1
|
Giuliani ME, Filion E, Faria S, Kundapur V, Toni Vu TTT, Lok BH, Raman S, Bahig H, Laba JM, Lang P, Louie AV, Hope A, Rodrigues GB, Bezjak A, Campeau MP, Duclos M, Bratman S, Swaminath A, Salunkhe R, Warner A, Palma DA. Stereotactic Radiation for Ultra-Central Non-Small Cell Lung Cancer: A Safety and Efficacy Trial (SUNSET). Int J Radiat Oncol Biol Phys 2024; 120:669-677. [PMID: 38614279 DOI: 10.1016/j.ijrobp.2024.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE The use of stereotactic body radiation therapy for tumors in close proximity to the central mediastinal structures has been associated with a high risk of toxicity. This study (NCT03306680) aimed to determine the maximally tolerated dose of stereotactic body radiation therapy for ultracentral non-small cell lung carcinoma, using a time-to-event continual reassessment methodology. METHODS AND MATERIALS Patients with T1-3N0M0 (≤6 cm) non-small cell lung carcinoma were eligible. The maximally tolerated dose was defined as the dose of radiation therapy associated with a ≤30% rate of grade (G) 3 to 5 prespecified treatment-related toxicity occurring within 2 years of treatment. The starting dose level was 60 Gy in 8 daily fractions. The dose-maximum hotspot was limited to 120% and within the planning tumor volume; tumors with endobronchial invasion were excluded. This primary analysis occurred 2 years after completion of accrual. RESULTS Between March 2018 and April 2021, 30 patients were enrolled at 5 institutions. The median age was 73 years (range, 65-87) and 17 (57%) were female. Planning tumor volume was abutting proximal bronchial tree in 19 (63%), esophagus 5 (17%), pulmonary vein 1 (3.3%), and pulmonary artery 14 (47%). All patients received 60 Gy in 8 fractions. The median follow-up was 37 months (range, 8.9-51). Two patients (6.7%) experienced G3-5 adverse events related to treatment: 1 patient with G3 dyspnea and 1 G5 pneumonia. The latter had computed tomography findings consistent with a background of interstitial lung disease. Three-year overall survival was 72.5% (95% CI, 52.3%-85.3%), progression-free survival 66.1% (95% CI, 46.1%-80.2%), local control 89.6% (95% CI, 71.2%-96.5%), regional control 96.4% (95% CI, 77.2%-99.5%), and distant control 85.9% (95% CI, 66.7%-94.5%). Quality-of-life scores declined numerically over time, but the decreases were not clinically or statistically significant. CONCLUSIONS Sixty Gy in 8 fractions, planned and delivered with only a moderate hotspot, has a favorable adverse event rate within the prespecified acceptability criteria and results in excellent control for ultracentral tumors.
Collapse
Affiliation(s)
| | - Edith Filion
- Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - Sergio Faria
- McGill University Health Centre, Montréal, Canada
| | | | | | | | | | - Houda Bahig
- Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - Joanna M Laba
- Division of Radiation Oncology, London Health Sciences Centre and Western University, London, Canada
| | - Pencilla Lang
- Division of Radiation Oncology, London Health Sciences Centre and Western University, London, Canada
| | - Alexander V Louie
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Andrew Hope
- Princess Margaret Cancer Centre, Toronto, Canada
| | - George B Rodrigues
- Division of Radiation Oncology, London Health Sciences Centre and Western University, London, Canada
| | | | | | - Marie Duclos
- McGill University Health Centre, Montréal, Canada
| | | | | | | | - Andrew Warner
- Division of Radiation Oncology, London Health Sciences Centre and Western University, London, Canada
| | - David A Palma
- Division of Radiation Oncology, London Health Sciences Centre and Western University, London, Canada
| |
Collapse
|
2
|
Li GJ, Tan H, Nusrat H, Chang J, Chen H, Poon I, Shahi J, Tsao M, Ung Y, Cheung P, Louie AV. Safety and Efficacy of Stereotactic Body Radiation Therapy for Ultra-central Thoracic Tumors: A Single Center Retrospective Review. Int J Radiat Oncol Biol Phys 2024; 120:359-369. [PMID: 38621607 DOI: 10.1016/j.ijrobp.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE We sought to evaluate the toxicity and efficacy of stereotactic body radiation therapy (SBRT) for ultracentral thoracic tumors at our institution. METHODS AND MATERIALS Patients with ultracentral lung tumors or nodes, defined as having the planning target volume (PTV) overlapping or abutting the central bronchial tree and/or esophagus, treated at our institution with SBRT between 2009 and 2019 were retrospectively reviewed. All SBRT plans were generated with the goal of creating homogenous dose distributions. The primary endpoint was incidence of SBRT-related grade ≥3 toxicity, defined using the Common Terminology Criteria for Adverse Events (V5.0). Secondary endpoints included local failure (LF), progression-free survival (PFS), and overall survival. Competing risk analysis was used to estimate incidence and identify predictors of severe toxicity and LF, while the Kaplan-Meier method was used to estimate PFS and OS. RESULTS A total of 154 patients receiving 162 ultracentral courses of SBRT were included. The most common prescription was 50 Gy in 5 fractions (42%), with doses ranging from 30 to 55 Gy in 5 fractions (BED10 range, 48-115 Gy). The incidence of severe toxicity was 9.4% at 3 years. The most common severe toxicity was pneumonitis (n = 4). There was 1 possible treatment-related death from pneumonitis/pneumonia. Predictors of severe toxicity included increased PTV size, decreased PTV V95%, lung V5 Gy, and lung V20 Gy. The incidence of LF was 14% at 3 years. Predictors of LF included younger age and greater volume of overlap between the PTV and esophagus. The median PFS was 8.8 months, while the median overall survival was 44.0 months. CONCLUSIONS In the largest case series of ultracentral thoracic SBRT to date, homogenously prescribed SBRT was associated with relatively low rates of severe toxicity and LF. Predictors of toxicity should be interpreted in the context of the heterogeneity in toxicities observed.
Collapse
Affiliation(s)
- George J Li
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Hendrick Tan
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Humza Nusrat
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Joe Chang
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Hanbo Chen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Ian Poon
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Jeevin Shahi
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - May Tsao
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Yee Ung
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Cheung
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander V Louie
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Brunner TB, Boda-Heggemann J, Bürgy D, Corradini S, Dieckmann UK, Gawish A, Gerum S, Gkika E, Grohmann M, Hörner-Rieber J, Kirste S, Klement RJ, Moustakis C, Nestle U, Niyazi M, Rühle A, Lang ST, Winkler P, Zurl B, Wittig-Sauerwein A, Blanck O. Dose prescription for stereotactic body radiotherapy: general and organ-specific consensus statement from the DEGRO/DGMP Working Group Stereotactic Radiotherapy and Radiosurgery. Strahlenther Onkol 2024; 200:737-750. [PMID: 38997440 PMCID: PMC11343978 DOI: 10.1007/s00066-024-02254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE AND OBJECTIVE To develop expert consensus statements on multiparametric dose prescriptions for stereotactic body radiotherapy (SBRT) aligning with ICRU report 91. These statements serve as a foundational step towards harmonizing current SBRT practices and refining dose prescription and documentation requirements for clinical trial designs. MATERIALS AND METHODS Based on the results of a literature review by the working group, a two-tier Delphi consensus process was conducted among 24 physicians and physics experts from three European countries. The degree of consensus was predefined for overarching (OA) and organ-specific (OS) statements (≥ 80%, 60-79%, < 60% for high, intermediate, and poor consensus, respectively). Post-first round statements were refined in a live discussion for the second round of the Delphi process. RESULTS Experts consented on a total of 14 OA and 17 OS statements regarding SBRT of primary and secondary lung, liver, pancreatic, adrenal, and kidney tumors regarding dose prescription, target coverage, and organ at risk dose limitations. Degree of consent was ≥ 80% in 79% and 41% of OA and OS statements, respectively, with higher consensus for lung compared to the upper abdomen. In round 2, the degree of consent was ≥ 80 to 100% for OA and 88% in OS statements. No consensus was reached for dose escalation to liver metastases after chemotherapy (47%) or single-fraction SBRT for kidney primaries (13%). In round 2, no statement had 60-79% consensus. CONCLUSION In 29 of 31 statements a high consensus was achieved after a two-tier Delphi process and one statement (kidney) was clearly refused. The Delphi process was able to achieve a high degree of consensus for SBRT dose prescription. In summary, clear recommendations for both OA and OS could be defined. This contributes significantly to harmonization of SBRT practice and facilitates dose prescription and reporting in clinical trials investigating SBRT.
Collapse
Affiliation(s)
- Thomas B Brunner
- Department of Radiation Oncology, Medical University of Graz, Auenbruggerplatz 32, 8036, Graz, Austria.
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036, Graz, Austria.
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Bürgy
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Ute Karin Dieckmann
- Department of Radiation Oncology, Medical University of Graz, Auenbruggerplatz 32, 8036, Graz, Austria
| | - Ahmed Gawish
- Department of Radiotherapy, University Medical Center Giessen-Marburg, Marburg, Germany
| | - Sabine Gerum
- Department of Radiation Oncology, Paracelsus University Salzburg, Salzburg, Austria
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Maximilian Grohmann
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| | - Christos Moustakis
- Department of Radiation Oncology, University Hospital Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, University Hospital Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany
| | - Stephanie-Tanadini Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Peter Winkler
- Department of Radiation Oncology, Medical University of Graz, Auenbruggerplatz 32, 8036, Graz, Austria
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036, Graz, Austria
| | - Brigitte Zurl
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036, Graz, Austria
| | | | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| |
Collapse
|
4
|
Liu Y, Zhang X, Zhang F, Song W. Bronchial artery chemoembolization in the treatment of refractory central lung cancer with atelectasis. Front Oncol 2024; 14:1343324. [PMID: 38933450 PMCID: PMC11199781 DOI: 10.3389/fonc.2024.1343324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Objective This study aims to explore the clinical application of bronchial artery chemoembolization (BACE) in managing refractory central lung cancer with atelectasis. Methods The retrospective case series includes patients diagnosed with refractory central lung cancer and atelectasis who underwent BACE treatment at Yueyang Integrated Traditional Chinese and Western Medicine Hospital, affiliated with Shanghai University of Traditional Chinese Medicine, from January 2012 to December 2021. Results All 30 patients with lung cancer successfully underwent BACE procedures. Their ages ranged from 62 to 88 years, with an average age of 67.53. The treatment interval was 21 days, and the treatment cycle ranged from 2 to 12 times, averaging 4.13 times. During the BACE procedures, the Karnofsky Performance Status (KPS) score after 2 to 3 BACE cycles showed a significant improvement (82.0 ± 10.1 vs 68.3 ± 14.0, P < 0.001) than that of before BACE. Only nutritional support and symptomatic treatment were performed after BACE, and no major hemoptysis were observed. During follow-up, 23 cases resulted in mortality, while seven survived. The median progression-free survival (PFS) and overall survival (OS) were 7.0 (95% CI: 4.6-9.4) and 10.0 (95% CI: 6.2-13.8) months, respectively, with 1-, 2-, and 3-year survival rates of 84.0%, 53.5%, and 11.3%, respectively. Eight cases exhibited bronchial recanalization and relief of atelectasis. According to the RECIST scale, there were 4 cases of complete response (CR), 16 cases of partial response (PR), 9 cases of stable disease (SD), and 1 case of progressive disease (PD). No serious adverse events were reported. Conclusion BACE might be a safe intervention for refractory central lung cancer accompanied by atelectasis. The procedure exhibits satisfactory outcomes in tumor control, atelectasis relief, and enhancement of quality of life, warranting further investigation.
Collapse
Affiliation(s)
- Yujin Liu
- Department of Interventional Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiumei Zhang
- Nursing department, Tongji University Affiliated Shanghai Fourth People’s Hospital, Shanghai, China
| | - Fenxiang Zhang
- Department of Interventional Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weixiang Song
- Department of Interventional Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Chu Y, Zhang S, Wan W, Yang J, Zhang Y, Nie C, Xing W, Tong S, Liu J, Tian G, Wang B, Ji L. Pathological image profiling identifies onco-microbial, tumor immune microenvironment, and prognostic subtypes of colorectal cancer. APMIS 2024; 132:416-429. [PMID: 38403979 DOI: 10.1111/apm.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Histology slide, tissue microbes, and the host gene expression can be independent prognostic factors of colorectal cancer (CRC), but the underlying associations and biological significance of these multimodal omics remain unknown. Here, we comprehensively profiled the matched pathological images, intratumoral microbes, and host gene expression characteristics in 527 patients with CRC. By clustering these patients based on histology slide features, we classified the patients into two histology slide subtypes (HSS). Onco-microbial community and tumor immune microenvironment (TIME) were also significantly different between the two subtypes (HSS1 and HSS2) of patients. Furthermore, variation in intratumoral microbes-host interaction was associated with the prognostic heterogeneity between HSS1 and HSS2. This study proposes a new CRC classification based on pathological image features and elucidates the process by which tumor microbes-host interactions are reflected in pathological images through the TIME.
