), tryptophan, benzoate - lost connection with plasma lipids and bile acids, and activated inflammatory and mucosal immune cells (MAIT, γδT cells) with INFγ and GzA secretion. These abnormal dynamics are linked to key disease symptoms, including gastrointestinal issues, fatigue, and sleep problems.
Collapse
Affiliation(s)
- Ruoyun Xiong
- The Jackson Laboratory, Farmington, Connecticut, USA. 06032
- The University of Connecticut Health Center, Farmington, Connecticut, USA. 06030
| | | | - Ryan Caldwell
- The Jackson Laboratory, Farmington, Connecticut, USA. 06032
| | | | - Lina Kozhaya
- The Jackson Laboratory, Farmington, Connecticut, USA. 06032
| | - Courtney Gunter
- The Jackson Laboratory, Farmington, Connecticut, USA. 06032
- The University of Connecticut Health Center, Farmington, Connecticut, USA. 06030
| | | | - Derya Unutmaz
- The Jackson Laboratory, Farmington, Connecticut, USA. 06032
| | - Julia Oh
- The Jackson Laboratory, Farmington, Connecticut, USA. 06032
| |
Collapse
|
4
|
Pietrangelo T, Cagnin S, Bondi D, Santangelo C, Marramiero L, Purcaro C, Bonadio RS, Di Filippo ES, Mancinelli R, Fulle S, Verratti V, Cheng X. Myalgic encephalomyelitis/chronic fatigue syndrome from current evidence to new diagnostic perspectives through skeletal muscle and metabolic disturbances. Acta Physiol (Oxf) 2024; 240:e14122. [PMID: 38483046 DOI: 10.1111/apha.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a demanding medical condition for patients and society. It has raised much more public awareness after the COVID-19 pandemic since ME/CFS and long-COVID patients share many clinical symptoms such as debilitating chronic fatigue. However, unlike long COVID, the etiopathology of ME/CFS remains a mystery despite several decades' research. This review moves from pathophysiology of ME/CFS through the compelling evidence and most interesting hypotheses. It focuses on the pathophysiology of skeletal muscle by proposing the hypothesis that skeletal muscle tissue offers novel opportunities for diagnosis and treatment of this syndrome and that new evidence can help resolve the long-standing debate on terminology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padua, Padova, Italy
- CIR-Myo Myology Center, University of Padua, Padova, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Cristina Purcaro
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Xuanhong Cheng
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
5
|
Fonseca A, Szysz M, Ly HT, Cordeiro C, Sepúlveda N. IgG Antibody Responses to Epstein-Barr Virus in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Their Effective Potential for Disease Diagnosis and Pathological Antigenic Mimicry. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:161. [PMID: 38256421 PMCID: PMC10820613 DOI: 10.3390/medicina60010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Background and Objectives: The diagnosis and pathology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) remain under debate. However, there is a growing body of evidence for an autoimmune component in ME/CFS caused by the Epstein-Barr virus (EBV) and other viral infections. Materials and Methods: In this work, we analyzed a large public dataset on the IgG antibodies to 3054 EBV peptides to understand whether these immune responses could help diagnose patients and trigger pathological autoimmunity; we used healthy controls (HCs) as a comparator cohort. Subsequently, we aimed at predicting the disease status of the study participants using a super learner algorithm targeting an accuracy of 85% when splitting data into train and test datasets. Results: When we compared the data of all ME/CFS patients or the data of a subgroup of those patients with non-infectious or unknown disease triggers to the data of the HC, we could not find an antibody-based classifier that would meet the desired accuracy in the test dataset. However, we could identify a 26-antibody classifier that could distinguish ME/CFS patients with an infectious disease trigger from the HCs with 100% and 90% accuracies in the train and test sets, respectively. We finally performed a bioinformatic analysis of the EBV peptides associated with these 26 antibodies. We found no correlation between the importance metric of the selected antibodies in the classifier and the maximal sequence homology between human proteins and each EBV peptide recognized by these antibodies. Conclusions: In conclusion, these 26 antibodies against EBV have an effective potential for disease diagnosis in a subset of patients. However, the peptides associated with these antibodies are less likely to induce autoimmune B-cell responses that could explain the pathogenesis of ME/CFS.
