1
|
Brose A, Miederer I, König J, Gkika E, Sahlmann J, Schimek-Jasch T, Schreckenberger M, Nestle U, Kappes J, Miederer M. Prognostic value of metabolic tumor volume on [ 18F]FDG PET/CT in addition to the TNM classification system of locally advanced non-small cell lung cancer. Cancer Imaging 2024; 24:171. [PMID: 39709461 DOI: 10.1186/s40644-024-00811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
PURPOSE Staging of non-small cell lung cancer (NSCLC) is commonly based on [18F]FDG PET/CT, in particular to exclude distant metastases and guide local therapy approaches like resection and radiotherapy. Although it is hoped that PET/CT will increase the value of primary staging compared to conventional imaging, it is generally limited to the characterization of TNM. The first aim of this study was to evaluate the PET parameter metabolic tumor volume (MTV) above liver background uptake as a prognostic marker in lung cancer. The second aim was to investigate the possibility of incorporating MTV into the TNM classification system for disease prognosis in locally advanced NSCLC treated with chemoradiotherapy. METHODS Retrospective evaluation of 235 patients with histologically proven, locally advanced NSCLC from the multi-centre randomized clinical PETPLAN trial and a clinical cohort from a hospital registry. The PET parameters SUVmax, SULpeak, MTV and TLG above liver background uptake were determined. Kaplan-Meier curves and stratified Cox proportional hazard regression models were used to investigate the prognostic value of PET parameters and TNM along with clinical variables. Subgroup analyses were performed to compare hazard ratios according to TNM, MTV, and the two variables combined. RESULTS In the multivariable Cox regression analysis, MTV was associated with significantly worse overall survival independent of stage and other prognostic variables. In locally advanced disease stages treated with chemoradiotherapy, higher MTV was significantly associated with worse survival (median 17 vs. 32 months). Using simple cut-off values (45 ml for stage IIIa, 48 ml for stage IIIb, and 105 ml for stage IIIc), MTV was able to further predict differences in survival for stages IIIa-c. The combination of TNM and MTV staging system showed better discrimination for overall survival in locally advanced disease stages, compared to TNM alone. CONCLUSION Higher metabolic tumor volume is significantly associated with worse overall survival and combined with TNM staging, it provides more precise information about the disease prognosis in locally advanced NSCLC treated with chemoradiotherapy compared to TNM alone. As a PET parameter with volumetric information, MTV represents a useful addition to TNM.
Collapse
Affiliation(s)
- Alexander Brose
- Department of Translational Imaging in Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- Department of Diagnostic and Interventional Radiology, University Hospital Giessen, Justus Liebig University, Klinikstrasse 33, Giessen, 35392, Germany.
- Member of the German Center for Lung Research (DZL), Giessen, Germany.
| | - Isabelle Miederer
- Department of Nuclear Medicine, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jochem König
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Bonn, Germany
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| | - Jörg Sahlmann
- Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Tanja Schimek-Jasch
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| | - Mathias Schreckenberger
- Department of Nuclear Medicine, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
- Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Jutta Kappes
- Department of Pulmonary Medicine, Theresienkrankenhaus, Mannheim, Germany
- Department of Internal Medicine/ Pulmonary Medicine, Catholic Hospital Koblenz-Montabaur, Koblenz, Germany
| | - Matthias Miederer
- Department of Translational Imaging in Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Nuclear Medicine, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Jongbloed M, Bortolot M, Wee L, Huijs JW, Bellezo M, Vaes RD, Aboubakar Nana F, Hartemink KJ, De Ruysscher DK, Hendriks LE. Prognostic and Predictive Biomarkers of Oligometastatic NSCLC: New Insights and Clinical Applications. JTO Clin Res Rep 2024; 5:100740. [PMID: 39735889 PMCID: PMC11671686 DOI: 10.1016/j.jtocrr.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 12/31/2024] Open
Abstract
This review discusses the current data on predictive and prognostic biomarkers in oligometastatic NSCLC and discusses whether biomarkers identified in other stages and widespread metastatic disease can be extrapolated to the oligometastatic disease (OMD) setting. Research is underway to explore the prognostic and predictive value of biological attributes of tumor tissue, circulating cells, the tumor microenvironment, and imaging findings as biomarkers of oligometastatic NSCLC. Biomarkers that help define true OMD and predict outcomes are needed for patient selection for oligometastatic treatment, and to avoid futile treatments in patients that will not benefit from locoregional treatment. Nevertheless, these biomarkers are still in the early stages of development and lack prospective validation in clinical trials. Furthermore, the absence of a clear definition of OMD contributes to a heterogeneous study population in which different types of OMD are mixed and treatment strategies are different. Multiple tissue-based, circulating, and imaging features are promising regarding their prognostic and predictive role in NSCLC, but data is still limited and might be biased owing to the inclusion of heterogeneous patient populations. Larger homogeneous and prospective series are needed to assess the prognostic and predictive role of these biomarkers. As obtaining tissue can be difficult and is invasive, the most promising tools for further evaluation are liquid biopsies and imaging-based biomarkers as these can also be used for longitudinal follow-up.