Collapse
Affiliation(s)
- Yuwen Chu
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui, China
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Shuo Zhang
- School of management, Harbin Institute of Technology, Harbin, China
| | - Wei Wan
- Department of Colorectal and Anal Surgery, Yidu Central Hospital of Weifang, Shandong, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Yumeng Zhang
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Chuanqi Nie
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui, China
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Weipeng Xing
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui, China
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Shanhe Tong
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui, China
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Jinyang Liu
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Bing Wang
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui, China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| |
Collapse
|
6
|
Kishi N, Yoneyama M, Inoo H, Inoue M, Iramina H, Nakakura A, Ono T, Hirashima H, Adachi T, Matsushita N, Sasaki M, Fujimoto T, Nakamura M, Matsuo Y, Mizowaki T. Protocol of a phase II study to evaluate the efficacy and safety of deep-inspiration breath-hold daily online adaptive radiotherapy for centrally located lung tumours (PUDDING study). Radiat Oncol 2024; 19:32. [PMID: 38459580 PMCID: PMC10921600 DOI: 10.1186/s13014-024-02427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/29/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Centrally located lung tumours present a challenge because of their tendency to exhibit symptoms such as airway obstruction, atelectasis, and bleeding. Surgical resection of these tumours often requires sacrificing the lungs, making definitive radiotherapy the preferred alternative to avoid pneumonectomy. However, the proximity of these tumours to mediastinal organs at risk increases the potential for severe adverse events. To mitigate this risk, we propose a dual-method approach: deep inspiration breath-hold (DIBH) radiotherapy combined with adaptive radiotherapy. The aim of this single-centre, single-arm phase II study is to investigate the efficacy and safety of DIBH daily online adaptive radiotherapy. METHODS Patients diagnosed with centrally located lung tumours according to the International Association for the Study of Lung Cancer recommendations, are enrolled and subjected to DIBH daily online adaptive radiotherapy. The primary endpoint is the one-year cumulative incidence of grade 3 or more severe adverse events, as classified by the Common Terminology Criteria for Adverse Events (CTCAE v5.0). DISCUSSION Delivering definitive radiotherapy for centrally located lung tumours presents a dilemma between ensuring optimal dose coverage for the planning target volume and the associated increased risk of adverse events. DIBH provides measurable dosimetric benefits by increasing the normal lung volume and distancing the tumour from critical mediastinal organs at risk, leading to reduced toxicity. DIBH adaptive radiotherapy has been proposed as an adjunct treatment option for abdominal and pelvic cancers. If the application of DIBH adaptive radiotherapy to centrally located lung tumours proves successful, this approach could shape future phase III trials and offer novel perspectives in lung tumour radiotherapy. TRIAL REGISTRATION Registered at the Japan Registry of Clinical Trials (jRCT; https://jrct.niph.go.jp/ ); registration number: jRCT1052230085 ( https://jrct.niph.go.jp/en-latest-detail/jRCT1052230085 ).
Collapse
Affiliation(s)
- Noriko Kishi
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Masahiro Yoneyama
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hiroyuki Inoo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Minoru Inoue
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hiraku Iramina
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Akiyoshi Nakakura
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomohiro Ono
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hideaki Hirashima
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takanori Adachi
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | | | - Makoto Sasaki
- Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | | | - Mitsuhiro Nakamura
- Department of Information Technology and Medical Engineering, Division of Medical Physics, Graduate School of Medicine, Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2, Onohigashi, Osakasayama-Shi, Osaka, 589-8511, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
7
|
Ahmadsei M, Jegarajah V, Dal Bello R, Christ SM, Mayinger MM, Sabrina Stark L, Willmann J, Vogelius IR, Balermpas P, Andratschke N, Tanadini-Lang S, Guckenberger M. Dosimetric Analysis of Proximal Bronchial Tree Subsegments to Assess The Risk of Severe Toxicity After Stereotactic Body Radiation Therapy of Ultra-central Lung Tumors. Clin Transl Radiat Oncol 2024; 45:100707. [PMID: 38125648 PMCID: PMC10731610 DOI: 10.1016/j.ctro.2023.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/17/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
•Stereotactic body radiation therapy (SBRT) for ultra-central lung tumors is associated with high toxicity rates.•To evaluate differences in radiosensitivity within the proximal bronchial tree (PBT), the PBT was sub-segmented into seven anatomical sections.•A risk-adapted SBRT regimen of EQD2_10 = 54.4 Gy in 8 or 10 fractions results in excellent local control and low rates of severe toxicity.•Data from a recent meta-analysis, the NORDIC Hilus trial and dosimetric data from this study were combined to create a NTCP model.•A dose threshold of EQD2_3 = 100 Gy to the PBT or any of its subsegments is expected to result in low rates of severe bronchial toxicity.
Collapse
Affiliation(s)
- Maiwand Ahmadsei
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vinojaa Jegarajah
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sebastian M. Christ
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael M. Mayinger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Luisa Sabrina Stark
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jonas Willmann
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Ivan R. Vogelius
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Csiki E, Simon M, Papp J, Barabás M, Mikáczó J, Gál K, Sipos D, Kovács Á. Stereotactic body radiotherapy in lung cancer: a contemporary review. Pathol Oncol Res 2024; 30:1611709. [PMID: 38476352 PMCID: PMC10928908 DOI: 10.3389/pore.2024.1611709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
The treatment of early stage non-small cell lung cancer (NSCLC) has improved enormously in the last two decades. Although surgery is not the only choice, lobectomy is still the gold standard treatment type for operable patients. For inoperable patients stereotactic body radiotherapy (SBRT) should be offered, reaching very high local control and overall survival rates. With SBRT we can precisely irradiate small, well-defined lesions with high doses. To select the appropriate fractionation schedule it is important to determine the size, localization and extent of the lung tumor. The introduction of novel and further developed planning (contouring guidelines, diagnostic image application, planning systems) and delivery techniques (motion management, image guided radiotherapy) led to lower rates of side effects and more conformal target volume coverage. The purpose of this study is to summarize the current developments, randomised studies, guidelines about lung SBRT, with emphasis on the possibility of increasing local control and overall rates in "fit," operable patients as well, so SBRT would be eligible in place of surgery.
Collapse
Affiliation(s)
- Emese Csiki
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Mihály Simon
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Papp
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márton Barabás
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Johanna Mikáczó
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Kristóf Gál
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - David Sipos
- Faculty of Health Sciences, University of Pécs, Pecs, Hungary
| | - Árpád Kovács
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
9
|
Bourbonne V, Lévy A, Khalifa J, Antoni D, Blais E, Darréon J, Le Péchoux C, Lerouge D, Giraud P, Marguerit A, Pourel N, Riet FG, Thureau S. Radiotherapy in the management of lung oligometastases. Cancer Radiother 2024; 28:36-48. [PMID: 38228422 DOI: 10.1016/j.canrad.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/07/2023] [Accepted: 06/29/2023] [Indexed: 01/18/2024]
Abstract
In recent years, the development of both medical imaging and new systemic agents (targeted therapy and immunotherapy) have revolutionized the field of oncology, leading to a new entity: oligometastatic disease. Adding local treatment of oligometastases to systemic treatment could lead to prolonged survival with no significant impact on quality of life. Given the high prevalence of lung oligometastases and the new systemic agents coming with increased pulmonary toxicity, this article provides a comprehensive review of the current state-of-art for radiotherapy of lung oligometastases. After reviewing pretreatment workup, the authors define several radiotherapy regimen based on the localization and size of the oligometastases. A comment on the synergistic combination of medical treatment and radiotherapy is also made, projecting on future steps in this specific clinical setting.
Collapse
Affiliation(s)
- V Bourbonne
- Radiation Oncology Department, CHU de Brest, Brest, France; LaTim, Inserm, UMR 1101, université de Bretagne occidentale, Brest, France
| | - A Lévy
- Department of Radiation Oncology, Centre international des cancers thoraciques (CICT), Gustave-Roussy, 94805 Villejuif, France; Faculté de médecine, université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - J Khalifa
- Department of Radiation Oncology, institut Claudius-Regaud, institut universitaire du cancer Toulouse-Oncopôle, Toulouse, France
| | - D Antoni
- Department of Radiation Oncology, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - E Blais
- Department of Radiation Oncology, polyclinique Marzet, Pau, France
| | - J Darréon
- Department of Radiation Oncology, institut Paoli-Calmettes, Marseille, France
| | - C Le Péchoux
- Department of Radiation Oncology, Centre international des cancers thoraciques (CICT), Gustave-Roussy, 94805 Villejuif, France; Faculté de médecine, université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - D Lerouge
- Department of Radiation Oncology, centre François-Baclesse, Caen, France
| | - P Giraud
- Department of Radiation Oncology, hôpital européen Georges-Pompidou, Paris, France; Université Paris Cité, Paris, France
| | - A Marguerit
- Department of Radiation Oncology, Institut de cancérologie de Montpellier, Montpellier, France
| | - N Pourel
- Department of Radiation Oncology, institut Sainte-Catherine, Avignon, France
| | - F-G Riet
- Department of Radiation Oncology, centre hospitalier privé Saint-Grégoire, 35760 Saint-Grégoire, France
| | - S Thureau
- Radiotherapy Department, centre Henri-Becquerel, Rouen, France; QuantIF-Litis EA4108, université de Rouen, Rouen, France.
| |
Collapse
|
10
|
Lee G, Han Z, Huynh E, Tjong MC, Cagney DN, Huynh MA, Kann BH, Kozono D, Leeman JE, Singer L, Williams CL, Mak RH. Widening the therapeutic window for central and ultra-central thoracic oligometastatic disease with stereotactic MR-guided adaptive radiation therapy (SMART). Radiother Oncol 2024; 190:110034. [PMID: 38030080 DOI: 10.1016/j.radonc.2023.110034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND/PURPOSE Central/ultra-central thoracic tumors are challenging to treat with stereotactic radiotherapy due potential high-grade toxicity. Stereotactic MR-guided adaptive radiation therapy (SMART) may improve the therapeutic window through motion control with breath-hold gating and real-time MR-imaging as well as the option for daily online adaptive replanning to account for changes in target and/or organ-at-risk (OAR) location. MATERIALS/METHODS 26 central (19 ultra-central) thoracic oligoprogressive/oligometastatic tumors treated with isotoxic (OAR constraints-driven) 5-fraction SMART (median 50 Gy, range 35-60) between 10/2019-10/2022 were reviewed. Central tumor was defined as tumor within or touching 2 cm around proximal tracheobronchial tree (PBT) or adjacent to mediastinal/pericardial pleura. Ultra-central was defined as tumor abutting the PBT, esophagus, or great vessel. Hard OAR constraints observed were ≤ 0.03 cc for PBT V40, great vessel V52.5, and esophagus V35. Local failure was defined as tumor progression/recurrence within the planning target volume. RESULTS Tumor abutted the PBT in 31 %, esophagus in 31 %, great vessel in 65 %, and heart in 42 % of cases. 96 % of fractions were treated with reoptimized plan, necessary to meet OAR constraints (80 %) and/or target coverage (20 %). Median follow-up was 19 months (27 months among surviving patients). Local control (LC) was 96 % at 1-year and 90 % at 2-years (total 2/26 local failure). 23 % had G2 acute toxicities (esophagitis, dysphagia, anorexia, nausea) and one (4 %) had G3 acute radiation dermatitis. There were no G4-5 acute toxicities. There was no symptomatic pneumonitis and no G2 + late toxicities. CONCLUSION Isotoxic 5-fraction SMART resulted in high rates of LC and minimal toxicity. This approach may widen the therapeutic window for high-risk oligoprogressive/oligometastatic thoracic tumors.
Collapse
Affiliation(s)
- Grace Lee
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhaohui Han
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth Huynh
- Department of Radiation Oncology, London Regional Cancer Program, London, ON, Canada
| | - Michael C Tjong
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel N Cagney
- Radiotherapy Department, Mater Private Network, Dublin, Ireland
| | - Mai Anh Huynh
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin H Kann
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan E Leeman
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lisa Singer
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Christopher L Williams
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Raymond H Mak
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Lindberg S, Grozman V, Karlsson K, Onjukka E, Lindbäck E, Jirf KA, Lax I, Wersäll P, Persson GF, Josipovic M, Khalil AA, Møller DS, Hoffmann L, Knap MM, Nyman J, Drugge N, Bergström P, Olofsson J, Rogg LV, Hagen RK, Frøland AS, Ramberg C, Kristiansen C, Jeppesen SS, Nielsen TB, Lödén B, Rosenbrand HO, Engelholm S, Haraldsson A, Billiet C, Lewensohn R, Lindberg K. Expanded HILUS Trial: A Pooled Analysis of Risk Factors for Toxicity From Stereotactic Body Radiation Therapy of Central and Ultracentral Lung Tumors. Int J Radiat Oncol Biol Phys 2023; 117:1222-1231. [PMID: 37423292 DOI: 10.1016/j.ijrobp.2023.06.246] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE Stereotactic body radiation therapy for tumors near the central airways implies high-grade toxic effects, as concluded from the HILUS trial. However, the small sample size and relatively few events limited the statistical power of the study. We therefore pooled data from the prospective HILUS trial with retrospective data from patients in the Nordic countries treated outside the prospective study to evaluate toxicity and risk factors for high-grade toxic effects. METHODS AND MATERIALS All patients were treated with 56 Gy in 8 fractions. Tumors within 2 cm of the trachea, the mainstem bronchi, the intermediate bronchus, or the lobar bronchi were included. The primary endpoint was toxicity, and the secondary endpoints were local control and overall survival. Clinical and dosimetric risk factors were analyzed for treatment-related fatal toxicity in univariable and multivariable Cox regression analyses. RESULTS Of 230 patients evaluated, grade 5 toxicity developed in 30 patients (13%), of whom 20 patients had fatal bronchopulmonary bleeding. The multivariable analysis revealed tumor compression of the tracheobronchial tree and maximum dose to the mainstem or intermediate bronchus as significant risk factors for grade 5 bleeding and grade 5 toxicity. The 3-year local control and overall survival rates were 84% (95% CI, 80%-90%) and 40% (95% CI, 34%-47%), respectively. CONCLUSIONS Tumor compression of the tracheobronchial tree and high maximum dose to the mainstem or intermediate bronchus increase the risk of fatal toxicity after stereotactic body radiation therapy in 8 fractions for central lung tumors. Similar dose constraints should be applied to the intermediate bronchus as to the mainstem bronchi.