Collapse
Affiliation(s)
- André Fonseca
- Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal; (A.F.); (C.C.)
- CEAUL—Centre of Statistics and its Applications, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Mateusz Szysz
- Faculty of Mathematics & Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland; (M.S.); (H.T.L.)
| | - Hoang Thien Ly
- Faculty of Mathematics & Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland; (M.S.); (H.T.L.)
| | - Clara Cordeiro
- Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal; (A.F.); (C.C.)
- CEAUL—Centre of Statistics and its Applications, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Nuno Sepúlveda
- CEAUL—Centre of Statistics and its Applications, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Faculty of Mathematics & Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland; (M.S.); (H.T.L.)
| |
Collapse
|
6
|
Markwart M, Felsenstein D, Mehta DH, Sethi S, Tsuchiyose E, Lydson M, Yeh GY, Hall DL. Qigong and Tai Chi for ME/CFS: A Systematic Review of Randomized Controlled Trials. GLOBAL ADVANCES IN INTEGRATIVE MEDICINE AND HEALTH 2024; 13:27536130241275607. [PMID: 39524182 PMCID: PMC11544658 DOI: 10.1177/27536130241275607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 11/16/2024]
Abstract
Objective Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating illness with symptoms such as post-exertional malaise and cognitive dysfunction that can be challenging for patients to manage independently. Randomized controlled trials (RCTs) have examined mind-body and psychological approaches that teach patients coping skills for mitigating ME/CFS symptoms, including emerging literature on Qigong or Tai Chi instruction programs. This systematic review aims to summarize the characteristics of these trials and highlight potential areas for future optimization and refinement. Methods Ovid MEDLINE, Embase.com, Web of Science Core Collection, Cochrane CENTRAL, PsycINFO via Ovid, and ClinicalTrials.gov were searched in April 2023 using controlled vocabulary and keywords for the following eligibility criteria: Sample (ME/CFS), Design (RCT), Behavioral Intervention (mind-body or psychological interventions). Data extraction and reporting followed Cochrane and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results "Qigong" and "Tai Chi" yielded 142 and 80 abstracts, respectively. Of the 222 abstracts, full texts were available for 5 RCTs of Qigong (k = 5; N = 481). Notably, no trials of Tai Chi utilized a randomized control design. Among the 5 Qigong RCTs, the publication range was from 2012 to 2023. Details regarding intervention components and effects were summarized. Qigong intervention sessions (median = 12, mode = 10, 12) tended to last between 1-2 hours and occur across 5-12 weeks (median = 7, mode = 5). The Qigong interventions were all delivered in groups and incorporated at-home practice. Daily practice was a requirement (k = 4) or an advisement (k = 1). Patient-reported outcomes suggest an emerging evidence base for diffuse benefits on physical and emotional health outcomes. Conclusions Qigong interventions are promising, yet relatively understudied, in improving ME/CFS symptom severity and frequency. Future trials must implement standardized eligibility criteria for ME/CFS history, integrate Qigong or Tai Chi with other empirically supported mind-body and psychological practices, and assess long-term resiliency outcomes relevant to ME/CFS survivorship.
Collapse
Affiliation(s)
- Michaela Markwart
- Departments of Psychiatry and Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Donna Felsenstein
- Departments of Psychiatry and Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| | - Darshan H. Mehta
- Departments of Psychiatry and Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
- Osher Center for Integrative Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Samreen Sethi
- Departments of Psychiatry and Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Erika Tsuchiyose
- Departments of Psychiatry and Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Melis Lydson
- Treadwell Library, Massachusetts General Hospital, Boston, MA, USA
| | - Gloria Y. Yeh
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel L. Hall
- Departments of Psychiatry and Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Monzón-Nomdedeu MB, Morten KJ, Oltra E. Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome. World J Stem Cells 2021; 13:1134-1150. [PMID: 34567431 PMCID: PMC8422931 DOI: 10.4252/wjsc.v13.i8.1134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are devastating metabolic neuroimmune diseases that are difficult to diagnose because of the presence of numerous symptoms and a lack of specific biomarkers. Despite patient heterogeneity linked to patient subgroups and variation in disease severity, anomalies are found in the blood and plasma of these patients when compared with healthy control groups. The seeming specificity of these “plasma factors”, as recently reported by Ron Davis and his group at Stanford University, CA, United States, and observations by our group, have led to the proposal that induced pluripotent stem cells (iPSCs) may be used as metabolic sensors for FM and ME/CFS, a hypothesis that is the basis for this in-depth review.