Collapse
Affiliation(s)
- Mandy Jongbloed
- Department of Pulmonary Diseases, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Martina Bortolot
- Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Leonard Wee
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jarno W.J. Huijs
- Department of Pulmonary Diseases, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Murillo Bellezo
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Rianne D.W. Vaes
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Koen J. Hartemink
- Department of Surgery, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Department of Thoracic Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dirk K.M. De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lizza E.L. Hendriks
- Department of Pulmonary Diseases, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
3
|
Zinn AB, Kenndoff S, Holzgreve A, Käsmann L, Guggenberger JE, Hering S, Mansoorian S, Schmidt-Hegemann NS, Reinmuth N, Tufman A, Dinkel J, Manapov F, Belka C, Eze C. Prognostic significance of pretreatment PET parameters in inoperable, node-positive NSCLC patients with poor prognostic factors undergoing hypofractionated radiotherapy: a single-institution retrospective study. EJNMMI REPORTS 2024; 8:32. [PMID: 39375264 PMCID: PMC11458843 DOI: 10.1186/s41824-024-00220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/16/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Node-positive non-small cell lung cancers (NSCLCs) present a challenge for treatment decisions, particularly in patients ineligible for concurrent chemoradiotherapy (CRT) due to poor performance status and compromised lung function. We aimed to investigate the prognostic value of pretreatment positron emission tomography (PET) parameters in high-risk patients undergoing hypofractionated radiotherapy. METHODS A retrospective analysis was conducted on 42 consecutive patients with inoperable node-positive NSCLC, who underwent hypofractionated radiotherapy between 2014 and 2021 at a single institution. Clinical, treatment-related, and [18F]FDG PET-based parameters were correlated with progression-free survival (PFS) and overall survival (OS). Median dichotomisation was performed to establish risk groups. Statistical analyses included univariable and multivariable Cox regression and Kaplan-Meier survival analyses. RESULTS After a median follow-up of 47.1 months (range: 0.5-101.7), the median PFS and OS were 11.5 months (95% CI: 7.4-22.0), and 24.3 months (95% CI: 14.1-31.8). In univariable Cox regression analysis, significant predictors of PFS included receipt of salvage systemic treatment (p=0.007), SUVmax (p=0.032), and tMTV (p=0.038). Similarly, ECOG-PS (p=0.014), Histology (p=0.046), and tMTV (p=0.028) were significant predictors of OS. Multivariable Cox regression analysis (MVA) identified SUVmax as a significant predictor for PFS [HR: 2.29 (95% CI: 1.02-5.15); p=0.044]. For OS, ECOG-PS remained a significant prognosticator [HR: 3.53 (95% CI: 1.49-8.39); p=0.004], and tMTV approached significance [HR: 2.24 (95% CI: 0.95-5.26); p=0.065]. Furthermore, the high tMTV group exhibited a median PFS of 5.3 months [95% CI: 2.8-10.4], while the low tMTV group had a PFS of 15.2 months [95% CI: 10.1-33.5] (p=0.038, log-rank test). Median OS was 33.5 months [95% CI: 18.3-56.8] for tMTV ≤ 36.6 ml vs. 14.1 months [95% CI: 8.1-27.2] for tMTV > 36.6 ml (p=0.028, log-rank test). CONCLUSION Pretreatment PET parameters, especially tMTV, hold promise as prognostic indicators in NSCLC patients undergoing hypofractionated radiotherapy. The study highlights the potential of PET metrics as biomarkers for patient stratification.