Collapse
Affiliation(s)
- Sara Lindberg
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Theme Cancer, Department of Head, Neck, Lung and Skin Tumors, Karolinska University Hospital, Stockholm, Sweden.
| | - Vitali Grozman
- Section of Thoracic Radiology, Department of Imaging and Physiology, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kristin Karlsson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Section of Radiotherapy Physics and Engineering, Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Onjukka
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Section of Radiotherapy Physics and Engineering, Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Elias Lindbäck
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Section of Radiotherapy Physics and Engineering, Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karam Al Jirf
- Theme Cancer, Department of Head, Neck, Lung and Skin Tumors, Karolinska University Hospital, Stockholm, Sweden
| | - Ingmar Lax
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Theme Cancer, Department of Head, Neck, Lung and Skin Tumors, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Wersäll
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Section of Radiotherapy, Department of Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Gitte Fredberg Persson
- Section of Radiotherapy, Department of Oncology, Rigshospitalet, Copenhagen, Denmark; Department of Oncology, Herlev-Gentofte Hospital, Herlev, Denmark; Department of Clinical Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mirjana Josipovic
- Section of Radiotherapy, Department of Oncology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Azza Ahmed Khalil
- Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Ditte Sloth Møller
- Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Lone Hoffmann
- Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Marianne Marquard Knap
- Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Jan Nyman
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ninni Drugge
- Department of Therapeutic Radiation Physics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Bergström
- Department of Oncology, Northern Sweden University Hospital, Umeå, Sweden
| | - Jörgen Olofsson
- Department of Oncology, Northern Sweden University Hospital, Umeå, Sweden
| | | | | | | | - Christina Ramberg
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Charlotte Kristiansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Stefan Starup Jeppesen
- Department of Oncology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Tine Bjørn Nielsen
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark
| | - Britta Lödén
- Oncology Department, Central Hospital in Karlstad, Karlstad, Sweden
| | | | - Silke Engelholm
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - André Haraldsson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Charlotte Billiet
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk, University of Antwerp, Antwerp, Belgium
| | - Rolf Lewensohn
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Theme Cancer, Department of Head, Neck, Lung and Skin Tumors, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Lindberg
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Theme Cancer, Department of Head, Neck, Lung and Skin Tumors, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Safavi AH, Palma DA, Giuliani ME. Beyond the HILUS Trial: How Can We Improve the Safety of SABR for Ultracentral Thoracic Tumors? Int J Radiat Oncol Biol Phys 2023; 117:1232-1235. [PMID: 37980143 DOI: 10.1016/j.ijrobp.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 11/20/2023]
Affiliation(s)
- Amir H Safavi
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - David A Palma
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Meredith E Giuliani
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Tekatli H, Giraud N, van Eekelen R, Lagerwaard FJ, Senan S. Ten years outcomes after SABR in central and ultracentral primary lung tumors. Radiother Oncol 2023; 188:109848. [PMID: 37562553 DOI: 10.1016/j.radonc.2023.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE SABR performed for central and ultracentral lung tumors is associated with increased toxicity but limited data is available on late toxicities. We studied toxicity in patients followed-up ≥ 2 years post-SABR at a single-institution. METHODS All patients were treated using VMAT for a primary or recurrent central lung cancer between 2008-2015. 60 Gy was delivered in 8 or 12 fractions. Grade ≥ 3 clinical and radiological bronchial toxicity was scored. Multivariable Cox regression models were used to estimate hazard ratios. RESULTS Of 127 eligible patients, 63% were treated with 8 fractions. Median tumor diameter was 4.4 cm (range 1.3-12.0). Median overall survival was 25.0 months (95% CI 16.5-33.5); 4% developed isolated local recurrences. The actuarial 5-year rate for severe clinical toxicity was 34.1% (95% CI 21.2-44.9). Both clinical toxicity and fatal lung haemorrhage were most observed when tumors were located ≤ 1 cm from the trachea or main bronchi (46% of all cases). The 5-year actuarial rate of radiological bronchial toxicity was 37.5% (95% CI 21.5-50.2). Multivariable analysis revealed that a performance score of 2 or 3 (HR 3.6; 95% CI 1.7-7.8), and tumor location ≤ 1 cm from the trachea or main bronchi (HR 4.3; 95% CI 1.2-14.9) were significant predictors for severe clinical toxicity. CONCLUSION The actuarial rates for both severe clinical and radiological bronchial toxicity after central SABR was approximately 35% in patients surviving 5 years. Patients with tumors located ≤ 1 cm from the trachea or main bronchus were at the highest risk for severe clinical toxicity.
Collapse
Affiliation(s)
- Hilâl Tekatli
- Department of Radiation Oncology, Amsterdam UMC, The Netherlands.
| | - Nicolas Giraud
- Department of Radiation Oncology, Amsterdam UMC, The Netherlands
| | | | - Frank J Lagerwaard
- Department of Radiation Oncology, Amsterdam UMC, The Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam UMC, The Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Chen I, Iyer A, Thor M, Wu AJ, Apte A, Rimner A, Gomez D, Deasy JO, Jackson A. Simulating the Potential of Model-Based Individualized Prescriptions for Ultracentral Lung Tumors. Adv Radiat Oncol 2023; 8:101285. [PMID: 38047220 PMCID: PMC10692285 DOI: 10.1016/j.adro.2023.101285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/30/2023] [Indexed: 12/05/2023] Open
Abstract
Purpose The use of stereotactic body radiation therapy for ultracentral lung tumors is limited by increased toxicity. We hypothesized that using published normal tissue complication probability (NTCP) and tumor control probability (TCP) models could improve the therapeutic ratio between tumor control and toxicity. A proposed model-based approach was applied to virtually replan early-stage non-small cell lung cancer (NSCLC) tumors. Methods and Materials The analysis included 63 patients with ultracentral NSCLC tumors treated at our center between 2008 and 2017. Along with current clinical constraints, additional NTCP model-based criteria, including for grade 3+ radiation pneumonitis (RP3+) and grade 2+ esophagitis, were implemented using 4 different fractionation schemes. Scaled dose distributions resulting in the highest TCP without violating constraints were selected (optimal plan [Planopt]). Planopt predictions were compared with the observed local control and toxicities. Results The observed 2-year local control rate was 72% (95% CI, 57%-88%) compared with 87% (range, 6%-93%) for Planopt TCP. Thirty-nine patients had Planopt with TCP > 80%, and 14 patients had Planopt TCP < 50%. The Planopt NTCPs for RP3+ were reduced by nearly half compared with patients' observed RP3+. The RP3+ NTCP was the most frequent reason for TCP of Planopt < 80% (14/24 patients), followed by grade 2+ esophagitis NTCP (5/24 patients) due to larger tumors (>40 cc vs ≤40 cc; P = .002) or a shorter tumor to esophagus distance (≥5 cm vs <5 cm; P < .001). Conclusions We demonstrated the potential for model-based prescriptions to yield higher TCP while respecting NTCP for patients with ultracentral NSCLC. Individualizing treatments based on NTCP- and TCP-driven simulations halved the predicted relative to the observed rates of RP3+. Our simulations also identified patients whose TCP could not be improved without violating NTCP due to larger tumors or a near tumor to esophagus proximity.
Collapse
Affiliation(s)
- Ishita Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aditi Iyer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abraham J. Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aditya Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
15
|
Zarębska I, Harat M. An optimal dose-fractionation for stereotactic body radiotherapy in peripherally, centrally and ultracentrally located early-stage non-small lung cancer. Thorac Cancer 2023; 14:2813-2820. [PMID: 37691151 PMCID: PMC10542466 DOI: 10.1111/1759-7714.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT), also known as stereotactic ablative radiotherapy (SABR), is commonly used in inoperable patients with early-stage non-small lung cancer (NSCLC). This treatment has good outcomes and low toxicity in peripherally located tumors. However, in lesions which are located close to structures such as the bronchial tree or mediastinum the risk of severe toxicity increases. This review summarizes the evidence of dose-fractionation in SBRT of NSCLC patients in various locations.
Collapse
Affiliation(s)
- Izabela Zarębska
- Department of Neurooncology and RadiosurgeryFranciszek Lukaszczyk Oncology CenterBydgoszczPoland
- Department of RadiotherapyFranciszek Lukaszczyk Oncology CenterBydgoszczPoland
| | - Maciej Harat
- Department of Neurooncology and RadiosurgeryFranciszek Lukaszczyk Oncology CenterBydgoszczPoland
- Center of Medical SciencesUniversity of Science and TechnologyBydgoszczPoland
| |
Collapse
|
16
|
Bourbonne V, Thureau S, Pradier O, Antoni D, Lucia F. Stereotactic radiotherapy for ultracentral lung tumours. Cancer Radiother 2023; 27:659-665. [PMID: 37516640 DOI: 10.1016/j.canrad.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/31/2023]
Abstract
Ultracentral (UC) lung lesions are generally defined by the presence of the tumour or the Planning Target Volume (PTV) abutting proximal bronchial tree (PBT) or the esophagus. Initial reports rose awareness regarding the potential toxicity of stereotactic body radiotherapy (SBRT) when delivered to UC lesions. Major concerns include necrosis, stenosis, and bleeding of the PBT. Technological improvements now enable the delivery of more accurate treatments, possibly redefining the historical "no-fly zone". In this review, studies focusing on the treatment of UC lesions with SBRT are presented. The narrow therapeutic window requires a multidisciplinary approach.
Collapse
Affiliation(s)
- V Bourbonne
- Radiation Oncology Department, centre hospitalier universitaire de Brest, Brest, France; Inserm, LaTim UMR 1101, université de Bretagne occidentale, Brest, France.
| | - S Thureau
- Radiation Oncology Department, centre Henri-Becquerel, Rouen, France; QuantIf-Litis EA4108, université de Rouen, Rouen, France
| | - O Pradier
- Radiation Oncology Department, centre hospitalier universitaire de Brest, Brest, France; Inserm, LaTim UMR 1101, université de Bretagne occidentale, Brest, France
| | - D Antoni
- Radiation Oncology Department, institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - F Lucia
- Radiation Oncology Department, centre hospitalier universitaire de Brest, Brest, France; Inserm, LaTim UMR 1101, université de Bretagne occidentale, Brest, France
| |
Collapse
|
17
|
Puckett LL, Titi M, Kujundzic K, Dawes SL, Gore EM, Katsoulakis E, Park JH, Solanki AA, Kapoor R, Kelly M, Palta J, Chetty IJ, Jabbour SK, Liao Z, Movsas B, Thomas CR, Timmerman RD, Werner-Wasik M, Kudner R, Wilson E, Simone CB. Consensus Quality Measures and Dose Constraints for Lung Cancer From the Veterans Affairs Radiation Oncology Quality Surveillance Program and ASTRO Expert Panel. Pract Radiat Oncol 2023; 13:413-428. [PMID: 37075838 DOI: 10.1016/j.prro.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE For patients with lung cancer, it is critical to provide evidence-based radiation therapy to ensure high-quality care. The US Department of Veterans Affairs (VA) National Radiation Oncology Program partnered with the American Society for Radiation Oncology (ASTRO) as part of the VA Radiation Oncology Quality Surveillance to develop lung cancer quality metrics and assess quality of care as a pilot program in 2016. This article presents recently updated consensus quality measures and dose-volume histogram (DVH) constraints. METHODS AND MATERIALS A series of measures and performance standards were reviewed and developed by a Blue-Ribbon Panel of lung cancer experts in conjunction with ASTRO in 2022. As part of this initiative, quality, surveillance, and aspirational metrics were developed for (1) initial consultation and workup; (2) simulation, treatment planning, and treatment delivery; and (3) follow-up. The DVH metrics for target and organ-at-risk treatment planning dose constraints were also reviewed and defined. RESULTS Altogether, a total of 19 lung cancer quality metrics were developed. There were 121 DVH constraints developed for various fractionation regimens, including ultrahypofractionated (1, 3, 4, or 5 fractions), hypofractionated (10 and 15 fractionations), and conventional fractionation (30-35 fractions). CONCLUSIONS The devised measures will be implemented for quality surveillance for veterans both inside and outside of the VA system and will provide a resource for lung cancer-specific quality metrics. The recommended DVH constraints serve as a unique, comprehensive resource for evidence- and expert consensus-based constraints across multiple fractionation schemas.