AIM To identify metabolic signatures in FM and/or ME/CFS supporting the existence of disease-associated plasma factors to be sensed by iPSCs.
METHODS A PRISMA (Preferred Reported Items for Systematic Reviews and Meta-analysis)-based systematic review of the literature was used to select original studies evaluating the metabolite profiles of FM and ME/CFS body fluids. The MeSH terms “metabolomic” or “metabolites” in combination with FM and ME/CFS disease terms were screened against the PubMed database. Only original studies applying omics technologies, published in English, were included. The data obtained were tabulated according to the disease and type of body fluid analyzed. Coincidences across studies were searched and P-values reported by the original studies were gathered to document significant differences found in the disease groups.
RESULTS Eighteen previous studies show that some metabolites are commonly altered in ME/CFS and FM body fluids. In vitro cell-based assays have the potential to be developed as screening platforms, providing evidence for the existence of factors in patient body fluids capable of altering morphology, differentiation state and/or growth patterns. Moreover, they can be further developed using approaches aimed at blocking or reversing the effects of specific plasma/serum factors seen in patients. The documented high sensitivity and effective responses of iPSCs to environmental cues suggests that these pluripotent cells could form robust, reproducible reporter systems of metabolic diseases, including ME/CFS and FM. Furthermore, culturing iPSCs, or their mesenchymal stem cell counterparts, in patient-conditioned medium may provide valuable information to predict individual outcomes to stem-cell therapy in the context of precision medicine studies.
CONCLUSION This opinion review explains our hypothesis that iPSCs could be developed as a screening platform to provide evidence of a metabolic imbalance in FM and ME/CFS.
Collapse
Affiliation(s)
- María B Monzón-Nomdedeu
- School of Biotechnology, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain
| | - Karl J Morten
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Elisa Oltra
- Department of Pathology, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain
| |
Collapse
|
8
|
Malato J, Sotzny F, Bauer S, Freitag H, Fonseca A, Grabowska AD, Graça L, Cordeiro C, Nacul L, Lacerda EM, Castro-Marrero J, Scheibenbogen C, Westermeier F, Sepúlveda N. The SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) in myalgic encephalomyelitis/chronic fatigue syndrome: A meta-analysis of public DNA methylation and gene expression data. Heliyon 2021; 7:e07665. [PMID: 34341773 PMCID: PMC8320404 DOI: 10.1016/j.heliyon.2021.e07665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/23/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
People with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) often report a high frequency of viral infections and flu-like symptoms during their disease course. Given that this reporting agrees with different immunological abnormalities and altered gene expression profiles observed in the disease, we aimed at answering whether the expression of the human angiotensin-converting enzyme 2 (ACE2), the major cell entry receptor for SARS-CoV-2, is also altered in these patients. In particular, a low expression of ACE2 could be indicative of a high risk of developing COVID-19. We then performed a meta-analysis of public data on CpG DNA methylation and gene expression of this enzyme and its homologous ACE protein in peripheral blood mononuclear cells and related subsets. We found that patients with ME/CFS have decreased methylation levels of four CpG probes in the ACE locus (cg09920557, cg19802564, cg21094739, and cg10468385) and of another probe in the promoter region of the ACE2 gene (cg08559914). We also found a decreased expression of ACE2 but not of ACE in patients when compared to healthy controls. Accordingly, in newly collected data, there was evidence for a significant higher proportion of samples with an ACE2 expression below the limit of detection in patients than healthy controls. Altogether, patients with ME/CFS can be at a higher COVID-19 risk and, if so, they should be considered a priority group for vaccination by public health authorities. To further support this conclusion, similar research is recommended for other human cell entry receptors and cell types, namely, those cells targeted by the virus.
