1
|
Kuipers ME, van Doorn-Wink KCJ, Hiemstra PS, Slats AM. Predicting Radiation-Induced Lung Injury in Patients With Lung Cancer: Challenges and Opportunities. Int J Radiat Oncol Biol Phys 2024; 118:639-649. [PMID: 37924986 DOI: 10.1016/j.ijrobp.2023.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
Radiation-induced lung injury (RILI) is one of the main dose-limiting toxicities in radiation therapy (RT) for lung cancer. Approximately 10% to 20% of patients show signs of RILI of variable severity. The reason for the wide range of RILI severity and the mechanisms underlying its development are only partially understood. A number of clinical risk factors have been identified that can aid in clinical decision making. Technological advancements in RT and the use of strict organ-at-risk dose constraints have helped to reduce RILI. Predicting patients at risk for RILI may be further improved with a combination of cytokine assessments, γH2AX-assays in leukocytes, or epigenetic markers. A complicating factor is the lack of an objective definition of RILI. Tools such as computed tomography densitometry, fluorodeoxyglucose-positron emission tomography uptake, changes in lung function measurements, and exhaled breath analysis can be implemented to better define and quantify RILI. This can aid in the search for new biomarkers, which can be accelerated by omics techniques, single-cell RNA sequencing, mass cytometry, and advances in patient-specific in vitro cell culture models. An objective quantification of RILI combined with these novel techniques can aid in the development of biomarkers to better predict patients at risk and allow personalized treatment decisions.
Collapse
Affiliation(s)
- Merian E Kuipers
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annelies M Slats
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Li J, Li L, Tang S, Yu Q, Liu W, Liu N, Yang F, Zhang D, Yuan S. Novel model integrating computed tomography-based image markers with genetic markers for discriminating radiation pneumonitis in patients with unresectable stage III non-small cell lung cancer receiving radiotherapy: a retrospective multi-center radiogenomics study. BMC Cancer 2024; 24:78. [PMID: 38225543 PMCID: PMC10789008 DOI: 10.1186/s12885-023-11809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Chemoradiotherapy is a critical treatment for patients with locally advanced and unresectable non-small cell lung cancer (NSCLC), and it is essential to identify high-risk patients as early as possible owing to the high incidence of radiation pneumonitis (RP). Increasing attention is being paid to the effects of endogenous factors for RP. This study aimed to investigate the value of computed tomography (CT)-based radiomics combined with genomics in analyzing the risk of grade ≥ 2 RP in unresectable stage III NSCLC. METHODS In this retrospective multi-center observational study, 100 patients with unresectable stage III NSCLC who were treated with chemoradiotherapy were analyzed. Radiomics features of the entire lung were extracted from pre-radiotherapy CT images. The least absolute shrinkage and selection operator algorithm was used for optimal feature selection to calculate the Rad-score for predicting grade ≥ 2 RP. Genomic DNA was extracted from formalin-fixed paraffin-embedded pretreatment biopsy tissues. Univariate and multivariate logistic regression analyses were performed to identify predictors of RP for model development. The area under the receiver operating characteristic curve was used to evaluate the predictive capacity of the model. Statistical comparisons of the area under the curve values between different models were performed using the DeLong test. Calibration and decision curves were used to demonstrate discriminatory and clinical benefit ratios, respectively. RESULTS The Rad-score was constructed from nine radiomic features to predict grade ≥ 2 RP. Multivariate analysis demonstrated that histology, Rad-score, and XRCC1 (rs25487) allele mutation were independent high-risk factors correlated with RP. The area under the curve of the integrated model combining clinical factors, radiomics, and genomics was significantly higher than that of any single model (0.827 versus 0.594, 0.738, or 0.641). Calibration and decision curve analyses confirmed the satisfactory clinical feasibility and utility of the nomogram. CONCLUSION Histology, Rad-score, and XRCC1 (rs25487) allele mutation could predict grade ≥ 2 RP in patients with locally advanced unresectable NSCLC after chemoradiotherapy, and the integrated model combining clinical factors, radiomics, and genomics demonstrated the best predictive efficacy.
Collapse
Affiliation(s)
- Jiaran Li
- Shandong University Cancer Center, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Li Li
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shanshan Tang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qingxi Yu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenju Liu
- Department of Radiation Oncology, Liaocheng Pepole's Hospital, Liaocheng, Shandong, China
| | - Ning Liu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fengchang Yang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dexian Zhang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuanghu Yuan
- Shandong University Cancer Center, Jinan, Shandong, China.