Collapse
Affiliation(s)
- Lindsay L Puckett
- Department of Radiation Oncology, Medical College of Wisconsin and Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin.
| | - Mohammad Titi
- Department of Radiation Oncology, Medical College of Wisconsin and Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin
| | | | | | - Elizabeth M Gore
- Department of Radiation Oncology, Medical College of Wisconsin and Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin
| | - Evangelia Katsoulakis
- Department of Radiation Oncology, James A. Haley Veterans Affairs Healthcare System, Tampa, Florida
| | - John H Park
- Department of Radiation Oncology, Kansas City VA Medical Center, Kansas City, Missouri; Department of Radiology, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Abhishek A Solanki
- Department of Radiation Oncology, Loyola University and Hines VA Medical Center, Chicago, Illinois
| | - Rishabh Kapoor
- Department of Radiation Oncology, Virginia Commonwealth University and Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Maria Kelly
- Department of Radiation Oncology, VHA National Radiation Oncology Program Office, Richmond, Virginia
| | - Jatinder Palta
- Department of Radiation Oncology, Virginia Commonwealth University and Hunter Holmes McGuire VA Medical Center, Richmond, Virginia; Department of Radiation Oncology, VHA National Radiation Oncology Program Office, Richmond, Virginia
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Zhongxing Liao
- Division of Radiation Oncology, Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| | - Charles R Thomas
- Radiation Oncology, Dartmouth Cancer Institute, Hanover, New Hampshire
| | - Robert D Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, Texas
| | - Maria Werner-Wasik
- Department of Radiation Oncology, Sydney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Randi Kudner
- American Society for Radiation Oncology, Arlington, Virginia
| | - Emily Wilson
- American Society for Radiation Oncology, Arlington, Virginia
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| |
Collapse
|
18
|
Rock C, Sood S, Cao Y, Shelton S, Chen RC, Wang F. Ten fraction hypofractionated stereotactic body radiotherapy for the management of ultracentral lung tumors: a retrospective analysis of dosimetry, outcomes, and toxicity. Radiat Oncol 2023; 18:128. [PMID: 37533092 PMCID: PMC10394937 DOI: 10.1186/s13014-023-02298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/15/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The management of ultracentral thoracic tumors with ablative dose of radiotherapy remains challenging given proximity to critical central structures. We report patient outcomes, toxicity, and dosimetry for ultracentrally located tumors with hypofractionated stereotactic body radiotherapy (hfSBRT). METHODS Seventy-eight individuals (50 initial radiotherapy, 28 re-irradiation) undergoing 10 fraction hfSBRT for ultracentrally located thoracic tumors treated between 2009 and 2020 at a single institution were retrospectively reviewed. Overall survival (OS), progression free survival (PFS), and local control (LC) were calculated. Incidence and grade of treatment related toxicity were evaluated. Dosimetric analysis of treatment plans and critical adjacent OARs was performed. RESULTS At a median follow up time of 13 months, 1- and 3-year OS, PFS, and LC were 89%/63%, 37%/18%, and 84%/65%, respectively. Median dose was 65 Gy (BED10 = 107.25 Gy). Median primary bronchial tree maximum dose (Dmax) was 60 Gy (V50 = 0.96 cc). Median esophageal Dmax was 38 Gy (V40 = 0 cc). Median great vessel Dmax was 68 Gy (V50 = 3.53 cc). The most common ≥ grade 2 adverse event was pneumonitis, in 15 individuals (20%). Grade 3 or higher toxicity was observed in 9 individuals (12%): three cases of grade 3 pneumonitis (two re-irradiation, one initial radiotherapy), one grade 3 esophageal stricture following re-irradiation, two grade 3 endobronchial obstructions both following initial radiotherapy, and three grade 5 hemoptysis events (two re-irradiation, one initial radiotherapy). One hemoptysis event was categorized as "possibly" related to treatment, while the remaining two events were categorized as "unlikely" related to treatment in patients with clear evidence of disease progression. CONCLUSIONS hfSBRT to ultracentral lung tumors delivered over 10 fractions is a safe and effective treatment option, with acceptable rates of toxicity and good rates of tumor control. TRIAL REGISTRATION IRB registration number 12573.
Collapse
Affiliation(s)
- Crosby Rock
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sumit Sood
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Ying Cao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shary Shelton
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ronald C Chen
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Fen Wang
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
19
|
Tonneau M, Richard C, Routy B, Campeau MP, Vu T, Filion E, Roberge D, Mathieu D, Doucet R, Beliveau-Nadeau D, Bahig H. A competing risk analysis of the patterns and risk factors of recurrence in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy. Radiother Oncol 2023; 185:109697. [PMID: 37169303 DOI: 10.1016/j.radonc.2023.109697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION To assess patterns of recurrence after stereotactic ablative radiotherapy (SABR) in patient ineligible to surgery with early-stage non-small cell lung cancer (ES-NSCLC), report survival and treatment after first recurrence. METHODS We performed a retrospective analysis on 1068 patients with ES-NSCLC and 1143 lesions. Between group differences were estimated using competing risk analysis and cause-specific hazard ratios were calculated. Overall survival (OS) after first recurrence was calculated. RESULTS Median follow-up was 37.6 months. Univariate analysis demonstrated that ultra-central location was associated with higher risk of regional recurrence (RR) and distant metastasis (DM) (p = 0.004 and 0.01). Central lesions were associated with higher risk of local recurrence (LR) and RR (p < 0.001). Ultra-central lesions were associated with shorter OS (p = 0.002) compared to peripheral lesions. In multivariate analysis, central location was the only factor associated with increased LR and RR risks (p = 0.016 and 0.005). Median OS after first recurrence was 14.8 months. There was no difference in OS after first recurrence between ultra-central, central, and peripheral lesions (p = 0.83). Patients who received a second SABR course had an OS of 51.3 months, compared to 19.5 months with systemic therapy and 8.1 months with supportive care (p < 0.0001). DISCUSSION The main prognostic factor for LR and RR risks was central location. Ultra-central and central tumors might benefit from treatment intensification strategies such as dose escalation and/or addition of systemic therapy to improve radiotherapy outcomes. After a first recurrence post SABR, patients with contralateral lung recurrences and those who were eligible to receive a second course of SABR had improved OS.
Collapse
Affiliation(s)
- Marion Tonneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Université de Médecine Henri Warembourg, Lille, France
| | - Corentin Richard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marie-Pierre Campeau
- Radiation Oncology Department, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Toni Vu
- Radiation Oncology Department, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Edith Filion
- Radiation Oncology Department, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - David Roberge
- Radiation Oncology Department, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Dominique Mathieu
- Radiation Oncology Department, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Robert Doucet
- Radiation Oncology Department, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Dominic Beliveau-Nadeau
- Radiation Oncology Department, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Houda Bahig
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Radiation Oncology Department, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
20
|
Yan M, Louie AV, Kotecha R, Ashfaq Ahmed M, Zhang Z, Guckenberger M, Kim MS, Lo SS, Scorsetti M, Tree AC, Sahgal A, Slotman BJ. Stereotactic body radiotherapy for Ultra-Central lung Tumors: A systematic review and Meta-Analysis and International Stereotactic Radiosurgery Society practice guidelines. Lung Cancer 2023; 182:107281. [PMID: 37393758 DOI: 10.1016/j.lungcan.2023.107281] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) is an effective and safe modality for early-stage lung cancer and lung metastases. However, tumors in an ultra-central location pose unique safety considerations. We performed a systematic review and meta-analysis to summarize the current safety and efficacy data and provide practice recommendations on behalf of the International Stereotactic Radiosurgery Society (ISRS). METHODS We performed a systematic review using PubMed and EMBASE databases of patients with ultra-central lung tumors treated with SBRT. Studies reporting local control (LC) and/or toxicity were included. Studies with <5 treated lesions, non-English language, re-irradiation, nodal tumors, or mixed outcomes in which ultra-central tumors could not be discerned were excluded. Random-effects meta-analysis was performed for studies reporting relevant endpoints. Meta-regression was conducted to determine the effect of various covariates on the primary outcomes. RESULTS 602 unique studies were identified of which 27 (one prospective observational, the remainder retrospective) were included, representing 1183 treated targets. All studies defined ultra-central as the planning target volume (PTV) overlapping the proximal bronchial tree (PBT). The most common dose fractionations were 50 Gy/5, 60 Gy/8, and 60 Gy/12 fractions. The pooled 1- and 2-year LC estimates were 92 % and 89 %, respectively. Meta-regression identified biological effective dose (BED10) as a significant predictor of 1-year LC. A total of 109 grade 3-4 toxicity events, with a pooled incidence of 6 %, were reported, most commonly pneumonitis. There were 73 treatment related deaths, with a pooled incidence of 4 %, with the most common being hemoptysis. Anticoagulation, interstitial lung disease, endobronchial tumor, and concomitant targeted therapies were observed risk factors for fatal toxicity events. CONCLUSION SBRT for ultra-central lung tumors results in acceptable rates of local control, albeit with risks of severe toxicity. Caution should be taken for appropriate patient selection, consideration of concomitant therapies, and radiotherapy plan design.
Collapse
Affiliation(s)
- Michael Yan
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Alexander V Louie
- Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, USA
| | - Md Ashfaq Ahmed
- Center for Advanced Analytics, Baptist Health South Florida, Miami, USA
| | - Zhenwei Zhang
- Center for Advanced Analytics, Baptist Health South Florida, Miami, USA
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mi-Sook Kim
- Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington, Seattle, USA
| | - Marta Scorsetti
- Radiosurgery and Radiotherapy Department, IRCCS-Humanitas Research Hospital, Rozzano-Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
| | - Alison C Tree
- Division of Radiotherapy and Imaging, The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, Sutton, UK
| | - Arjun Sahgal
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Milano MT, Mavroidis P, Ryckman J, Yorke E, Doucette C, Mahadevan A, Kapitanova I, Spring Kong FM, Marks LB, Grimm J. Radiation-induced inferior brachial plexopathy after stereotactic body radiotherapy: Pooled analyses of risks. Radiother Oncol 2023; 182:109583. [PMID: 36842665 PMCID: PMC10501316 DOI: 10.1016/j.radonc.2023.109583] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
INTRODUCTION Radiation-induced brachial plexopathy (RIBP), resulting in symptomatic motor or sensory deficits of the upper extremity, is a risk after exposure of the brachial plexus to therapeutic doses of radiation. We sought to model dosimetric factors associated with risks of RIBP after stereotactic body radiotherapy (SBRT). METHODS From a prior systematic review, 4 studies were identified that included individual patient data amenable to normal tissue complication probability (NTCP) modelling after SBRT for apical lung tumors. Two probit NTCP models were derived: one from 4 studies (including 221 patients with 229 targets and 18 events); and another from 3 studies (including 185 patients with 192 targets and 11 events) that similarly contoured the brachial plexus. RESULTS NTCP models suggest ≈10% risks associated with brachial plexus maximum dose (Dmax) of ∼32-34 Gy in 3 fractions and ∼40-43 Gy in 5 fractions. RIBP risks increase with increasing brachial plexus Dmax. Compared to previously published data from conventionally-fractionated or moderately-hypofractionated radiotherapy for breast, lung and head and neck cancers (which tend to utilize radiation fields that circumferentially irradiate the brachial plexus), SBRT (characterized by steep dose gradients outside of the target volume) exhibits a much less steep dose-response with brachial plexus Dmax > 90-100 Gy in 2-Gy equivalents. CONCLUSIONS A dose-response for risk of RIBP after SBRT is observed relative to brachial plexus Dmax. Comparisons to data from less conformal radiotherapy suggests potential dose-volume dependences of RIBP risks, though published data were not amenable to NTCP modelling of dose-volume measures associated with RIBP after SBRT.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester, 601 Elmwood Ave. Box 647, Rochester, NY, United States.
| | - Panayiotis Mavroidis
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Jeff Ryckman
- Department of Radiation Oncology, West Virginia University, Parkersburg, WV, United States
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Christopher Doucette
- Department of Radiation Oncology, University of Rochester, 601 Elmwood Ave. Box 647, Rochester, NY, United States
| | - Anand Mahadevan
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, NY, United States
| | - Irina Kapitanova
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Feng-Ming Spring Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital/Li Ka Shing School of Medicine, Shenzhen, Hong Kong, China
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Jimm Grimm
- Department of Radiation Oncology, ThedaCare Regional Medical Center, Appleton, WI, USA
| |
Collapse
|
22
|
Das A, Giuliani M, Bezjak A. Radiotherapy for Lung Metastases: Conventional to Stereotactic Body Radiation Therapy. Semin Radiat Oncol 2023; 33:172-180. [PMID: 36990634 DOI: 10.1016/j.semradonc.2022.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The lung parenchyma and adjacent tissues are one of the most common sites of metastatic disease. Traditionally, the approach to treatment of a patient with lung metastases has been with systemic therapy, with radiotherapy being reserved for palliative management of symptomatic disease. The concept of oligo metastatic disease has paved the way for more radical treatment options, administered either alone or as local consolidative therapy in addition to systemic treatment. The modern-day management of lung metastases is guided by a number of factors, including the number of lung metastases, extra-thoracic disease status, overall performance status, and life expectancy, which all help determine the goals of care. Stereotactic body radiotherapy (SBRT) has emerged as a safe and effective method in locally controlling lung metastases, in the oligo metastatic or oligo-recurrent setting. This article outlines the role of radiotherapy in multimodality management of lung metastases.