Collapse
Affiliation(s)
- João Malato
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- CEAUL – Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Franziska Sotzny
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Sandra Bauer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Helma Freitag
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - André Fonseca
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - Anna D. Grabowska
- Department of Biophysics, Physiology, and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Luís Graça
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Clara Cordeiro
- CEAUL – Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - Luís Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Complex Chronic Diseases Program, British Columbia Women's Hospital and Health Centre, Vancouver, British Columbia, Canada
| | - Eliana M. Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jesus Castro-Marrero
- Vall d’Hebron Hospital Research Institute, Division of Rheumatology, ME/CFS Unit, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Scheibenbogen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Francisco Westermeier
- Institute of Biomedical Science, Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O´Higgins, Santiago, Chile
| | - Nuno Sepúlveda
- CEAUL – Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
9
|
Malato J, Sotzny F, Bauer S, Freitag H, Fonseca A, Grabowska AD, Graça L, Cordeiro C, Nacul L, Lacerda EM, Castro-Marrero J, Scheibenbogen C, Westermeier F, Sepúlveda N. The SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: analysis of high-throughput epigenetic and gene expression studies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.23.21254175. [PMID: 33791744 PMCID: PMC8010776 DOI: 10.1101/2021.03.23.21254175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients affected by Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) show specific epigenetic and gene expression signatures of the disease. However, it is unknown whether these signatures include abnormal levels of the human angiotensin-converting enzymes, ACE and ACE2, the latter being the main receptor described for the host-cell invasion by SARS-CoV-2. To investigate that, we first re-analyzed available case-control epigenome-wide association studies based on DNA methylation data, and case-control gene expression studies based on microarray data. From these published studies, we found an association between ME/CFS and 4 potentially hypomethylated probes located in the ACE locus. We also found another disease association with one hypomethylated probe located in the transcription start site of ACE2. The same disease associations were obtained for women but not for men after performing sex-specific analyses. In contrast, a meta-analysis of gene expression levels could not provide evidence for a differentially expression of ACE and ACE2 in affected patients when compared to healthy controls. In line with this negative finding, the analysis of a new data set on the gene expression of ACE and ACE2 in peripheral blood mononuclear cells did not find any differences between a female cohort of 37 patients and 34 age-matched healthy controls. Future studies should be conducted to extend this investigation to other potential receptors used by SARS-CoV-2. These studies will help researchers and clinicians to improve the understanding of the health risk imposed by this virus when infecting patients affected by this debilitating disease.
Collapse
Affiliation(s)
- João Malato
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- CEAUL – Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Franziska Sotzny
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Sandra Bauer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Helma Freitag
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - André Fonseca
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - Anna D Grabowska
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Luís Graça
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Clara Cordeiro
- CEAUL – Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - Luís Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Complex Chronic Diseases Program, British Columbia Women’s Hospital and Health Centre, Vancouver, British Columbia, Canada
| | - Eliana M Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jesus Castro-Marrero
- Vall d’Hebron Hospital Research Institute, Division of Rheumatology, ME/CFS Unit, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Scheibenbogen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Francisco Westermeier
- Institute of Biomedical Science, FH Joanneum University of Applied Sciences, Graz, Austria
- Centro de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Nuno Sepúlveda
- CEAUL – Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
10
|
Recursive ensemble feature selection provides a robust mRNA expression signature for myalgic encephalomyelitis/chronic fatigue syndrome. Sci Rep 2021; 11:4541. [PMID: 33633136 PMCID: PMC7907358 DOI: 10.1038/s41598-021-83660-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic disorder characterized by disabling fatigue. Several studies have sought to identify diagnostic biomarkers, with varying results. Here, we innovate this process by combining both mRNA expression and DNA methylation data. We performed recursive ensemble feature selection (REFS) on publicly available mRNA expression data in peripheral blood mononuclear cells (PBMCs) of 93 ME/CFS patients and 25 healthy controls, and found a signature of 23 genes capable of distinguishing cases and controls. REFS highly outperformed other methods, with an AUC of 0.92. We validated the results on a different platform (AUC of 0.95) and in DNA methylation data obtained from four public studies on ME/CFS (99 patients and 50 controls), identifying 48 gene-associated CpGs that predicted disease status as well (AUC of 0.97). Finally, ten of the 23 genes could be interpreted in the context of the derailed immune system of ME/CFS.