Collapse
Affiliation(s)
| | - Saskia Kenndoff
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr, 15, 81377, Munich, Germany
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | - Svenja Hering
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Sina Mansoorian
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | | | - Niels Reinmuth
- Department of Oncology, Asklepios Lung Clinic Munich-Gauting, Gauting, Germany
| | - Amanda Tufman
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Medicine V, University Hospital, Munich, Germany
| | - Julien Dinkel
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Radiology, University Hospital, Munich, Germany
- Department of Radiology, Asklepios Lung Clinic Munich-Gauting, Gauting, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
4
|
Guo R, Yan W, Wang F, Su H, Meng X, Xie Q, Zhao W, Yang Z, Li N. The utility of 18F-FDG PET/CT for predicting the pathological response and prognosis to neoadjuvant immunochemotherapy in resectable non-small-cell lung cancer. Cancer Imaging 2024; 24:120. [PMID: 39256860 PMCID: PMC11385245 DOI: 10.1186/s40644-024-00772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
OBJECTIVE To evaluate the potential utility of 18F-FDG PET/CT to assess response to neoadjuvant immunochemotherapy in patients with resectable NSCLC, and the ability to screen patients who may benefit from neoadjuvant immunochemotherapy. METHODS Fifty one resectable NSCLC (stage IA-IIIB) patients were analyzed, who received two-three cycles neoadjuvant immunochemotherapy.18F-FDG PET/CT was carried out at baseline(scan-1) and prior to radical resection(scan-2). SULmax, SULpeak, MTV, TLG, T/N ratio, ΔSULmax%,ΔSULpeak%, ΔMTV%, ΔTLG%,ΔT/N ratio% were calculated. 18F-FDG PET/CT responses were classified using PERCIST. We then compared the RECIST 1.1 and PERCIST criteria for response assessment.With surgical pathology of primary lesions as the gold standard, the correlation between metabolic parameters of 18F-FDG PET/CT and major pathologic response (MPR) was analyzed. All metabolic parameters were compared to treatment response and correlated to PFS and OS. RESULTS In total of fifty one patients, MPR was achieved in 25(49%, 25/51) patients after neoadjuvant therapy. The metabolic parameters of Scan-1 were not correlated with MPR.The degree of pathological regression was negatively correlated with SULmax, SULpeak, MTV, TLG, T/N ratio of scan-2, and the percentage changes of the ΔSULmax%, ΔSULpeak%, ΔMTV%,ΔTLG%,ΔT/N ratio% after neoadjuvant therapy (p < 0.05). According to PERCIST, 36 patients (70.6%, 36/51) showed PMR, 12 patients(23.5%, 12/51) had stable metabolic disease(SMD), and 3 patients(5.9%, 3/51) had progressive metabolic disease (PMD). ROC indicated that all of scan-2 metabolic parameters and the percentage changes of metabolic parameters had ability to predict MPR and non-MPR, SULmax and T/N ratio of scan-2 had the best differentiation ability.The accuracy of RECIST 1.1 and PERCIST criteria were no statistical significance(p = 0.91). On univariate analysis, ΔMTV% has the highest correlation with PFS. CONCLUSIONS Metabolic response by 18F-FDG PET/CT can predict MPR to neoadjuvant immunochemotherapy in resectable NSCLC. ΔMTV% was significantly correlated with PFS.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, China
| | - Wanpu Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery I, Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing, 100142, China
| | - Fei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Su
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, China
| | - Qing Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
5
|