Collapse
|
23
|
Regnery S, Katsigiannopulos E, Hoegen P, Weykamp F, Sandrini E, Held T, Deng M, Eichkorn T, Buchele C, Rippke C, Renkamp CK, König L, Lang K, Thomas M, Winter H, Adeberg S, Klüter S, Debus J, Hörner-Rieber J. To fly or not to fly: Stereotactic MR-guided adaptive radiotherapy effectively treats ultracentral lung tumors with favorable long-term outcomes. Lung Cancer 2023; 179:107175. [PMID: 36965207 DOI: 10.1016/j.lungcan.2023.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Stereotactic radiotherapy of ultracentral lung tumors (ULT) is challenging as it may cause overdoses to sensitive mediastinal organs with severe complications. We aimed to describe long-term outcomes after stereotactic magnetic resonance (MR)-guided online adaptive radiotherapy (SMART) as an innovative treatment of ULT. PATIENTS & METHODS We analyzed 36 patients that received SMART to 40 tumors between 02/2020 - 08/2021 inside prospective databases. ULT were defined by planning target volume (PTV) overlap with the proximal bronchial tree or esophagus. We calculated Kaplan Meier estimates for overall survival (OS) and progression-free survival (PFS), and competing risk estimates for the incidence of tumor progression and treatment-related toxicities. ULT patients (N = 16) were compared to non-ULT patients (N = 20). RESULTS Baseline characteristics were similar between ULT and non-ULT, but ULT were larger (median PTV: ULT 54.7 cm3, non-ULT 19.2 cm3). Median follow-up was 23.6 months. ULT and non-ULT showed a similar OS (2-years: ULT 67%, non-ULT 60%, p = 0.7) and PFS (2-years: ULT 37%, non-ULT 34%, p = 0.73). Progressions occurred mainly at distant sites (2-year incidence of distant progression: ULT 63%, non-ULT 61%, p = 0.77), while local tumor control was favorable (2-year incidence of local progression: ULT 7%, non-ULT 0%, p = 0.22). Treatment of ULT led to significantly more toxicities ≥ grade (G) 2 (ULT: 9 (56%), non-ULT: 1 (5%), p = 0.002). Most toxicities were moderate (G2). Two ULT patients developed high-grade toxicities: 1) esophagitis G3 and bronchial bleeding G4 after VEGF treatment, 2) bronchial bleeding G3. Estimated incidence of high-grade toxicities was 19% (3-48%) in ULT, and no treatment-related death occurred. CONCLUSION Our small series supports SMART as potentially effective treatment of ULT. SMART with careful fractionation could reduce severe complications, but treatment of ULT remains a high-risk procedure and needs careful benefit-risk-assessment.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Efthimios Katsigiannopulos
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael Thomas
- National Center for Tumor Diseases (NCT), Heidelberg, Germany; Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Roentgenstrasse 1, 69126 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Hauke Winter
- National Center for Tumor Diseases (NCT), Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Department of Thoracic Surgery, Thoraxklinik at Heidelberg University Hospital, Roentgenstrasse 1, 69126 Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
24
|
Song X, Zhao L, Jiang N, Ding N, Zong D, Zhang N, Wang D, Wen J, He X, Kong C, Zhu X. Long-term outcomes in patients with central and ultracentral non-small cell lung cancer treated with stereotactic body radiotherapy: single-institution experience. Curr Probl Cancer 2023; 47:100956. [DOI: 10.1016/j.currproblcancer.2023.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 03/13/2023]
|
25
|
Saeed NA, Jin L, Amini A, Verma V, Lester-Coll NH, Chen PH, Decker RH, Park HS. Utilization and Survival Impact of Hypofractionated Radiotherapy in Stage I Non-small Cell Lung Cancer. Am J Clin Oncol 2023; 46:66-72. [PMID: 36662872 DOI: 10.1097/coc.0000000000000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The optimal fractionation schedule in unresected stage I non-small cell lung cancer (NSCLC) unsuitable for stereotactic body radiation therapy is unclear. Given the lack of comparative data regarding nonstereotactic body radiation therapy schemas, we compared overall survival (OS) with hypofractionated radiotherapy (HFRT) versus conventionally fractionated radiotherapy (CFRT) and examined the OS impact of different HFRT doses. MATERIALS AND METHODS This retrospective analysis included 2159 patients from the National Cancer Database diagnosed with stage I (cT1-2aN0M0) NSCLC between 2008 and 2016. Patients underwent CFRT (70≤BED10 [biologically effective dose] <100 Gy10 in ≥30 fractions), low-dose HFRT (LD-HFRT; 70≤BED10 [assuming α/β=10] <100 Gy10 in 11 to 24 fractions), or high-dose HFRT (HD-HFRT; 100≤BED10 ≤120 Gy10 in 6 to 10 fractions). Patients who received surgery, chemotherapy, or immunotherapy were excluded. We compared CFRT versus all HFRT, and separately CFRT versus LD-HFRT and CFRT versus HD-HFRT. OS was evaluated with the Kaplan-Meier estimator, log-rank test, and Cox regression. RESULTS A total of 63.2% of patients underwent CFRT, 23.5% LD-HFRT, and 13.3% HD-HFRT. OS was significantly longer with HFRT versus CFRT on univariable (28.2 mo [95% CI, 25.6-31.7] vs 26.4 mo [25.0-27.9]; log-rank=0.0025) but not multivariable analysis (MVA; hazard ratio [HR] 0.90; P=0.062). MVA yielded no significant difference in OS between CFRT and LD-HFRT (HR 0.96, P=0.53). OS was significantly longer with HD-HFRT versus CFRT on MVA (HR, 0.75; P=0.003). However, on sensitivity analysis using different multivariable modeling techniques, this did not retain statistical significance (HR, 0.83; P=0.12). CONCLUSIONS For stage I NSCLC, HFRT does not show a robust OS benefit compared with CFRT but may be preferred given the convenience and lower costs.
Collapse
Affiliation(s)
| | - Lan Jin
- Sema4, 333 Ludlow Street, Stamford, CT
| | - Arya Amini
- Department of Radiation Oncology, City of Hope, Duarte, CA
| | - Vivek Verma
- Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Nataniel H Lester-Coll
- Division of Radiation Oncology, University of Vermont Larner College of Medicine, Burlington, VT
| | - Po-Han Chen
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | | | | |
Collapse
|
26
|
Laktionov KK, Artamonova EV, Borisova TN, Breder VV, Bychkov IM, Vladimirova LI, Volkov NM, Ergnian SM, Zhabina AS, Kononets PV, Kuzminov AE, Levchenko EV, Malikhova OA, Marinov DT, Miller SV, Moiseenko FV, Mochal’nikova VV, Novikov SN, Pikin OV, Reutova EV, Rodionov EO, Sakaeva DD, Sarantseva KA, Semenova AI, Smolin AV, Sotnikov VM, Tuzikov SA, Turkin IN, Tyurin IE, Chkhikvadze VD, Kolbanov KI, Chernykh MV, Chernichenko AV, Fedenko AA, Filonenko EV, Nevol’skikh AA, Ivanov SA, Khailova ZV, Gevorkian TG, Butenko AV, Gil’mutdinova IR, Gridneva IV, Eremushkin MA, Zernova MA, Kasparov BS, Kovlen DV, Kondrat’eva KO, Konchugova TV, Korotkova SB, Krutov AA, Obukhova OA, Ponomarenko GN, Semiglazova TI, Stepanova AM, Khulamkhanova MM. Malignant neoplasm of the bronchi and lung: Russian clinical guidelines. JOURNAL OF MODERN ONCOLOGY 2022. [DOI: 10.26442/18151434.2022.3.201848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
удалить
Collapse
|
27
|
Stereotactic Ablative Radiotherapy in the Treatment of Early-Stage Lung Cancer - A Done Deal? Clin Oncol (R Coll Radiol) 2022; 34:733-740. [PMID: 36050221 DOI: 10.1016/j.clon.2022.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 08/12/2022] [Indexed: 01/31/2023]
Abstract
Stereotactic ablative radiotherapy (SABR) is an important curative-intent treatment option for early-stage non-small cell lung cancer. It offers good cancer control without invasive surgery and has become the standard of care for medically inoperable patients. The literature on SABR for early-stage non-small cell lung cancer is substantial and continues to grow. However, there remain areas of controversy where data are limited - notably the use of SABR in medically operable patients. Other areas of some debate include the treatment of central/ultra-central and large (>5 cm) lesions, as well as treatment with co-existing interstitial lung disease. This review article provides an overview of the current literature together with a discussion of future directions.
Collapse
|
28
|
Ajdari A, Liao Z, Mohan R, Wei X, Bortfeld T. Personalized mid-course FDG-PET based adaptive treatment planning for non-small cell lung cancer using machine learning and optimization. Phys Med Biol 2022; 67:10.1088/1361-6560/ac88b3. [PMID: 35947984 PMCID: PMC9579961 DOI: 10.1088/1361-6560/ac88b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022]
Abstract
Objective. Traditional radiotherapy (RT) treatment planning of non-small cell lung cancer (NSCLC) relies on population-wide estimates of organ tolerance to minimize excess toxicity. The goal of this study is to develop a personalized treatment planning based on patient-specific lung radiosensitivity, by combining machine learning and optimization.Approach. Sixty-nine non-small cell lung cancer patients with baseline and mid-treatment [18]F-fluorodeoxyglucose (FDG)-PET images were retrospectively analyzed. A probabilistic Bayesian networks (BN) model was developed to predict the risk of radiation pneumonitis (RP) at three months post-RT using pre- and mid-treatment FDG information. A patient-specific dose modifying factor (DMF), as a surrogate for lung radiosensitivity, was estimated to personalize the normal tissue toxicity probability (NTCP) model. This personalized NTCP was then integrated into a NTCP-based optimization model for RT adaptation, ensuring tumor coverage and respecting patient-specific lung radiosensitivity. The methodology was employed to adapt the treatment planning of fifteen NSCLC patients.Main results. The magnitude of the BN predicted risks corresponded with the RP severity. Average predicted risk for grade 1-4 RP were 0.18, 0.42, 0.63, and 0.76, respectively (p< 0.001). The proposed model yielded an average area under the receiver-operating characteristic curve (AUROC) of 0.84, outperforming the AUROCs of LKB-NTCP (0.77), and pre-treatment BN (0.79). Average DMF for the radio-tolerant (RP grade = 1) and radiosensitive (RP grade ≥ 2) groups were 0.8 and 1.63,p< 0.01. RT personalization resulted in five dose escalation strategies (average mean tumor dose increase = 6.47 Gy, range = [2.67-17.5]), and ten dose de-escalation (average mean lung dose reduction = 2.98 Gy [0.8-5.4]), corresponding to average NTCP reduction of 15% [4-27].Significance. Personalized FDG-PET-based mid-treatment adaptation of NSCLC RT could significantly lower the RP risk without compromising tumor control. The proposed methodology could help the design of personalized clinical trials for NSCLC patients.
Collapse
Affiliation(s)
- Ali Ajdari
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation BioPhysics, Boston, MA
| | - Zhongxing Liao
- University of Texas’ MD Anderson Cancer Center, Department of Radiation Oncology, Division of Radiation Oncology, Houston, TX
| | - Radhe Mohan
- University of Texas’ MD Anderson Cancer Center, Department of Radiation Physics, Division of Radiation Oncology, Houston, TX
| | - Xiong Wei
- University of Texas’ MD Anderson Cancer Center, Department of Radiation Oncology, Division of Radiation Oncology, Houston, TX
| | - Thomas Bortfeld
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation BioPhysics, Boston, MA
| |
Collapse
|
29
|
Kang TM, Hardcastle N, Singh AK, Slotman BJ, Videtic GMM, Stephans KL, Couñago F, Louie AV, Guckenberger M, Harden SV, Plumridge NM, Siva S. Practical considerations of single-fraction stereotactic ablative radiotherapy to the lung. Lung Cancer 2022; 170:185-193. [PMID: 35843149 DOI: 10.1016/j.lungcan.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Stereotactic ablative radiotherapy (SABR) is a well-established treatment for patients with medically inoperable early-stage non-small cell lung cancer (NSCLC) and pulmonary oligometastases. The use of single-fraction SABR in this setting is supported by excellent local control and safety profiles which appear equivalent to multi-fraction SABR based on the available data. The resource efficiency and reduction in hospital outpatient visits associated with single-fraction SABR have been particularly advantageous during the COVID-19 pandemic. Despite the increased interest, single-fraction SABR in subgroups of patients remains controversial, including those with centrally located tumours, synchronous targets, proximity to dose-limiting organs at risk, and concomitant severe respiratory illness. This review provides an overview of the published randomised evidence evaluating single-fraction SABR in primary lung cancer and pulmonary oligometastases, the common clinical challenges faced, immunogenic effect of SABR, as well as technical and cost-utility considerations.
Collapse
Affiliation(s)
- Therese Mj Kang
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum, Department of Oncology, University of Melbourne, Australia; Centre for Medical Radiation Physics, University of Wollongong, New South Wales, Australia
| | - Anurag K Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Gregory M M Videtic
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Kevin L Stephans
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, Madrid, Spain
| | - Alexander V Louie
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susan V Harden
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nikki M Plumridge
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum, Department of Oncology, University of Melbourne, Australia.
| |
Collapse
|
30
|
Park HS, Detterbeck FC, Madoff DC, Bade BC, Kumbasar U, Mase VJ, Li AX, Blasberg JD, Woodard GA, Brandt WS, Decker RH. A guide for managing patients with stage I NSCLC: deciding between lobectomy, segmentectomy, wedge, SBRT and ablation-part 4: systematic review of evidence involving SBRT and ablation. J Thorac Dis 2022; 14:2412-2436. [PMID: 35813762 PMCID: PMC9264060 DOI: 10.21037/jtd-21-1826] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/09/2022] [Indexed: 11/06/2022]
Abstract
Background Clinical decision-making for patients with stage I lung cancer is complex. It involves multiple options [lobectomy, segmentectomy, wedge, stereotactic body radiotherapy (SBRT), thermal ablation], weighing multiple outcomes (e.g., short-, intermediate-, long-term) and multiple aspects of each (e.g., magnitude of a difference, the degree of confidence in the evidence, and the applicability to the patient and setting at hand). A structure is needed to summarize the relevant evidence for an individual patient and to identify which outcomes have the greatest impact on the decision-making. Methods A PubMed systematic review from 2000-2021 of outcomes after SBRT or thermal ablation vs. resection is the focus of this paper. Evidence was abstracted from randomized trials and non-randomized comparisons with at least some adjustment for confounders. The analysis involved careful assessment, including characteristics of patients, settings, residual confounding etc. to expose degrees of uncertainty and applicability to individual patients. Evidence is summarized that provides an at-a-glance overall impression as well as the ability to delve into layers of details of the patients, settings and treatments involved. Results Short-term outcomes are meaningfully better after SBRT than resection. SBRT doesn't affect quality-of-life (QOL), on average pulmonary function is not altered, but a minority of patients may experience gradual late toxicity. Adjusted non-randomized comparisons demonstrate a clinically relevant detriment in long-term outcomes after SBRT vs. surgery. The short-term benefits of SBRT over surgery are accentuated with increasing age and compromised patients, but the long-term detriment remains. Ablation is associated with a higher rate of complications than SBRT, but there is little intermediate-term impact on quality-of-life or pulmonary function tests. Adjusted comparisons show a meaningful detriment in long-term outcomes after ablation vs. surgery; there is less difference between ablation and SBRT. Conclusions A systematic, comprehensive summary of evidence regarding Stereotactic Body Radiotherapy or thermal ablation vs. resection with attention to aspects of applicability, uncertainty and effect modifiers provides a foundation for a framework for individualized decision-making.