Collapse
|
11
|
Dysregulated Provision of Oxidisable Substrates to the Mitochondria in ME/CFS Lymphoblasts. Int J Mol Sci 2021; 22:ijms22042046. [PMID: 33669532 PMCID: PMC7921983 DOI: 10.3390/ijms22042046] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Although understanding of the biomedical basis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is growing, the underlying pathological mechanisms remain uncertain. We recently reported a reduction in the proportion of basal oxygen consumption due to ATP synthesis by Complex V in ME/CFS patient-derived lymphoblast cell lines, suggesting mitochondrial respiratory inefficiency. This was accompanied by elevated respiratory capacity, elevated mammalian target of rapamycin complex 1 (mTORC1) signaling activity and elevated expression of enzymes involved in the TCA cycle, fatty acid β-oxidation and mitochondrial transport. These and other observations led us to hypothesise the dysregulation of pathways providing the mitochondria with oxidisable substrates. In our current study, we aimed to revisit this hypothesis by applying a combination of whole-cell transcriptomics, proteomics and energy stress signaling activity measures using subsets of up to 34 ME/CFS and 31 healthy control lymphoblast cell lines from our growing library. While levels of glycolytic enzymes were unchanged in accordance with our previous observations of unaltered glycolytic rates, the whole-cell proteomes of ME/CFS lymphoblasts contained elevated levels of enzymes involved in the TCA cycle (p = 1.03 × 10−4), the pentose phosphate pathway (p = 0.034, G6PD p = 5.5 × 10−4), mitochondrial fatty acid β-oxidation (p = 9.2 × 10−3), and degradation of amino acids including glutamine/glutamate (GLS p = 0.034, GLUD1 p = 0.048, GOT2 p = 0.026), branched-chain amino acids (BCKDHA p = 0.028, BCKDHB p = 0.031) and essential amino acids (FAH p = 0.036, GCDH p = 0.006). The activity of the major cellular energy stress sensor, AMPK, was elevated but the increase did not reach statistical significance. The results suggest that ME/CFS metabolism is dysregulated such that alternatives to glycolysis are more heavily utilised than in controls to provide the mitochondria with oxidisable substrates.
Collapse
|
12
|
Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109976. [PMID: 32470498 DOI: 10.1016/j.pnpbp.2020.109976] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
It is widely accepted that the pathophysiology and treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) could be considerably improved. The heterogeneity of ME/CFS and the confusion over its classification have undoubtedly contributed to this, although this would seem a consequence of the complexity of the array of ME/CFS presentations and high levels of diverse comorbidities. This article reviews the biological underpinnings of ME/CFS presentations, including the interacting roles of the gut microbiome/permeability, endogenous opioidergic system, immune cell mitochondria, autonomic nervous system, microRNA-155, viral infection/re-awakening and leptin as well as melatonin and the circadian rhythm. This details not only relevant pathophysiological processes and treatment options, but also highlights future research directions. Due to the complexity of interacting systems in ME/CFS pathophysiology, clarification as to its biological underpinnings is likely to considerably contribute to the understanding and treatment of other complex and poorly managed conditions, including fibromyalgia, depression, migraine, and dementia. The gut and immune cell mitochondria are proposed to be two important hubs that interact with the circadian rhythm in driving ME/CFS pathophysiology.
Collapse
Affiliation(s)
- G Anderson
- CRC Scotland & London, Eccleston Square, London, UK.