Lee H, Hwang KH. Unexpected focal fluorodeoxyglucose uptake in main organs; pass through or pass by? World J Clin Cases 2024; 12:1885-1899. [PMID: 38660550 PMCID: PMC11036514 DOI: 10.12998/wjcc.v12.i11.1885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Since the inception of fluorine-18 fluorodeoxyglucose (F-18 FDG), positron emission tomography/computed tomography (PET/CT) utilizing F-18 FDG has become widely accepted as a valuable imaging modality in the field of oncology, with global prevalence in clinical practice. Given that a single Torso PET/CT scan encompasses the anatomical region from the skull base to the upper thigh, the detection of incidental abnormal focal hypermetabolism in areas of limited clinical interest is both feasible and not uncommon. Numerous investigations have been undertaken to delineate the distinctive features of these findings, yet the outcomes have proven inconclusive. The incongruent results of these studies present a challenge for physicians, leaving them uncertain about the appropriate course of action. This article provides a succinct overview of the characteristics of fluorodeoxyglucose, followed by a comprehensive discussion of the imaging findings and clinical significance associated with incidental focal abnormal F-18 FDG activity in several representative organs. In conclusion, while the prevalence of unrecognized malignancy varies across organs, malignancies account for a substantial proportion, ranging from approximately one-third to over half, of incidental focal uptake. In light of these rates, physicians are urged to exercise vigilance in not disregarding unexpected uptake, facilitating more assured clinical decisions, and advocating for further active evaluation.
Collapse
Affiliation(s)
- Haejun Lee
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| | - Kyung-Hoon Hwang
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| |
Collapse
|
6
|
Klement RJ, Sweeney RA. Metabolic factors associated with the prognosis of oligometastatic patients treated with stereotactic body radiotherapy. Cancer Metastasis Rev 2023; 42:927-940. [PMID: 37261610 DOI: 10.1007/s10555-023-10110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Over the past two decades, it has been established that cancer patients with oligometastases, i.e., only a few detectable metastases confined to one or a few organs, may benefit from an aggressive local treatment approach such as the application of high-precision stereotactic body radiotherapy (SBRT). Specifically, some studies have indicated that achieving long-term local tumor control of oligometastases is associated with prolonged overall survival. This motivates investigations into which factors may modify the dose-response relationship of SBRT by making metastases more or less radioresistant. One such factor relates to the uptake of the positron emission tomography tracer 2-deoxy-2-[18F]fluoro-D-glucose (FDG) which reflects the extent of tumor cell glycolysis or the Warburg effect, respectively. Here we review the biological mechanisms how the Warburg effect drives tumor cell radioresistance and metastasis and draw connections to clinical studies reporting associations between high FDG uptake and worse clinical outcomes after SBRT for oligometastases. We further review the evidence for distinct metabolic phenotypes of metastases preferentially seeding to specific organs and their possible translation into distinct radioresistance. Finally, evidence that obesity and hyperglycemia also affect outcomes after SBRT will be presented. While delivered dose is the main determinant of a high local tumor control probability, there might be clinical scenarios when metabolic targeting could make the difference between achieving local control or not, for example when doses have to be compromised in order to spare neighboring high-risk organs, or when tumors are expected to be highly therapy-resistant due to heavy pretreatment such as chemotherapy and/or radiotherapy.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany.