Collapse
Affiliation(s)
- Henry S. Park
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Frank C. Detterbeck
- Department of Thoracic Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - David C. Madoff
- Department of Radiology & Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Brett C. Bade
- Department of Pulmonary Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ulas Kumbasar
- Department of Thoracic Surgery, Hacettepe University School of Medicine, Ankara, Turkey
| | - Vincent J. Mase
- Department of Thoracic Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew X. Li
- Department of General Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Justin D. Blasberg
- Department of Thoracic Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Gavitt A. Woodard
- Department of Thoracic Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Whitney S. Brandt
- Department of Cardiothoracic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Roy H. Decker
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
31
|
Regnery S, Ristau J, Weykamp F, Hoegen P, Sprengel SD, Paul KM, Buchele C, Klüter S, Rippke C, Renkamp CK, Pohl M, Meis J, Welzel T, Adeberg S, Koerber SA, Debus J, Hörner-Rieber J. Magnetic resonance guided adaptive stereotactic body radiotherapy for lung tumors in ultracentral location: the MAGELLAN trial (ARO 2021-3). Radiat Oncol 2022; 17:102. [PMID: 35614486 PMCID: PMC9134672 DOI: 10.1186/s13014-022-02070-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stereotactic Body Radiotherapy (SBRT) is a standard treatment for inoperable primary and secondary lung tumors. In case of ultracentral tumor location, defined as tumor contact with vulnerable mediastinal structures such as the proximal bronchial tree (PBT) or esophagus, SBRT is associated with an increased risk for severe complications. Magnetic resonance (MR)-guided SBRT can mitigate this risk based on gated dose delivery and daily plan adaptation. The MAGELLAN trial aims to find the maximum tolerated dose (MTD) of MR-guided SBRT of ultracentral lung tumors (ULT). PATIENTS AND METHODS MAGELLAN is a prospective phase I dose escalation trial. A maximum of 38 patients with primary and secondary ULT with a tumor size ≤ 5 cm will be enrolled. Ultracentral location is defined as an overlap of the planning target volume (PTV) with the PBT or esophagus. Patients are treated at a 0.35 Tesla MR-linac (MRIdian® Linac, ViewRay Inc. ) employing a gating strategy and daily plan adaptation. Dose escalation starts at 10 × 5.5 Gy (biologically effective dose BED3/10: 155.83 Gy/85.25 Gy), may proceed up to 10 × 6.5 Gy (BED3/10: 205.83 Gy/107.25 Gy) and is guided by a customized time-to-event continual reassessment method (TITE CRM) with backup element, which alternately assigns patients to dose escalation and backup cohorts. DISCUSSION The results of the MAGELLAN trial will guide further research and clinical implementation of MR-guided SBRT as ablative treatment of ULT. Moreover, the combination of MR-guided radiotherapy with TITE-CRM including a backup element may serve as blueprint for future radiation dose escalation studies in critical locations. TRIAL REGISTRATION Registered at ClinicalTrials.gov: NCT04925583 on 14th June 2021.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon David Sprengel
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Katharina Maria Paul
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Claudia Katharina Renkamp
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Moritz Pohl
- Institute of Medical Biometry, University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Jan Meis
- Institute of Medical Biometry, University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Thomas Welzel
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Alexander Koerber
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
32
|
Bucknell NW, Belderbos J, Palma DA, Iyengar P, Samson P, Chua K, Gomez D, McDonald F, Louie AV, Faivre-Finn C, Hanna GG, Siva S. Avoiding toxicity with lung radiation therapy: An IASLC perspective. J Thorac Oncol 2022; 17:961-973. [DOI: 10.1016/j.jtho.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
|
33
|
Rodríguez De Dios N, Navarro-Martin A, Cigarral C, Chicas-Sett R, García R, Garcia V, Gonzalez JA, Gonzalo S, Murcia-Mejía M, Robaina R, Sotoca A, Vallejo C, Valtueña G, Couñago F. GOECP/SEOR radiotheraphy guidelines for non-small-cell lung cancer. World J Clin Oncol 2022; 13:237-266. [PMID: 35582651 PMCID: PMC9052073 DOI: 10.5306/wjco.v13.i4.237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/27/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous disease accounting for approximately 85% of all lung cancers. Only 17% of patients are diagnosed at an early stage. Treatment is multidisciplinary and radiotherapy plays a key role in all stages of the disease. More than 50% of patients with NSCLC are treated with radiotherapy (curative-intent or palliative). Technological advances-including highly conformal radiotherapy techniques, new immobilization and respiratory control systems, and precision image verification systems-allow clinicians to individualize treatment to maximize tumor control while minimizing treatment-related toxicity. Novel therapeutic regimens such as moderate hypofractionation and advanced techniques such as stereotactic body radiotherapy (SBRT) have reduced the number of radiotherapy sessions. The integration of SBRT into routine clinical practice has radically altered treatment of early-stage disease. SBRT also plays an increasingly important role in oligometastatic disease. The aim of the present guidelines is to review the role of radiotherapy in the treatment of localized, locally-advanced, and metastatic NSCLC. We review the main radiotherapy techniques and clarify the role of radiotherapy in routine clinical practice. These guidelines are based on the best available evidence. The level and grade of evidence supporting each recommendation is provided.
Collapse
Affiliation(s)
- Núria Rodríguez De Dios
- Department of Radiation Oncology, Hospital del Mar, Barcelona 08003, Spain
- Radiation Oncology Research Group, Hospital Del Mar Medical Research Institution, Barcelona 08003, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08003, Spain
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Thoracic Malignancies Unit, Hospital Duran i Reynals. ICO, L´Hospitalet de L, Lobregat 08908, Spain
| | - Cristina Cigarral
- Department of Radiation Oncology, Hospital Clínico de Salamanca, Salamanca 37007, Spain
| | - Rodolfo Chicas-Sett
- Department of Radiation Oncology, ASCIRES Grupo Biomédico, Valencia 46004, Spain
| | - Rafael García
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Virginia Garcia
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | | | - Susana Gonzalo
- Department of Radiation Oncology, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Mauricio Murcia-Mejía
- Department of Radiation Oncology, Hospital Universitario Sant Joan de Reus, Reus 43204, Tarragona, Spain
| | - Rogelio Robaina
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | - Amalia Sotoca
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Carmen Vallejo
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - German Valtueña
- Department of Radiation Oncology, Hospital Clínico Universitario Lozano Blesa, Zaragoza 50009, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, Madrid 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28003, Spain
- Department of Clinical, Universidad Europea, Madrid 28670, Spain
| |
Collapse
|
34
|
Farrugia M, Yu H, Ma SJ, Iovoli AJ, Pokharel S, Sharma UC, Fung-Kee-Fung S, Malik N, Singh AK, Malhotra H. Right Atrial Dose Is Associated with Worse Outcome in Patients Undergoing Definitive Stereotactic Body Radiation Therapy for Central Lung Tumors. Cancers (Basel) 2022; 14:cancers14061391. [PMID: 35326542 PMCID: PMC8945864 DOI: 10.3390/cancers14061391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The clinical consequences of irradiating the cardiac substructures during stereotactic body radiation therapy (SBRT) remains unclear. We evaluated 83 lung cancer patients who underwent SBRT for early stage lung cancer. Using specialized software, we generated structures for fourteen cardiac substructures and evaluated radiation dose parameters for each. Among these parameters, the dose to 45% (D45%) of either the right atria or ventricle was associated with worse non-cancer associated survival with an identified cutoff value of 890 cGy and 564 cGy for each, respectively. Via these cutoffs, the D45% to the right atria, not the right ventricle, was associated with worse non-cancer associated and overall survival. Based on these findings, reducing the dose to the right atria during SBRT may improve patient outcomes in at risk patients. Abstract The consequence of cardiac substructure irradiation in patients receiving stereotactic body radiation therapy (SBRT) is not well characterized. We reviewed the charts of patients with central lung tumors managed by definitive SBRT from June 2010–April 2019. All patients were treated with five fractions, typically either 5000 cGy (44.6%) or 5500 cGy (42.2%). Via a multi-patient atlas, fourteen cardiac substructures were autosegmented, manually reviewed and analyzed using dosimetric parameters. A total of 83 patients were included with a median follow up of 33.4 months. Univariate Cox regression analysis identified a D45% dose to the right atria and ventricle for further study. Sequential log-rank testing evaluating an association between non-cancer associated survival and D45% dose to the right atria or ventricle and association was employed, identifying candidate cutoff values of 890.3 cGy and 564.4 cGy, respectively. Kaplan–Meier analysis using the reported cutoff values found the D45% right atria constraint to be significantly associated with non-cancer associated (p ≤ 0.001) and overall survival (p ≤ 0.001) but not the right ventricle constraint. Within a multivariate model, the proposed right atria D45% cutoff remained significantly correlated with non-cancer associated survival (Hazard’s Ratio (HR) ≤ 8.5, 95% confidence interval (CI) 1.1–64.5, p ≤ 0.04) and OS (HR ≤ 6.1, 95% CI 1.0–36.8, p ≤ 0.04). In conclusion, a dose to D45% of the right atria significantly correlated with outcome and the candidate constraint of 890 cGy stratified non-cancer associated and OS. The inclusion of these findings with previously characterized relationships between proximal airway constraints and survival enhances our understanding of why centrally located tumors are high risk and potentially identifies key constraints in organ at risk prioritization.
Collapse
Affiliation(s)
- Mark Farrugia
- Roswell Park Comprehensive Cancer Center, Department of Radiation Medicine, Buffalo, NY 14203, USA; (M.F.); (S.J.M.); (A.J.I.); (S.F.-K.-F.); (N.M.); (H.M.)
| | - Han Yu
- Roswell Park Comprehensive Cancer Center, Department of Biostatistics & Bioinformatics, Buffalo, NY 14203, USA;
| | - Sung Jun Ma
- Roswell Park Comprehensive Cancer Center, Department of Radiation Medicine, Buffalo, NY 14203, USA; (M.F.); (S.J.M.); (A.J.I.); (S.F.-K.-F.); (N.M.); (H.M.)
| | - Austin J. Iovoli
- Roswell Park Comprehensive Cancer Center, Department of Radiation Medicine, Buffalo, NY 14203, USA; (M.F.); (S.J.M.); (A.J.I.); (S.F.-K.-F.); (N.M.); (H.M.)
| | - Saraswati Pokharel
- Roswell Park Comprehensive Cancer Center, Department of Pathology & Laboratory Medicine, Buffalo, NY 14203, USA;
| | - Umesh C. Sharma
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Simon Fung-Kee-Fung
- Roswell Park Comprehensive Cancer Center, Department of Radiation Medicine, Buffalo, NY 14203, USA; (M.F.); (S.J.M.); (A.J.I.); (S.F.-K.-F.); (N.M.); (H.M.)
| | - Nadia Malik
- Roswell Park Comprehensive Cancer Center, Department of Radiation Medicine, Buffalo, NY 14203, USA; (M.F.); (S.J.M.); (A.J.I.); (S.F.-K.-F.); (N.M.); (H.M.)
| | - Anurag K. Singh
- Roswell Park Comprehensive Cancer Center, Department of Radiation Medicine, Buffalo, NY 14203, USA; (M.F.); (S.J.M.); (A.J.I.); (S.F.-K.-F.); (N.M.); (H.M.)
- Correspondence: ; Tel.: +1-716-845-3218
| | - Harish Malhotra
- Roswell Park Comprehensive Cancer Center, Department of Radiation Medicine, Buffalo, NY 14203, USA; (M.F.); (S.J.M.); (A.J.I.); (S.F.-K.-F.); (N.M.); (H.M.)
| |
Collapse
|
35
|
Swaminath A, Ritter T, Louie AV, Palma DA, Guckenberger M, Senan S, Bezjak A, Moghanaki D. Performing SBRT in the Fly-With-Caution Zone: Are We Heeding the Advice of Daedalus? Int J Radiat Oncol Biol Phys 2022; 112:586-589. [DOI: 10.1016/j.ijrobp.2021.10.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
|
36
|
Fernández C, Navarro-Martin A, Bobo A, Cabrera-Rodriguez J, Calvo P, Chicas-Sett R, Luna J, Rodríguez de Dios N, Couñago F. Single-fraction stereotactic ablative body radiation therapy for primary and metastasic lung tumor: A new paradigm? World J Clin Oncol 2022; 13:101-115. [PMID: 35316929 PMCID: PMC8894272 DOI: 10.5306/wjco.v13.i2.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/07/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Stereotactic ablative body radiotherapy (SABR) is an effective technique comparable to surgery in terms of local control and efficacy in early stages of non-small cell lung cancer (NSCLC) and pulmonary metastasis. Several fractionation schemes have proven to be safe and effective, including the single fraction (SF) scheme. SF is an option cost-effectiveness, more convenience and comfortable for the patient and flexible in terms of its management combined with systemic treatments. The outbreak of the severe acute respiratory syndrome coronavirus 2 pandemic has driven this not new but underutilized paradigm, recommending this option to minimize patients' visits to hospital. SF SABR already has a long experience, strong evidence and sufficient maturity to reliably evaluate outcomes in peripheral primary NSCLC and there are promising outcomes in pulmonary metastases, making it a valid treatment option; although its use in central locations, synchronous and recurrencies tumors requires more prospective safety and efficacy studies. The SABR radiobiology study, together with the combination with systemic therapies, (targeted therapies and immunotherapy) is a direction of research in both advanced disease and early stages whose future includes SF.