| | - M Maes
- Dept Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dept Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.; IMPACT Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
13
|
Muller AE, Tveito K, Bakken IJ, Flottorp SA, Mjaaland S, Larun L. Potential causal factors of CFS/ME: a concise and systematic scoping review of factors researched. J Transl Med 2020; 18:484. [PMID: 33317576 PMCID: PMC7734915 DOI: 10.1186/s12967-020-02665-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is understood as a complex condition, likely triggered and sustained by an interplay of biological, psychological, and social factors. Little oversight exists of the field of causal research. This systematic scoping review explores potential causal factors of CFS/ME as researched by primary studies. METHODS We searched eight databases for primary studies that examined potential causal factors of CFS/ME. Based on title/abstract review, two researchers independently sorted each study's factors into nine main categories and 71 subordinate categories, using a system developed with input given during a 2018 ME conference, specialists and representatives from a ME patient advocacy group, and using BMJ Best Practice's description of CFS/ME etiology. We also extracted data related to study design, size, diagnostic criteria and comparison groups. RESULTS We included 1161 primary studies published between January 1979 and June 2019. Based on title/abstract analysis, no single causal factor dominated in these studies, and studies reported a mean of 2.73 factors. The four most common factors were: immunological (297 studies), psychological (243), infections (198), and neuroendocrinal (198). The most frequent study designs were case-control studies (894 studies) comparing CFS/ME patients with healthy participants. More than half of the studies (that reported study size in the title/abstract) included 100 or fewer participants. CONCLUSION The field of causal hypotheses of CFS/ME is diverse, and we found that the studies examined all the main categories of possible factors that we had defined a priori. Most studies were not designed to adequately explore causality, rather to establish hypotheses. We need larger studies with stronger study designs to gain better knowledge of causal factors of CFS/ME.
Collapse
Affiliation(s)
| | - Kari Tveito
- Journal of the Norwegian Medical Association, Sentrum, PO Box 1152, 0107, Oslo, Norway
| | | | - Signe A Flottorp
- Norwegian Institute of Public Health, Skøyen, PO Box 222, 0213, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Siri Mjaaland
- Norwegian Institute of Public Health, Skøyen, PO Box 222, 0213, Oslo, Norway
| | - Lillebeth Larun
- Norwegian Institute of Public Health, Skøyen, PO Box 222, 0213, Oslo, Norway
| |
Collapse
|
14
|
Strayer DR, Young D, Mitchell WM. Effect of disease duration in a randomized Phase III trial of rintatolimod, an immune modulator for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. PLoS One 2020; 15:e0240403. [PMID: 33119613 PMCID: PMC7595369 DOI: 10.1371/journal.pone.0240403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Rintatolimod is a selective TLR3 agonist, which has demonstrated clinical activity for ME/CFS in Phase II and Phase III double-blind, placebo-controlled, randomized, multi-site clinical trials. METHODS AND FINDINGS A hypothesis-based post-hoc analysis of the Intent to Treat (ITT) population diagnosed with ME/CFS from 12 independent clinical sites of a Phase III trial was performed to evaluate the effect of rintatolimod therapy based on disease duration. The clinical activity of rintatolimod was evaluated by exercise treadmill tolerance (ETT) using a modified Bruce protocol. The ITT population (n = 208) was divided into two subsets of symptom duration. Patients with symptom duration of 2-8 years were identified as the Target Subset (n = 75); the remainder (<2 year plus >8 year) were identified as the Non-Target Subset (n = 133). Placebo-adjusted percentage improvements in exercise duration and the vertical rise for the Target Subset (n = 75) were more than twice that of the ITT population. The Non-Target Subset (n = 133) failed to show any clinically significant ETT response to rintatolimod when compared to placebo. Within the Target Subset, 51.2% of rintatolimod-treated patients improved their exercise duration by ≥25% (p = 0.003) despite reduced statistical power from division of the original ITT population into two subsets. CONCLUSION/SIGNIFICANCE Analysis of ETT from a Phase III trial has identified within the ITT population, a subset of ME/CFS patients with ≥2 fold increased exercise response to rintatolimod. Substantial improvement in physical performance was seen for the majority (51.2%) of these severely debilitated patients who improved exercise duration by ≥25%. This magnitude of exercise improvement was associated with clinically significant enhancements in quality of life. The data indicate that ME/CFS patients have a relatively short disease duration window (<8 years) to expect a significant response to rintatolimod under the dosing conditions utilized in this Phase III clinical trial. These results may have direct relevance to the cognitive impairment and fatigue being experienced by patients clinically recovered from COVID-19 and free of detectable SARS-CoV-2. TRIAL REGISTRATION ClinicalTrials.gov: NCT00215800.