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Aguado-Barrera ME, Sosa-Fajardo P, Gómez-Caamaño A, Taboada-Valladares B, Couñago F, López-Guerra JL, Vega A. Radiogenomics in lung cancer: Where are we? Lung Cancer 2023; 176:56-74. [PMID: 36621035 DOI: 10.1016/j.lungcan.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Huge technological and biomedical advances have improved the survival and quality of life of lung cancer patients treated with radiotherapy. However, during treatment planning, a probability that the patient will experience adverse effects is assumed. Radiotoxicity is a complex entity that is largely dose-dependent but also has important intrinsic factors. One of the most studied is the genetic variants that may be associated with susceptibility to the development of adverse effects of radiotherapy. This review aims to present the current status of radiogenomics in lung cancer, integrating results obtained in association studies of SNPs (single nucleotide polymorphisms) related to radiotherapy toxicities. We conclude that despite numerous publications in this field, methodologies and endpoints vary greatly, making comparisons between studies difficult. Analyzing SNPs from the candidate gene approach, together with the study in cohorts limited by the sample size, has complicated the possibility of having validated results. All this delays the incorporation of genetic biomarkers in predictive models for clinical application. Thus, from all analysed SNPs, only 12 have great potential as esophagitis genetic risk factors and deserve further exploration. This review highlights the efforts that have been made to date in the radiogenomic study of radiotoxicity in lung cancer.
Collapse
Affiliation(s)
- Miguel E Aguado-Barrera
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Fundación Pública Galega de Medicina Xenómica (FPGMX), Av. Choupana s/n, Edif. Consultas, Planta menos 2, 15706, Santiago de Compostela, A Coruña, Spain
| | - Paloma Sosa-Fajardo
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, University Hospital Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Seville, Spain
| | - Antonio Gómez-Caamaño
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Av. Choupana s/n, Edif. Consultas, Planta menos 3, 15706, Santiago de Compostela, A Coruña, Spain
| | - Begoña Taboada-Valladares
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Av. Choupana s/n, Edif. Consultas, Planta menos 3, 15706, Santiago de Compostela, A Coruña, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, C. del Maestro Ángel Llorca 8, 28003, Madrid, Spain
| | - José Luis López-Guerra
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Seville, Spain; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), C. Antonio Maura Montaner s/n, 41013, Seville, Spain
| | - Ana Vega
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Fundación Pública Galega de Medicina Xenómica (FPGMX), Av. Choupana s/n, Edif. Consultas, Planta menos 2, 15706, Santiago de Compostela, A Coruña, Spain; Biomedical Network on Rare Diseases (CIBERER), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Kumar M, Ritambhara, Tiwari S, Vijayaraghavalu S, Siddiqui M, Al-Khedhairy A. Clinical response of carboplatin-based chemotherapy and its association to genetic polymorphism in lung cancer patients from North India – A clinical pharmacogenomics study. J Cancer Res Ther 2022; 18:109-118. [DOI: 10.4103/jcrt.jcrt_925_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
On the interplay between dosiomics and genomics in radiation-induced lymphopenia of lung cancer patients. Radiother Oncol 2021; 167:219-225. [PMID: 34979216 DOI: 10.1016/j.radonc.2021.12.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To investigate the interplay between spatial dose patterns and single nucleotide polymorphisms in the development of radiation-induced lymphopenia (RIL) in 186 non-small-cell lung cancer (NSCLC) patients undergoing chemo-radiotherapy (RT). METHODS This study included NSCLC patients enrolled in a randomized trial of protons vs. photons with available absolute lymphocyte counts at baseline and during RT and XRCC1-rs25487 genotyping data. After masking the GTV, planning CT scans and dose maps were spatially normalized to a common anatomical reference. A Voxel-Based Analysis (VBA) was performed to assess voxel-wise relationships of dosiomic and genomic explanatory variables with RIL. The underlying generalized linear model was designed to include both the explanatory variables (3D dose distributions and the XRCC1-rs25487 genotypes) and possible nuisance variables significantly correlated with RIL. The maps of model coefficients as well as their significance maps were generated. RESULTS Measures for RIL definition during RT were characterized, including kinetic parameters for lymphocyte loss. The VBA generated three-dimensional maps of correlation between RIL and dose in lymphoid organs as well as organs with abundant blood pools. The identified voxel-wise relationships account for XRCC1-rs25487 polymorphism and demonstrate the variant AA genotype being detrimental to lymphocyte depletion (p = 0.03). CONCLUSION The performed analyses blindly highlighted relevant anatomical regions that contributed most to lymphocyte depletion during RT and the interplay of the variant XRCC1-rs25487 AA genotype with the dose delivered to the primary lymphoid organs. These findings may help to guide the development of dosimetric RIL mitigation strategies for the application of effective individualized RT.