Collapse
Affiliation(s)
- Castalia Fernández
- Department of Radiation Oncology, GenesisCare Madrid, Madrid 28043, Spain
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Institut Catalá d’Oncologia, L’Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Andrea Bobo
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | | | - Patricia Calvo
- Department of Radiation Oncology, Hospitalario Clínico Universitario de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Rodolfo Chicas-Sett
- Department of Radiation Oncology, ASCIRES Grupo Biomédico, Valencia 46004, Spain
| | - Javier Luna
- Department of Radiation Oncology, Hospital Fundación Jiménez Díaz, Madrid 28040, Spain
| | | | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Madrid 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28223, Spain
- Department of Medicine, School of Biomedical Sciences, Universidad Europea, Madrid 28223, Spain
| |
Collapse
|
37
|
Bartl AJ, Mahoney M, Hennon MW, Yendamuri S, Videtic GMM, Stephans KL, Siva S, Farrugia MK, Ma SJ, Singh AK. Systematic Review of Single-Fraction Stereotactic Body Radiation Therapy for Early Stage Non-Small-Cell Lung Cancer and Lung Oligometastases: How to Stop Worrying and Love One and Done. Cancers (Basel) 2022; 14:cancers14030790. [PMID: 35159057 PMCID: PMC8834253 DOI: 10.3390/cancers14030790] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Adoption of single-fraction lung stereotactic body radiation therapy (SBRT) for patients with medically inoperable early stage non-small-cell lung cancer (NSCLC) or oligometastatic lung disease, even during the coronavirus disease 2019 (COVID-19) pandemic, was limited despite encouraging phase II trial results. Barriers to using single-fraction SBRT may include lack of familiarity with the regimen and lack of clarity about the expected toxicity. To address these concerns, we performed a systematic review of prospective literature on single-fraction SBRT for definitive treatment of early stage and oligometastatic lung cancer. A PubMed search of prospective studies in English on single-fraction lung SBRT was conducted. A systematic review was performed of the studies that reported clinical outcomes of single-fraction SBRT in the treatment of early stage non-small-cell lung cancer and lung oligometastases. The current prospective literature including nine trials supports the use of single-fraction SBRT in the definitive treatment of early stage peripheral NSCLC and lung oligometastases. Most studies cite local control rates of >90%, mild toxicity profiles, and favorable survival outcomes. Most toxicities reported were grade 1–2, with grade ≥3 toxicity in 0–17% of patients. Prospective trial results suggest potential consideration of utilizing single-fraction SBRT beyond the COVID-19 pandemic.
Collapse
Affiliation(s)
- Austin J. Bartl
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| | - Mary Mahoney
- College of Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA;
| | - Mark W. Hennon
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (M.W.H.); (S.Y.)
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (M.W.H.); (S.Y.)
| | - Gregory M. M. Videtic
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44195, USA; (G.M.M.V.); (K.L.S.)
| | - Kevin L. Stephans
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44195, USA; (G.M.M.V.); (K.L.S.)
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
| | - Mark K. Farrugia
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (M.K.F.); (S.J.M.)
| | - Sung Jun Ma
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (M.K.F.); (S.J.M.)
| | - Anurag K. Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (M.K.F.); (S.J.M.)
- Correspondence: ; Tel.: +1-716-845-5715
| |
Collapse
|
38
|
Guillaume E, Tanguy R, Ayadi M, Claude L, Sotton S, Moncharmont C, Magné N, Martel-Lafay I. Toxicity and efficacy of stereotactic body radiotherapy for ultra-central lung tumours: a single institution real life experience. Br J Radiol 2022; 95:20210533. [PMID: 34797724 PMCID: PMC8722247 DOI: 10.1259/bjr.20210533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES The use of stereotactic body radiotherapy (SBRT) to treat ultra-central lung tumours remains more controversial than for peripheral and central tumours. Our objective was to assess toxicities, local control (LC) rate and survival data in patients with ultra-central lung tumours treated with SBRT. METHODS We conducted a retrospective and monocentric study about 74 patients with an ultra-central lung tumour, consecutively treated between 2012 and 2018. Ultra-central tumours were defined as tumours whose planning target volume overlapped one of the following organs at risk (OARs): the trachea, right and left main bronchi, intermediate bronchus, lobe bronchi, oesophagus, heart. RESULTS Median follow-up was 25 months. Two patients (2.7%) showed Grade 3 toxicity. No Grade 4 or 5 toxicity was observed. 11% of patients experienced primary local relapse. LC rate was 96.7% at 1 year and 87.6% at 2 years. Median progression free survival was 12 months. Median overall survival was 31 months. CONCLUSION SBRT for ultra-central tumours remains safe and effective as long as protecting organs at risk is treatment-planning priority. ADVANCES IN KNOWLEDGE The present study is one of the rare to describe exclusively ultra-central tumours through real-life observational case reports. Globally, literature analysis reveals a large heterogeneity in ultra-central lung tumours definition, prescribed dose, number of fractions. In our study, patients treated with SBRT for ultra-central lung tumours experienced few Grade 3 toxicities (2.7%) and no Grade 4 or 5 toxicities, due to the highest compliance with dose constraints to OARs. LC remained efficient.
Collapse
Affiliation(s)
| | - Ronan Tanguy
- Department of Radiation Oncology, Léon Bérard Cancer Centre, Lyon, France
| | - Myriam Ayadi
- Department of Radiation Oncology, Léon Bérard Cancer Centre, Lyon, France
| | - Line Claude
- Department of Radiation Oncology, Léon Bérard Cancer Centre, Lyon, France
| | - Sandrine Sotton
- Department of Radiation Oncology, Lucien Neuwirth Cancer Centre, Saint-Priest-en-Jarez, France
| | | | - Nicolas Magné
- Department of Radiation Oncology, Lucien Neuwirth Cancer Centre, Saint-Priest-en-Jarez, France
| | | |
Collapse
|
39
|
Stereotactic Ablative Radiotherapy for Oligo-Progressive Disease REfractory to Systemic Therapy in Non-Small Cell Lung Cancer: A Registry-based Phase II Randomized Trial (SUPPRESS-NSCLC). Clin Transl Radiat Oncol 2022; 33:115-119. [PMID: 35243022 PMCID: PMC8881202 DOI: 10.1016/j.ctro.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022] Open
Abstract
Treatment of NSCLC patients with oligo-progressive disease on systemic treatment remains controversial. This phase II trial evaluates SABR to all oligo-progressive lesions in combination to current systemic therapy. PFS and OS between patients treated with SABR with continuation of current systemic therapy vs standard of care will be assessed. Intention-to-treat analysis of SABR compared to standard of care will be evaluated.
Background Management of Non-Small Cell Lung Cancer (NSCLC) patients with oligoprogression remains controversial. There is limited data to support the strategy of Stereotactic Ablative Radiotherapy (SABR) targeting the oligoprogressive disease in combination with ongoing systemic treatment. We aim to assess the benefit of this approach compared to standard of care in the treatment of oligoprogressive NSCLC. Methods This phase II study will enroll 68 patients with oligoprogressive NSCLC, defined as 1–5 progressive extracranial lesions ≤5 cm involving ≤3 organs. Patients on active systemic therapy (chemotherapy, immunotherapy, targeted therapy or a combination) will be randomized 1:1 to either continue their current systemic therapy in combination with SABR to all lesions or the standard of care (switch to the next line of treatment, continue same treatment or observation). The co-primary endpoints are progression-free survival (PFS) and overall survival (OS). Secondary endpoints include time to next systemic treatment, patient-reported quality of life, cost effectiveness as well as translational analysis to characterize both adaptive immunity and immunogenic cell death markers in the peripheral blood. Discussion There is an unmet need to carefully examine the efficacy, safety and quality of life impact of SABR in the context of oligoprogressive disease. The present study will provide higher level randomized evidence on the role of SABR in oligoprogressive NSCLC.
Collapse
|
40
|
Eriguchi T, Tsukamoto N, Kumabe A, Ogata T, Inoue Y, Sugawara A. Suitability of Metastatic Lung Tumors for Stereotactic Body Radiotherapy. Cancer Invest 2021; 40:378-386. [PMID: 34894945 DOI: 10.1080/07357907.2021.2017950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We investigated factors influencing local control of lung metastases treated with stereotactic body radiotherapy (SBRT) and determined the type of lesions for which SBRT is more suitable. Ninety-six patients and 196 tumors were included. Median follow-up duration was 32.0 months (range 4.7-95.8). The two-year local recurrence rate was 15.2% (95% confidence interval: 10.2-21.3). Multivariate analysis revealed biological effective dose, ultracentral tumor location, reirradiation, and prior chemotherapy as significant factors. SBRT is suitable for lung metastases, especially for peripheral tumors and those located in the inner lung parenchyma. For ultracentral lesions and recurrent lesions after SBRT, metastasectomy is recommended.
Collapse
Affiliation(s)
- Takahisa Eriguchi
- Department of Radiation Oncology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan.,Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Japan.,Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Nobuhiro Tsukamoto
- Department of Radiation Oncology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Atsuhiro Kumabe
- Department of Radiation Oncology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Takeru Ogata
- Department of Radiation Oncology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Yoshimasa Inoue
- Department of Thoracic Surgery, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Akitomo Sugawara
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
41
|
Lindberg K, Onjukka E. Medical consequences of radiation exposure of the bronchi-what can we learn from high-dose precision radiation therapy? JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:S355-S370. [PMID: 34547741 DOI: 10.1088/1361-6498/ac28ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The bronchial tolerance to high doses of radiation is not fully understood. However, in the event of a radiological accident with unintended exposure of the central airways to high doses of radiation it would be important to be able to anticipate the clinical consequences given the magnitude of the absorbed dose to different parts of the bronchial tree. Stereotactic body radiation therapy (SBRT) is a radiation treatment technique involving a few large fractions of photon external-beam radiation delivered to a well-defined target in the body. Despite generally favourable results, with high local tumour control and low-toxicity profile, its utility for tumours located close to central thoracic structures has been questioned, considering reports of severe toxic symptoms such as haemoptysis (bleedings from the airways), bronchial necrosis, bronchial stenosis, fistulas and pneumonitis. In conjunction with patient- and tumour-related risk factors, recent studies have analysed the absorbed radiation dose to different thoracic structures of normal tissue to better understand their tolerance to these high doses per fraction. Although the specific mechanisms behind the toxicity are still partly unknown, dose to the proximal bronchial tree has been shown to correlate with high-grade radiation side effects. Still, there is no clear consensus on the tolerance dose of the different bronchial structures. Recent data indicate that a too high dose to a main bronchus may result in more severe clinical side effects as compared to a smaller sized bronchus. This review analyses the current knowledge on the clinical consequences of bronchial exposure to high dose hypofractionated radiation delivered with the SBRT technique, and the tolerance doses of the bronchi. It presents the current literature regarding types of high-grade clinical side effects, data on dose response and comments on other risk factors for high-grade toxic effects.
Collapse
Affiliation(s)
- Karin Lindberg
- Section of Head, Neck, Lung and Skin tumours, Department of Cancer, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Onjukka
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Section of Radiotherapy Physics and Engineering, Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
42
|
Khalil AA, Knap MM, Møller DS, Nyeng TB, Kjeldsen R, Hoffmann L. Local control after stereotactic body radiotherapy of centrally located lung tumours. Acta Oncol 2021; 60:1069-1073. [PMID: 33988493 DOI: 10.1080/0284186x.2021.1914345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- A. A. Khalil
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
| | - M. M. Knap
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
| | - D. S. Møller
- Department of Medical Physics, Aarhus University Hospital, Aarhus N, Denmark
| | - T. B. Nyeng
- Department of Medical Physics, Aarhus University Hospital, Aarhus N, Denmark
| | - R. Kjeldsen
- Department of Oncology, Aalborg University Hospital, Aarhus N, Denmark
| | - L. Hoffmann
- Department of Medical Physics, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
43
|
Lodeweges JE, van Rossum PSN, Bartels MMTJ, van Lindert ASR, Pomp J, Peters M, Verhoeff JJC. Ultra-central lung tumors: safety and efficacy of protracted stereotactic body radiotherapy. Acta Oncol 2021; 60:1061-1068. [PMID: 34191670 DOI: 10.1080/0284186x.2021.1942545] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND For patients with early stage or medically inoperable lung cancer, stereotactic body radiotherapy (SBRT) is a general accepted and effective treatment option. The role of SBRT in ultra-central tumors remains controversial. The aim of this single-center retrospective analysis was to evaluate the safety and efficacy of protracted SBRT with 60 Gy in 12 fractions (with a biological effective dose (BED10) of 90-150 Gy) for patients with ultra-central lung tumors. MATERIALS AND METHODS Patients with ultra-central lung tumors treated in our institution with 60 Gy in 12 fractions from January 2012 until April 2020 were included. Ultra-central tumors were defined as planning target volume (PTV) abutting or overlapping the main bronchi and/or trachea and/or esophagus. Data regarding patient-, tumor-, and treatment-related characteristics were evaluated. RESULTS A total of 72 patients met the criteria for ultra-central tumor location. The PTV abutted the main bronchus, trachea or esophagus in 79%, 22% and 28% of cases, respectively. At a median follow-up of 19 months, 1- and 2-year local control rates were 98% and 85%, respectively. Overall survival rates at 1 and 2 years were 77% and 52%, respectively. Grade 3 or higher toxicity was observed in 21%, of which 10 patients (14% of total) died of bronchopulmonary hemorrhage. A significant difference between patients with or without grade ≥3 toxicity was found for the mean dose (Dmean) to the main bronchus (p = 0.003), where a Dmean BED3 of ≥91 Gy increased the risk of grade ≥3 toxicity significantly. DISCUSSION A protracted SBRT regimen of 60 Gy in 12 fractions for ultra-central lung tumors leads to high local control rates with toxicity rates similar to previous series, but with substantial risk of fatal bronchopulmonary hemorrhage. Therefore, possible risk factors of bronchopulmonary hemorrhage such as dose to the main bronchus should be taken into account.