Collapse
Affiliation(s)
- David R. Strayer
- AIM ImmunoTech Inc., Philadelphia, Pennsylvania, United States of America
| | - Diane Young
- AIM ImmunoTech Inc., Philadelphia, Pennsylvania, United States of America
| | - William M. Mitchell
- Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
15
|
Cheema AK, Sarria L, Bekheit M, Collado F, Almenar‐Pérez E, Martín‐Martínez E, Alegre J, Castro‐Marrero J, Fletcher MA, Klimas NG, Oltra E, Nathanson L. Unravelling myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Gender-specific changes in the microRNA expression profiling in ME/CFS. J Cell Mol Med 2020; 24:5865-5877. [PMID: 32291908 PMCID: PMC7214164 DOI: 10.1111/jcmm.15260] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem illness characterized by medically unexplained debilitating fatigue with suggested altered immunological state. Our study aimed to explore peripheral blood mononuclear cells (PBMCs) for microRNAs (miRNAs) expression in ME/CFS subjects under an exercise challenge. The findings highlight the immune response and inflammation links to differential miRNA expression in ME/CFS. The present study is particularly important in being the first to uncover the differences that exist in miRNA expression patterns in males and females with ME/CFS in response to exercise. This provides new evidence for the understanding of differential miRNA expression patterns and post-exertional malaise in ME/CFS. We also report miRNA expression pattern differences associating with the nutritional status in individuals with ME/CFS, highlighting the effect of subjects' metabolic state on molecular changes to be considered in clinical research within the NINDS/CDC ME/CFS Common Data Elements. The identification of gender-based miRNAs importantly provides new insights into gender-specific ME/CFS susceptibility and demands exploration of sex-suited ME/CFS therapeutics.
Collapse
Affiliation(s)
- Amanpreet K. Cheema
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of NutritionDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
| | - Leonor Sarria
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
| | - Mina Bekheit
- Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityFort LauderdaleFLUSA
| | - Fanny Collado
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Eloy Almenar‐Pérez
- Escuela de DoctoradoUniversidad Católica de Valencia San Vicente MártirValenciaSpain
| | | | - Jose Alegre
- Vall d'Hebron University HospitalVall d'Hebron Research InstituteUniversitat Autónoma de BarcelonaBarcelonaSpain
| | - Jesus Castro‐Marrero
- Vall d'Hebron University HospitalVall d'Hebron Research InstituteUniversitat Autónoma de BarcelonaBarcelonaSpain
| | - Mary A. Fletcher
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Nancy G. Klimas
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of Veterans AffairsMiami VA Healthcare System, Research ServiceMiamiFLUSA
- South Florida Veterans Affairs Foundation for Research and Education IncFort LauderdaleFLUSA
| | - Elisa Oltra
- School of MedicineUniversidad Católica de Valencia San Vicente MártirValenciaSpain
| | - Lubov Nathanson
- Institute for Neuro Immune MedicineDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Department of NutritionDr. Kiran C. Patel College of Osteopathic MedicineNova Southeastern UniversityFort LauderdaleFLUSA
- Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityFort LauderdaleFLUSA
| |
Collapse
|
16
|
Ovejero T, Sadones O, Sánchez-Fito T, Almenar-Pérez E, Espejo JA, Martín-Martínez E, Nathanson L, Oltra E. Activation of Transposable Elements in Immune Cells of Fibromyalgia Patients. Int J Mol Sci 2020; 21:E1366. [PMID: 32085571 PMCID: PMC7072917 DOI: 10.3390/ijms21041366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Advancements in nucleic acid sequencing technology combined with an unprecedented availability of metadata have revealed that 45% of the human genome constituted by transposable elements (TEs) is not only transcriptionally active but also physiologically necessary. Dysregulation of TEs, including human retroviral endogenous sequences (HERVs) has been shown to associate with several neurologic and autoimmune diseases, including Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). However, no study has yet addressed whether abnormal expression of these sequences correlates with fibromyalgia (FM), a disease frequently comorbid with ME/CFS. The work presented here shows, for the first time, that, in fact, HERVs of the H, K and W types are overexpressed in immune cells of FM patients with or without comorbid ME/CFS. Patients with increased HERV expression (N = 14) presented increased levels of interferon (INF-β and INF-γ) but unchanged levels of TNF-α. The findings reported in this study could explain the flu-like symptoms FM patients present with in clinical practice, in the absence of concomitant infections. Future work aimed at identifying specific genomic loci differentially affected in FM and/or ME/CFS is warranted.