Collapse
|
6
|
Xing HJ, Chen XD, Sun HX, Dai YZ, Han YF, Chen HB, Liu F. The Relevance of Regenerating Gene 1a Polymorphisms to Radiation Sensitivity and Survival of Nasopharyngeal Carcinoma Receiving Radiotherapy in a Southern Chinese Population. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1403-1413. [PMID: 34785928 PMCID: PMC8579874 DOI: 10.2147/pgpm.s328285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
Objective Gene polymorphism is closely related to tumor development, therapeutic response and prognosis. The relationship between regenerating gene 1A (Reg1A) polymorphism and nasopharyngeal carcinoma (NPC) is unclear. This retrospective study aimed to analyze the association between Reg1a polymorphisms and metastasis, radiation sensitivity and survivals in patients with NPC. Methods A total of 308 patients who had received radiotherapy at the Affiliated Xinhua Hospital, Hainan Medical College, between January 2010 and December 2018 with NPC, were enrolled for assessment of Reg1a polymorphisms through direct DNA sequencing. Results In the polymorphism of gene REG1A, patients with rs10165462 20CC genotype had later T stages (OR = 4.051, 95% CI: 1.775–9.244, P = 0.001), whereas carriers with rs12072 2922CC genotype had earlier T stages (OR = 1.891, 95% CI: 1.018–3.514, P = 0.044) after adjustments for age and gender, respectively. Among rs10165462 20 C/T polymorphism, 20TT wild-type was associated with better radiation response (P = 0.0019), and multivariate analysis showed that it was the only genotype of polymorphism that was significantly associated with better radiation response (OR = 0.265, 95% CI: 0.096–0.727, P = 0.01). Patients with the 20TT wild-type had a better five-year overall survival (60.9%) rate and five-year progression-free survival (60.8%) than those with the 20CC genotype (41.8% and 39.4%, P = 0.01 and P = 0.004, respectively). Patients with variant alleles (CC + CT) had significantly poorer OS (45.2%) and PFS (41.8%) compared with wild-type (TT) carriers (60.9% and 60.8%; P = 0.037 and P = 0.015, respectively). As for rs12072, patients with variant alleles (TT + TC) had significantly adverse OS and PFS compared with wild-type (CC) carriers (62.5% vs 44.8% and 62.5% vs 42.9%; P = 0.024 and P = 0.027, respectively). Cox regression showed that rs10165462 20CT was the only prognostic factor for OS (HR = 1.642, 95% CI 1.038–2.598, P = 0.034) and PFS (HR = 1.705, 95% CI 1.080–2.692, P = 0.022). Conclusion Reg1a polymorphisms may be a predictor of radiation response, local invasion, OS and PFS in patients with NPC who undergo radiotherapy treatment.
Collapse
Affiliation(s)
- Hai-Jie Xing
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, 518106, People's Republic of China.,Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Xinhua Hospital of Hainan Medical Colleage, Haikou, 570311, People's Republic of China
| | - Xiang-Dong Chen
- Department of Otolaryngology, Head and Neck Surgery, Affiliated General Hospital of Shenzhen University, Shenzhen, 518106, People's Republic of China
| | - Hong-Xia Sun
- Wuhan Medical Science Research Institution, Wuhan, 430013, People's Republic of China
| | - Yao-Zhang Dai
- Department of Throat, Head and Neck Surgery, Affiliated Otolaryngological Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yao-Feng Han
- Department of Epidemiology, Public Health College of Xiamen University, Xiamen, 361005, People's Republic of China
| | - Hai-Bo Chen
- Clinical Laboratory, Affiliated Xinhua Hospital of Hainan Medical Colleage, Haikou, 570311, People's Republic of China
| | - Feng Liu
- Department of Endocrine Oncology, University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, 518106, People's Republic of China.,Department of Medical Imaging Centre, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, People's Republic of China
| |
Collapse
|
7
|
Macchini M, Centonze F, Peretti U, Orsi G, Militello AM, Valente MM, Cascinu S, Reni M. Treatment opportunities and future perspectives for pancreatic cancer patients with germline BRCA1-2 pathogenic variants. Cancer Treat Rev 2021; 100:102262. [PMID: 34418781 DOI: 10.1016/j.ctrv.2021.102262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
Personalized treatments and predictive biomarkers of pancreatic cancer (PDAC) are still lacking. Recently germline mutations in BRCA 1 and 2 genes, leading to homologous repair deficiency, have emerged as new targets for more specific and effective therapies, exploiting the increased susceptibility to platinum salts and PARP inhibitors. In addition to BRCA, pathogenic variants in PALB2 and in other genes involved in the DNA damage response pathway (DDR) represent potential targets, as well as their respective somatic alterations. This enlarged molecularly-selected population sharing the BRCAness phenotype, is expected to show a higher sensibility to a number of DNA damaging agents and DDR inhibitors. However, the possibility of new therapeutic opportunities for DDR defective PDAC patients has to face the lack of solid evidence about the proper type and timing of targeted-treatments, the potential combination strategies and most importantly, the lack of informations on the functional impact of each specific pathogenic variant on the DDR pathway. This review summarizes the current and near-future options for the clinical management of PDAC patients harboring a DDR deficiency, analyzing the state of the art of the indications of platinum salts and other cytotoxic agents in the advanced and early stage PDAC, the development of PARP inhibitors and the rational for new combinations with immunotherapy and cycle checkpoint inhibitors, as well as the strategy to overcome the development of resistance over treatments.