Collapse
Affiliation(s)
- Joyce E. Lodeweges
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter S. N. van Rossum
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcia M. T. J Bartels
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jacqueline Pomp
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Max Peters
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost J. C. Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
44
|
Exceeding Radiation Dose to Volume Parameters for the Proximal Airways with Stereotactic Body Radiation Therapy Is More Likely for Ultracentral Lung Tumors and Associated with Worse Outcome. Cancers (Basel) 2021; 13:cancers13143463. [PMID: 34298677 PMCID: PMC8305634 DOI: 10.3390/cancers13143463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The optimal way to treat central (CLT) and ultracentral (UCLT) lung tumors with curative radiation is unclear. We evaluated 83 patients with CLT and UCLT who underwent a curative radiotherapy technique called stereotactic body radiation therapy (SBRT). On statistical analysis, patients with UCLT had worse overall survival. Using a cohort of patients matched for relevant variables such as gender and performance status, we evaluated radiation doses to critical central structures such as the airway and heart. In this group, patients with UCLT were more likely to exceed dose constraints as compared CLT, particularly constraints regarding the airway. Additionally, patients had worse non-cancer associated survival when radiation doses were higher than 18 Gy to 4cc’s of either the trachea or proximal bronchial tree. Based on these findings, patients with UCLT have worse outcomes which could be secondary to higher radiation doses to the trachea and proximal bronchial tree. Abstract The preferred radiotherapeutic approach for central (CLT) and ultracentral (UCLT) lung tumors is unclear. We assessed the toxicity and outcomes of patients with CLT and UCLT who underwent definitive five-fraction stereotactic body radiation therapy (SBRT). We reviewed the charts of patients with either CLT or UCLT managed with SBRT from June 2010–April 2019. CLT were defined as gross tumor volume (GTV) within 2 cm of either the proximal bronchial tree, trachea, mediastinum, aorta, or spinal cord. UCLT were defined as GTV abutting any of these structures. Propensity score matching was performed for gender, performance status, and history of prior lung cancer. Within this cohort of 83 patients, 43 (51.8%) patients had UCLT. The median patient age was 73.1 years with a median follow up of 29.9 months. The two most common dose fractionation schemes were 5000 cGy (44.6%) and 5500 cGy (42.2%) in five fractions. Multivariate analysis revealed UCLT to be associated with worse overall survival (OS) (HR = 1.9, p = 0.02) but not time to progression (TTP). Using propensity score match pairing, UCLT correlated with reduced non-cancer associated survival (p = 0.049) and OS (p = 0.03), but not TTP. Within the matched cohort, dosimetric study found exceeding a D4cc of 18 Gy to either the proximal bronchus (HR = 3.9, p = 0.007) or trachea (HR = 4.0, p = 0.02) was correlated with worse non-cancer associated survival. In patients undergoing five fraction SBRT, UCLT location was associated with worse non-cancer associated survival and OS, which could be secondary to excessive D4cc dose to the proximal airways.
Collapse
|
45
|
Mihai AM, Armstrong PJ, Hickey D, Milano MT, Dunne M, Healy K, Thirion P, Heron DE, ElBeltagi N, Armstrong JG. Late Toxicity and Long-Term Local Control in Patients With Ultra-Central Lung Tumours Treated by Intensity-Modulated Radiotherapy-Based Stereotactic Ablative Body Radiotherapy With Homogenous Dose Prescription. Clin Oncol (R Coll Radiol) 2021; 33:627-637. [PMID: 34092462 DOI: 10.1016/j.clon.2021.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022]
Abstract
AIMS To report late toxicity and long-term outcomes of intensity-modulated radiotherapy (IMRT)-based stereotactic ablative body radiotherapy (SABR) in patients with ultra-central lung tumours. MATERIALS AND METHODS This is a single-institution retrospective analysis of patients treated with SABR for ultra-central tumours between May 2008 and April 2016. Ultra-central location was defined as tumour (GTV) abutting or involving trachea, main or lobar bronchi. Respiratory motion management and static-field dynamic-IMRT were used, with dose prescribed homogeneously (maximum <120%). Descriptive analysis, Kaplan-Meier method, log-rank test and Cox regression were used to assess outcomes. RESULTS Sixty-five per cent of patients had inoperable primary non-small cell lung cancer and 35% had lung oligometastases. The median age was 72 (range 34-85) years. The median gross tumour volume and planning target volume (PTV) were 19.6 (range 1.7-203.3) cm3 and 57.4 (range 7.7-426.6) cm3, respectively. The most commonly used dose fractionation was 60 Gy in eight fractions (n = 51, 87.8%). Median BED10 for D98%PTV and D2%PTV were 102.6 Gy and 115.06 Gy, respectively. With a median follow-up of 26.5 (range 3.2-100.5) months, fatal haemoptysis occurred in five patients (8.7%), of which two were directly attributable to SABR. A statistically significant difference was identified between median BED3 for 4 cm3 of airway, for patients who developed haemoptysis versus those who did not (147.4 versus 47.2 Gy, P = 0.005). At the last known follow-up, 50 patients (87.7%) were without local recurrence. Freedom from local progression at 2 and 4 years was 92 and 79.8%, respectively. The median overall survival was 34.3 (95% confidence interval 6.1-61.6) months. Overall survival at 2 and 4 years was 55.1 and 41.2%, respectively. CONCLUSION In patients with high-risk ultra-central lung tumours, IMRT-based SABR with homogenous dose prescription achieves high local control, similar to that reported for peripheral tumours. Although fatal haemoptysis occurred in 8.7% of patients, a direct causality with SABR was evident in only 3%. Larger studies are warranted to ascertain factors associated with outcomes, especially toxicity, and identify patients who would probably benefit from this treatment.
Collapse
Affiliation(s)
- A M Mihai
- Department of Radiotherapy, Beacon Hospital, Dublin, Ireland.
| | - P J Armstrong
- University College Dublin School of Medicine, Dublin, Ireland
| | - D Hickey
- Department of Radiotherapy, Beacon Hospital, Dublin, Ireland
| | - M T Milano
- University of Rochester, Rochester, NY, USA
| | - M Dunne
- St Luke's Radiation Oncology Network, Dublin, Ireland
| | - K Healy
- University College Dublin School of Medicine, Dublin, Ireland
| | - P Thirion
- St Luke's Radiation Oncology Network, Dublin, Ireland
| | - D E Heron
- Bon Secours Mercy Health, Cincinnati, OH, USA
| | - N ElBeltagi
- St Luke's Radiation Oncology Network, Dublin, Ireland
| | - J G Armstrong
- Department of Radiotherapy, Beacon Hospital, Dublin, Ireland
| |
Collapse
|
46
|
Andruska N, Stowe HB, Crockett C, Liu W, Palma D, Faivre-Finn C, Badiyan SN. Stereotactic Radiation for Lung Cancer: A Practical Approach to Challenging Scenarios. J Thorac Oncol 2021; 16:1075-1085. [PMID: 33901637 DOI: 10.1016/j.jtho.2021.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022]
Abstract
Stereotactic body radiation therapy (SBRT) is an effective and well-tolerated treatment for medically inoperable patients with early stage NSCLC. SBRT is a noninvasive treatment involving the delivery of ablative radiation doses with high precision in the course of a few treatments. Relative to conventionally fractionated radiation, SBRT achieves superior local control and survival. SBRT use has increased dramatically in the past 15 years and is currently considered the standard of care in cases of inoperable early stage NSCLC. It is being increasingly applied to more complex patient populations at higher risk of treatment-related toxicity. In these more complex patients, there is an increasing need to balance patient and treatment factors in selecting the optimal patients for SBRT. Here, we review several challenging clinical scenarios often encountered in thoracic multidisciplinary tumor boards.
Collapse
Affiliation(s)
- Neal Andruska
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St Louis, Missouri
| | - Hayley B Stowe
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St Louis, Missouri
| | - Cathryn Crockett
- Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Wei Liu
- Division of Radiation Oncology, Western University, London, Ontario, Canada
| | - David Palma
- Division of Radiation Oncology, Western University, London, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Corinne Faivre-Finn
- Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Shahed N Badiyan
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St Louis, Missouri.
| | | |
Collapse
|
47
|
The HILUS-Trial-a Prospective Nordic Multicenter Phase 2 Study of Ultracentral Lung Tumors Treated With Stereotactic Body Radiotherapy. J Thorac Oncol 2021; 16:1200-1210. [PMID: 33823286 DOI: 10.1016/j.jtho.2021.03.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Stereotactic body radiation therapy of thoracic tumors close to the central airways implies risk of severe toxicity. We report a prospective multicenter phase 2 trial for tumors located less than or equal to 1 cm from the proximal bronchial tree with primary end point of local control and secondary end point of toxicity. METHODS Stereotactic body radiation therapy with 7 Gy × 8 was prescribed to the 67% isodose encompassing the planning target volume. The patients were stratified to group A (tumors ≤ 1 cm from the main bronchi and trachea) or group B (all other tumors). Risk factors for treatment-related death were tested in univariate analysis, and a logistic regression model was developed for fatal bronchopulmonary bleeding versus dose to the main bronchi and trachea. RESULTS A total of 65 patients (group A/group B, n = 39/26) were evaluated. The median distance between the tumor and the proximal bronchial tree was 0 mm (0-10 mm). The 2-year local control was 83%. Grade 3 to 5 toxicity was noted in 22 patients, including 10 cases of treatment-related death (bronchopulmonary hemorrhage, n = 8; pneumonitis, n = 1; fistula, n = 1). Dose to the combined structure main bronchi and trachea and tumor distance to the main bronchi were important risk factors. Dose modeling revealed minimum dose to the "hottest" 0.2 cc to the structure main bronchi and trachea as the strongest predictor for lethal bronchopulmonary hemorrhage. CONCLUSIONS On the basis of the presented data, 7 Gy × 8, prescribed to the planning target volume-encompassing isodose, should not be used for tumors located within 1 cm from the main bronchi and trachea. Group B-type tumors may be considered for the treatment on the basis of an individual risk-benefit assessment and a maximum dose to the main bronchi and trachea in the order of 70 to 80 Gy (equivalent dose in 2 Gy fractions).
Collapse
|
48
|
Abstract
Radiation treatment of early stage nonsmall cell lung cancer has evolved over the past 2 decades to progressively more hypofractionated treatment courses. Results comparable to surgical resection are seen with stereotactic body radiotherapy, which is now the standard of care for medically inoperable patients, and a treatment option for operable patients as well. Understanding of the optimal radiation dose and fractionation are evolving, especially for central tumors which have higher treatment toxicity than peripheral tumors.
Collapse
Affiliation(s)
- Anna Wrona
- Medical University of Gdansk, Department of Oncology and Radiotherapy, Gdansk, Poland
| | - Francoise Mornex
- Radiation Oncology Department, CHU Lyon, Université Claude Bernard Lyon1, Lyon, France.
| |
Collapse
|
49
|
Vlaskou Badra E, Baumgartl M, Fabiano S, Jongen A, Guckenberger M. Stereotactic radiotherapy for early stage non-small cell lung cancer: current standards and ongoing research. Transl Lung Cancer Res 2021; 10:1930-1949. [PMID: 34012804 PMCID: PMC8107760 DOI: 10.21037/tlcr-20-860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stereotactic body radiation therapy (SBRT) allows for the non-invasive and precise delivery of ablative radiation dose. The use and availability of SBRT has increased rapidly over the past decades. SBRT has been proven to be a safe, effective and efficient treatment for early stage non-small cell lung cancer (NSCLC) and is presently considered the standard of care in the treatment of medically or functionally inoperable patients. Evidence from prospective randomized trials on the optimal treatment of patients deemed medically operable remains owing, as three trials comparing SBRT to surgery in this cohort were terminated prematurely due to poor accrual. Yet, SBRT in early stage NSCLC is associated with favorable toxicity profiles and excellent rates of local control, prompting discussion in regard of the treatment of medically operable patients, where the standard of care currently remains surgical resection. Although local control in early stage NSCLC after SBRT is high, distant failure remains an issue, prompting research interest to the combination of SBRT and systemic treatment. Evolving advances in SBRT technology further facilitate the safe treatment of patients with medically or anatomically challenging situations. In this review article, we discuss international guidelines and the current standard of care, ongoing clinical challenges and future directions from the clinical and technical point of view.
Collapse
Affiliation(s)
- Eugenia Vlaskou Badra
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Baumgartl
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aurélien Jongen
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Kepka L, Socha J. Dose and fractionation schedules in radiotherapy for non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:1969-1982. [PMID: 34012807 PMCID: PMC8107746 DOI: 10.21037/tlcr-20-253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the field of radiotherapy (RT), the issues of total dose, fractionation, and overall treatment time for non-small cell lung cancer (NSCLC) have been extensively investigated. There is some evidence to suggest that higher treatment intensity of RT, when given alone or sequentially with chemotherapy (CHT), is associated with improved survival. However, there is no evidence that the outcome is improved by RT at a higher dose and/or higher intensity when it is used concurrently with CHT. Moreover, some reports on the combination of full dose CHT with a higher biological dose of RT warn of the significant risk posed by such intensification. Stereotactic body radiotherapy (SBRT) provides a high rate of local control in the management of early-stage NSCLC through the use of high ablative doses. However, in centrally located tumors the use of SBRT may carry a risk of serious damage to the great vessels, bronchi, and esophagus, owing to the high ablative doses needed for optimal tumor control. There is a similar problem with moderate hypofractionation in radical RT for locally advanced NSCLC, and more evidence needs to be gathered regarding the safety of such schedules, especially when used in combination with CHT. In this article, we review the current evidence and questions related to RT dose/fractionation in NSCLC.
Collapse
Affiliation(s)
- Lucyna Kepka
- Department of Radiotherapy, Military Institute of Medicine, Warsaw, Poland
| | - Joanna Socha
- Department of Radiotherapy, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|