Collapse
Affiliation(s)
- Tamara Ovejero
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Teresa Sánchez-Fito
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46008 Valencia, Spain; (T.S.-F.); (E.A.-P.)
| | - Eloy Almenar-Pérez
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46008 Valencia, Spain; (T.S.-F.); (E.A.-P.)
| | - José Andrés Espejo
- School of Biotechnology, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Nova Southeastern University, Ft Lauderdale, FL 33314, USA;
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
17
|
Paredes S, Cantillo S, Candido KD, Knezevic NN. An Association of Serotonin with Pain Disorders and Its Modulation by Estrogens. Int J Mol Sci 2019; 20:E5729. [PMID: 31731606 PMCID: PMC6888666 DOI: 10.3390/ijms20225729] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Ovarian hormones play an important role in pain perception, and are responsible, at least in part, for the pain threshold differences between the sexes. Modulation of pain and its perception are mediated by neurochemical changes in several pathways, affecting both the central and peripheral nervous systems. One of the most studied neurotransmitters related to pain disorders is serotonin. Estrogen can modify serotonin synthesis and metabolism, promoting a general increase in its tonic effects. Studies evaluating the relationship between serotonin and disorders such as irritable bowel syndrome, fibromyalgia, migraine, and other types of headache suggest a clear impact of this neurotransmitter, thereby increasing the interest in serotonin as a possible future therapeutic target. This literature review describes the importance of substances such as serotonin and ovarian hormones in pain perception and illustrates the relationship between those two, and their direct influence on the presentation of the aforementioned pain-related conditions. Additionally, we review the pathways and receptors implicated in each disorder. Finally, the objective was to stimulate future pharmacological research to experimentally evaluate the potential of serotonin modulators and ovarian hormones as therapeutic agents to regulate pain in specific subpopulations.
Collapse
Affiliation(s)
- Stephania Paredes
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (S.P.); (S.C.); (K.D.C.)
| | - Santiago Cantillo
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (S.P.); (S.C.); (K.D.C.)
| | - Kenneth D. Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (S.P.); (S.C.); (K.D.C.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (S.P.); (S.C.); (K.D.C.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
18
|
Gruchot J, Kremer D, Küry P. Neural Cell Responses Upon Exposure to Human Endogenous Retroviruses. Front Genet 2019; 10:655. [PMID: 31354794 PMCID: PMC6637040 DOI: 10.3389/fgene.2019.00655] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are ancient retroviral elements, which invaded the human germ line several million years ago. Subsequent retrotransposition events amplified these sequences, resulting in approximately 8% of the human genome being composed of HERV sequences today. These genetic elements, normally dormant within human genomes, can be (re)-activated by environmental factors such as infections with other viruses, leading to the expression of viral proteins and, in some instances, even to viral particle production. Several studies have shown that the expression of these retroviral elements correlates with the onset and progression of neurological diseases such as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Further studies provided evidence on additional roles for HERVs in schizophrenia (SCZ). Since these diseases are still not well understood, HERVs might constitute a new category of pathogenic components that could significantly change our understanding of these pathologies. Moreover, knowledge about their mode of action might also help to develop novel and more powerful approaches for the treatment of these complex diseases. Therefore, the main scope of this review is a description of the current knowledge on the involvement of HERV-W and HERV-K in neurological disease specifically focusing on the effects they exert on neural cells of the central nervous system.
Collapse
Affiliation(s)
- Joel Gruchot
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
19
|
Theoharides TC. In Search of Effective Treatments for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Clin Ther 2019; 41:796-797. [DOI: 10.1016/j.clinthera.2019.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
|
20
|
Shader RI. Comments on Chronic Fatigue Syndrome. Clin Ther 2019; 41:605-607. [DOI: 10.1016/j.clinthera.2019.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
|
21
|
Theoharides TC. A Timely Multidisciplinary Update on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Clin Ther 2019; 41:610-611. [PMID: 30940402 DOI: 10.1016/j.clinthera.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine, Tufts Medical Center, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|