Collapse
Affiliation(s)
- Marina Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Federico Centonze
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Umberto Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Orsi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Maria Militello
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Maddalena Valente
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Arroyo-Hernández M, Maldonado F, Lozano-Ruiz F, Muñoz-Montaño W, Nuñez-Baez M, Arrieta O. Radiation-induced lung injury: current evidence. BMC Pulm Med 2021; 21:9. [PMID: 33407290 PMCID: PMC7788688 DOI: 10.1186/s12890-020-01376-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Chemo-radiotherapy and systemic therapies have proven satisfactory outcomes as standard treatments for various thoracic malignancies; however, adverse pulmonary effects, like pneumonitis, can be life-threatening. Pneumonitis is caused by direct cytotoxic effect, oxidative stress, and immune-mediated injury. Radiotherapy Induced Lung Injury (RILI) encompasses two phases: an early phase known as Radiation Pneumonitis (RP), characterized by acute lung tissue inflammation as a result of exposure to radiation; and a late phase called Radiation Fibrosis (RF), a clinical syndrome that results from chronic pulmonary tissue damage. Currently, diagnoses are made by exclusion using clinical assessment and radiological findings. Pulmonary function tests have constituted a significant step in evaluating lung function status during radiotherapy and useful predictive tools to avoid complications or limit toxicity. Systemic corticosteroids are widely used to treat pneumonitis complications, but its use must be standardized, and consider in the prophylaxis setting given the fatal outcome of this adverse event. This review aims to discuss the clinicopathological features of pneumonitis and provide practical clinical recommendations for prevention, diagnosis, and management.
Collapse
Affiliation(s)
- Marisol Arroyo-Hernández
- Head of Thoracic Oncology Unit, Unidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Sección XVI, Tlalpan, 14080, México City, CDMX, México
| | - Federico Maldonado
- Head of Thoracic Oncology Unit, Unidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Sección XVI, Tlalpan, 14080, México City, CDMX, México
| | - Francisco Lozano-Ruiz
- Head of Thoracic Oncology Unit, Unidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Sección XVI, Tlalpan, 14080, México City, CDMX, México
| | - Wendy Muñoz-Montaño
- Head of Thoracic Oncology Unit, Unidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Sección XVI, Tlalpan, 14080, México City, CDMX, México
| | - Mónica Nuñez-Baez
- Departamento de Radioncología, Hospital Universitario HM Sanchinarro, Caracas, Venezuela
| | - Oscar Arrieta
- Head of Thoracic Oncology Unit, Unidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Sección XVI, Tlalpan, 14080, México City, CDMX, México.
| |
Collapse
|
9
|
Burgess JT, Rose M, Boucher D, Plowman J, Molloy C, Fisher M, O'Leary C, Richard DJ, O'Byrne KJ, Bolderson E. The Therapeutic Potential of DNA Damage Repair Pathways and Genomic Stability in Lung Cancer. Front Oncol 2020; 10:1256. [PMID: 32850380 PMCID: PMC7399071 DOI: 10.3389/fonc.2020.01256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite advances in our understanding of the molecular biology of the disease and improved therapeutics, lung cancer remains the most common cause of cancer-related deaths worldwide. Therefore, an unmet need remains for improved treatments, especially in advanced stage disease. Genomic instability is a universal hallmark of all cancers. Many of the most commonly prescribed chemotherapeutics, including platinum-based compounds such as cisplatin, target the characteristic genomic instability of tumors by directly damaging the DNA. Chemotherapies are designed to selectively target rapidly dividing cells, where they cause critical DNA damage and subsequent cell death (1, 2). Despite the initial efficacy of these drugs, the development of chemotherapy resistant tumors remains the primary concern for treatment of all lung cancer patients. The correct functioning of the DNA damage repair machinery is essential to ensure the maintenance of normal cycling cells. Dysregulation of these pathways promotes the accumulation of mutations which increase the potential of malignancy. Following the development of the initial malignancy, the continued disruption of the DNA repair machinery may result in the further progression of metastatic disease. Lung cancer is recognized as one of the most genomically unstable cancers (3). In this review, we present an overview of the DNA damage repair pathways and their contributions to lung cancer disease occurrence and progression. We conclude with an overview of current targeted lung cancer treatments and their evolution toward combination therapies, including chemotherapy with immunotherapies and antibody-drug conjugates and the mechanisms by which they target DNA damage repair pathways.
Collapse
Affiliation(s)
- Joshua T Burgess
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Maddison Rose
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Didier Boucher
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jennifer Plowman
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Christopher Molloy
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Mark Fisher
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Connor O'Leary
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J Richard
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Yang WC, Hsu FM, Yang PC. Precision radiotherapy for non-small cell lung cancer. J Biomed Sci 2020; 27:82. [PMID: 32693792 PMCID: PMC7374898 DOI: 10.1186/s12929-020-00676-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Precision medicine is becoming the standard of care in anti-cancer treatment. The personalized precision management of cancer patients highly relies on the improvement of new technology in next generation sequencing and high-throughput big data processing for biological and radiographic information. Systemic precision cancer therapy has been developed for years. However, the role of precision medicine in radiotherapy has not yet been fully implemented. Emerging evidence has shown that precision radiotherapy for cancer patients is possible with recent advances in new radiotherapy technologies, panomics, radiomics and dosiomics. This review focused on the role of precision radiotherapy in non-small cell lung cancer and demonstrated the current landscape.
Collapse
Affiliation(s)
- Wen-Chi Yang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, Taiwan. .,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Pan-Chyr Yang
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, No.1 Sec 1, Jen-Ai Rd, Taipei, 100, Taiwan.
| |
Collapse
|
11
|
Tang Y, Yang L, Qin W, Yi M, Liu B, Yuan X. Validation study of the association between genetic variant of IL4 and severe radiation pneumonitis in lung cancer patients treated with radiation therapy. Radiother Oncol 2019; 141:86-94. [PMID: 31540745 DOI: 10.1016/j.radonc.2019.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Recent researches demonstrated that single nucleotide polymorphisms (SNPs) of genes involving inflammation, DNA repair, etc. were associated with risk of radiation pneumonitis (RP). However, these studies were single-centered, from single ethnic origin, without validation from independent cohort studies from other populations. In order to identify clinical valuable SNPs for RP, in this study we selected 19 RP-related SNPs candidates previously published before 2016 for validation in our cohort. MATERIAL AND METHODS 359 lung cancer patients with radiotherapy were included in our prospective study (NCT02490319). Peripheral blood samples from these patients were genotyped by MassArray and Sanger Sequence method. Multivariate Cox hazard and other analyses were applied to estimate the hazard ratio (HR) and 95% confidence intervals (CIs) of all factors possibly related to the risk of RP. RESULTS Patients with elder age, MLD ≥15 Gy, V20 ≥24% had higher risk of RP ≥grade 3 compared with their counterparts (HR = 2.020, 95% CI: 1.045-3.906, P = 0.037; HR = 2.502, 95% CI: 1.346-4.652, P = 0.004; HR = 2.256, 95% CI: 1.191-4.272, P = 0.013, respectively). Moreover, patients receiving IMRT were associated with decreased incidence of RP (HR = 0.520, 95% CI: 0.280-0.963, P = 0.037). Importantly, CT + TT genotype of IL4: rs2243250 was strongly related to decreased risk of RP ≥grade 3 (HR = 0.195, 95% CI: 0.090-0.424, P = 0.000037, Pc = 0.0006). CONCLUSION IL4: rs2243250 was validated to be significantly related to RP of grade ≥3 in our cohort. Our results further emphasized the prevalence and clinical value of IL4: rs2243250 on RP, and may thus be one of the important predictors of severe RP before radiotherapy.
Collapse
Affiliation(s)
- Yang Tang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yang
- Department of Hematology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Min'xiao Yi
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang'lin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Department of Hematology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Wolfe AR, Jain R, Pawlik TM, Walker J, Williams TM. Radiation-Induced Colitis in a Pancreatic Cancer Patient With a Germline BRCA2 Mutation: A Case Report. Adv Radiat Oncol 2019; 4:10-14. [PMID: 30706003 PMCID: PMC6349605 DOI: 10.1016/j.adro.2018.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Adam R Wolfe
- Department of Radiation Oncology, Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| | - Rishi Jain
- Department of Medical Oncology, Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| | - Timothy M Pawlik
- Department of Surgical Oncology, Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| | - Jon Walker
- Department of Gastroenterology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Terence M Williams
- Department of Radiation Oncology, Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
13
|
A review of radiation genomics: integrating patient radiation response with genomics for personalised and targeted radiation therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2018. [DOI: 10.1017/s1460396918000547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractBackgroundThe success of radiation therapy for cancer patients is dependent on the ability to deliver a total tumouricidal radiation dose capable of eradicating all cancer cells within the clinical target volume, however, the radiation dose tolerance of the surrounding healthy tissues becomes the main dose-limiting factor. The normal tissue adverse effects following radiotherapy are common and significantly impact the quality of life of patients. The likelihood of developing these adverse effects following radiotherapy cannot be predicted based only on the radiation treatment parameters. However, there is evidence to suggest that some common genetic variants are associated with radiotherapy response and the risk of developing adverse effects. Radiation genomics is a field that has evolved in recent years investigating the association between patient genomic data and the response to radiation therapy. This field aims to identify genetic markers that are linked to individual radiosensitivity with the potential to predict the risk of developing adverse effects due to radiotherapy using patient genomic information. It also aims to determine the relative radioresponse of patients using their genetic information for the potential prediction of patient radiation treatment response.Methods and materialsThis paper reports on a review of recent studies in the field of radiation genomics investigating the association between genomic data and patients response to radiation therapy, including the investigation of the role of genetic variants on an individual’s predisposition to enhanced radiotherapy radiosensitivity or radioresponse.ConclusionThe potential for early prediction of treatment response and patient outcome is critical in cancer patients to make decisions regarding continuation, escalation, discontinuation, and/or change in treatment options to maximise patient survival while minimising adverse effects and maintaining patients’ quality of life.
Collapse
|
14
|
Du L, Yu W, Huang X, Zhao N, Liu F, Tong F, Zhang S, Niu B, Liu X, Xu S, Huang Y, Dai X, Xie C, Chen G, Cong X, Qu B. GSTP1 Ile105Val polymorphism might be associated with the risk of radiation pneumonitis among lung cancer patients in Chinese population: A prospective study. J Cancer 2018; 9:726-735. [PMID: 29556330 PMCID: PMC5858494 DOI: 10.7150/jca.20643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Growing data suggest that DNA damage repair and detoxification pathways play crucial roles in radiation-induced toxicities. To determine whether common functional single-nucleotide polymorphisms (SNPs) in candidate genes from these pathways can be used as predictors of radiation pneumonitis (RP), we conducted a prospective study to evaluate the associations between functional SNPs and risk of RP. Methods: We recruited a total of 149 lung cancer patients who had received intensity modulated radiation therapy (IMRT). GSTP1 and XRCC1 were genotyped using the SurPlexTM-xTAG method in all patients. RP events were prospectively scored using the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE), version 4.0. Kaplan-Meier analysis was used to determine the cumulative probability of RP of grade ≥ 2. Cox proportional hazard regression was performed to identify clinical variables and SNPs associated with risk of RP grade ≥ 2, using univariate and multivariate analysis, respectively. Results: With a median follow-up of 9 months, the incidence of RP of grade ≥ 2 was 38.3%. A predicting role in RP was observed for the GSTP1 SNP (adjusted hazard ratio 3.543; 95% CI 1.770-7.092; adjusted P< 0.001 for the Ile/Val and Val/Val genotypes versus Ile/Ile genotype). Whereas, we found that patients with XRCC1 399Arg/Gln and Gln/Gln genotypes had a lower risk of RP compares with those carrying Arg/Arg genotype (adjusted HR 0.653; 95% CI 0.342-1.245), but with no statistical significance observed (adjusted P = 0.195). Conclusions: Our results suggested a novel association between GSTP1 SNP 105Ile/Val and risk of RP development, which suggests the potential use of this genetic polymorphism as a predictor of RP. In addition, genetic polymorphisms of XRCC1 399Arg/Gln may also be associated with RP.
Collapse
Affiliation(s)
- Lehui Du
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Wei Yu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Xiang Huang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Nana Zhao
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Fang Liu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Fang Tong
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Sujing Zhang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Baolong Niu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Xiaoliang Liu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Shouping Xu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Yurong Huang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Xiangkun Dai
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Chuanbin Xie
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Gaoxiang Chen
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Xiaohu Cong
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Baolin Qu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| |
Collapse
|
15
|
Du L, Yu W, Dai X, Zhao N, Huang X, Tong F, Liu F, Huang Y, Ju Z, Yang W, Cong X, Xie C, Liu X, Liang L, Han Y, Qu B. Association of DNA repair gene polymorphisms with the risk of radiation pneumonitis in lung cancer patients. Oncotarget 2017; 9:958-968. [PMID: 29416669 PMCID: PMC5787526 DOI: 10.18632/oncotarget.22982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022] Open
Abstract
A total of 149 lung cancer patients were recruited to receive intensity modulated radiation therapy (IMRT). The association of developing radiation pneumonitis (RP) with genetic polymorphism was evaluated. The risks of four polymorphic sites in three DNA repair related genes (ERCC1, rs116615:T354C and rs3212986:C1516A; ERCC2, rs13181:A2251C; XRCC1, rs25487:A1196G) for developing grade ≥ 2 RP were assessed respectively. It was observed that ERCC1 T354C SNP had a significant effect on the development of grade ≥ 2 RP (CT/TT vs. CC, adjusted HR = 0.517, 95% CI, 0.285-0.939; adjusted P = 0.030). It is the first time demonstrating that CT/TT genotype of ERCC1 354 was significantly associated with lower RP risk after radio therapy.
Collapse
Affiliation(s)
- Lehui Du
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Yu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiangkun Dai
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Nana Zhao
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiang Huang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Fang Tong
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Fang Liu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yurong Huang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhongjian Ju
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Yang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaohu Cong
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuanbin Xie
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoliang Liu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Lanqing Liang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanan Han
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Baolin Qu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
16
|
Pavlopoulou A, Bagos PG, Koutsandrea V, Georgakilas AG. Molecular determinants of radiosensitivity in normal and tumor tissue: A bioinformatic approach. Cancer Lett 2017; 403:37-47. [DOI: 10.1016/j.canlet.2017.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022]
|
17
|
Smith JJ, Wasserman I, Milgrom SA, Chow OS, Chen CT, Patil S, Goodman KA, Garcia-Aguilar J. Single Nucleotide Polymorphism TGFβ1 R25P Correlates with Acute Toxicity during Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients. Int J Radiat Oncol Biol Phys 2017; 97:924-930. [DOI: 10.1016/j.ijrobp.2016.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
|
18
|
Li L, Zhu T, Gao YF, Zheng W, Wang CJ, Xiao L, Huang MS, Yin JY, Zhou HH, Liu ZQ. Targeting DNA Damage Response in the Radio(Chemo)therapy of Non-Small Cell Lung Cancer. Int J Mol Sci 2016; 17:ijms17060839. [PMID: 27258253 PMCID: PMC4926373 DOI: 10.3390/ijms17060839] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide due to its high incidence and mortality. As the most common lung cancer, non-small cell lung cancer (NSCLC) is a terrible threat to human health. Despite improvements in diagnosis and combined treatments including surgical resection, radiotherapy and chemotherapy, the overall survival for NSCLC patients still remains poor. DNA damage is considered to be the primary cause of lung cancer development and is normally recognized and repaired by the intrinsic DNA damage response machinery. The role of DNA repair pathways in radio(chemo)therapy-resistant cancers has become an area of significant interest in the clinical setting. Meanwhile, some studies have proved that genetic and epigenetic factors can alter the DNA damage response and repair, which results in changes of the radiation and chemotherapy curative effect in NSCLC. In this review, we focus on the effect of genetic polymorphisms and epigenetic factors such as miRNA regulation and lncRNA regulation participating in DNA damage repair in response to radio(chemo)therapy in NSCLC. These may provide novel information on the radio(chemo)therapy of NSCLC based on the individual DNA damage response.
Collapse
Affiliation(s)
- Ling Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yuan-Feng Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Wei Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Chen-Jing Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Ling Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Ma-Sha Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| |
Collapse
|
19
|
Association between Genetic Variants in DNA Double-Strand Break Repair Pathways and Risk of Radiation Therapy-Induced Pneumonitis and Esophagitis in Non-Small Cell Lung Cancer. Cancers (Basel) 2016; 8:cancers8020023. [PMID: 26901225 PMCID: PMC4773746 DOI: 10.3390/cancers8020023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/25/2016] [Accepted: 02/14/2016] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy (RT)-induced pneumonitis and esophagitis are commonly developed side effects in non-small cell lung cancer (NSCLC) patients treated with definitive RT. Identifying patients who are at increased risk for these toxicities would help to maximize treatment efficacy while minimizing toxicities. Here, we systematically investigated single nucleotide polymorphisms (SNPs) within double-strand break (DSB) repair pathway as potential predictive markers for radiation-induced esophagitis and pneumonitis. We genotyped 440 SNPs from 45 genes in DSB repair pathways in 250 stage I–III NSCLC patients who received definitive radiation or chemoradiation therapy, followed by internal validation in 170 additional patients. We found that 11 SNPs for esophagitis and 8 SNPs for pneumonitis showed consistent effects between discovery and validation populations (same direction of OR and reached significance in meta-analysis). Among them, rs7165790 in the BLM gene was significantly associated with decreased risk of esophagitis in both discovery (OR = 0.59, 95% CI: 0.37–0.97, p = 0.037) and validation subgroups (OR = 0.45, 95% CI: 0.22–0.94, p = 0.032). A strong cumulative effect was observed for the top SNPs, and gene-based tests revealed 12 genes significantly associated with esophagitis or pneumonitis. Our results support the notion that genetic variations within DSB repair pathway could influence the risk of developing toxicities following definitive RT in NSCLC.
Collapse
|
20
|
Personalized Radiation Therapy (PRT) for Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 890:175-202. [DOI: 10.1007/978-3-319-24932-2_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Kan C, Zhang J. BRCA1 Mutation: A Predictive Marker for Radiation Therapy? Int J Radiat Oncol Biol Phys 2015; 93:281-93. [PMID: 26383678 DOI: 10.1016/j.ijrobp.2015.05.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 02/01/2023]
Abstract
DNA repair, in particular, DNA double-strand break (DSB) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells to efficiently repair the damaged DNA. The pathways predominately involved in DSB repair are homologous recombination and classic nonhomologous end-joining, although the alternative NHEJ pathway, a third DSB repair pathway, could also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSB repair pathways. Given that DSBs represent the most biologically significant lesions induced by ionizing radiation and that impaired DSB repair leads to radiation sensitivity, it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy. However, the clinical data have been conflicting and inconclusive. We provide an overview about the current status of the data regarding BRCA1 deficiency and radiation therapy sensitivity in both experimental models and clinical investigations. In addition, we discuss a strategy to potentiate the effects of radiation therapy by poly(ADP-ribose) polymerase inhibitors, the pharmacologic drugs being investigated as monotherapy for the treatment of patients with BRCA1/2 mutations.
Collapse
Affiliation(s)
- Charlene Kan
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Junran Zhang
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
22
|
Guo Z, Shu Y, Zhou H, Zhang W, Wang H. Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment. Carcinogenesis 2015; 36:307-17. [PMID: 25604391 DOI: 10.1093/carcin/bgv007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Radiogenomics is the whole genome application of radiogenetics, which focuses on uncovering the underlying genetic causes of individual variation in sensitivity to radiation. There is a growing consensus that radiosensitivity is a complex, inherited polygenic trait, dependent on the interaction of many genes involved in multiple cell processes. An understanding of the genes involved in processes such as DNA damage response and oxidative stress response, has evolved toward examination of how genetic variants, most often, single nucleotide polymorphisms (SNPs), may influence interindividual radioresponse. Many experimental approaches, such as candidate SNP association studies, genome-wide association studies and massively parallel sequencing are being proposed to address these questions. We present a review focusing on recent advances in association studies of SNPs to radiotherapy response and discuss challenges and opportunities for further studies. We also highlight the clinical perspective of radiogenomics in the future of personalized treatment in radiation oncology.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA and
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China;
| | - Hui Wang
- Department of Radiation Oncology, Hunan Provincial Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, P.R. China
| |
Collapse
|
23
|
Abstract
The decision to administer a radical course of radiotherapy (RT) is largely influenced by the dose-volume metrics of the treatment plan, but what are the patient-related and other factors that may independently increase the risk of radiation lung toxicity? Poor pulmonary function has been regarded as a risk factor and a relative contraindication for patients undergoing radical RT, but recent evidence suggests that patients with poor spirometry results may tolerate conventional or high-dose RT as well as, if not better than, patients with normal function. However, caution may need to be exercised in patients with underlying interstitial pulmonary fibrosis. Furthermore, there is emerging evidence of molecular markers of increased risk of toxicity. This review discusses patient-related risk factors other than dosimetry for radiation lung toxicity.
Collapse
Affiliation(s)
- Feng-Ming Spring Kong
- Department of Radiation Oncology, GRU Cancer Center and Medical College of Georgia, Augusta, GA.
| | - Shulian Wang
- Department of Radiation Oncology, GRU Cancer Center and Medical College of Georgia, Augusta, GA; Department of Radiation Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|