| | - Reinhart A Sweeney
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| |
Collapse
|
7
|
Grambozov B, Kalantari F, Beheshti M, Stana M, Karner J, Ruznic E, Zellinger B, Sedlmayer F, Rinnerthaler G, Zehentmayr F. Pretreatment 18-FDG-PET/CT parameters can serve as prognostic imaging biomarkers in recurrent NSCLC patients treated with reirradiation-chemoimmunotherapy. Radiother Oncol 2023; 185:109728. [PMID: 37301259 DOI: 10.1016/j.radonc.2023.109728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/02/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND PURPOSE Our study aimed to assess whether quantitative pretreatment 18F-FDG-PET/CT parameters could predict prognostic clinical outcome of recurrent NSCLC patients who may benefit from ablative reirradiation. MATERIALS AND METHODS Forty-eight patients with recurrent NSCLC of all UICC stages who underwent ablative thoracic reirradiation were analyzed. Twenty-nine (60%) patients received immunotherapy with or without chemotherapy in addition to reirradiation. Twelve patients (25%) received reirradiation only and seven (15%) received chemotherapy and reirradiation. Pretreatment 18-FDG-PET/CT was mandatory in initial diagnosis and recurrence, based on which volumetric and intensity quantitative parameters were measured before reirradiation and their impact on overall survival, progression-free survival, and locoregional control was assessed. RESULTS With a median follow-up time of 16.7 months, the median OS was 21.8 months (95%-CI: 16.2-27.3). On multivariate analysis, OS and PFS were significantly influenced by MTV (p < 0.001 for OS; p = 0.006 for PFS), TLG (p < 0.001 for OS; p = 0.001 for PFS) and SUL peak (p = 0.0024 for OS; p = 0.02 for PFS) of the tumor and MTV (p = 0.004 for OS; p < 0.001 for PFS) as well as TLG (p = 0.007 for OS; p = 0.015 for PFS) of the metastatic lymph nodes. SUL peak of the tumor (p = 0.05) and the MTV of the lymph nodes (p = 0.003) were only PET quantitative parameters that significantly impacted LRC. CONCLUSION Pretreatment tumor and metastastic lymph node MTV, TLG and tumor SUL peak significantly correlated with clinical outcome in recurrent NSCLC patients treated with reirradiation-chemoimmunotherapy.
Collapse
Affiliation(s)
- Brane Grambozov
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Salzburg, Austria.
| | - Forough Kalantari
- Department of Nuclear Medicine, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran; Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Markus Stana
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Salzburg, Austria
| | - Josef Karner
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Salzburg, Austria
| | - Elvis Ruznic
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Salzburg, Austria
| | - Barbara Zellinger
- Institute of Pathology, Paracelsus Medical University, SALK, Salzburg, Austria
| | - Felix Sedlmayer
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Salzburg, Austria; radART - Institute for Research and Development on Advanced Radiation Technologies, Paracelsus Medical University, Salzburg, Austria
| | - Gabriel Rinnerthaler
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Franz Zehentmayr
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Salzburg, Austria; radART - Institute for Research and Development on Advanced Radiation Technologies, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
8
|
FDG-PET metrics in advanced non-small cell lung cancer (NSCLC): a review and meta-analysis. Clin Transl Imaging 2023. [DOI: 10.1007/s40336-023-00542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Lee H, Hwang KH. Significance of incidental focal fluorine-18 fluorodeoxyglucose uptake in colon/rectum, thyroid, and prostate: With a brief literature review. World J Clin Cases 2022; 10:12532-12542. [PMID: 36579086 PMCID: PMC9791515 DOI: 10.12998/wjcc.v10.i34.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/10/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT), a functional imaging method, is usually performed on the entire torso, and regions of unexpected suspicious focal hypermetabolism are not infrequently observed. Among the regions, colon, thyroid, and prostate were found to be the common organs in a recent umbrella review. Some studies reported that a high rate of malignancy was shown in incidentally identified focal hypermetabolic regions and suggested that further examinations should not be ignored.
AIM To investigate the malignancy rate of incidental focal FDG uptake, useful PET parameters and their cutoffs in discrimination between malignant and benign lesions.
METHODS Retrospectively, the final reports of 16510 F-18 FDG PET/CT scans performed at our hospital between January 2016 and March 2022 were reviewed to identify incidentally observed FDG uptake in the colon/rectum, thyroid, and prostate. The scans of patients with current or prior malignancies at each corresponding location, without the final reports of histopathology or colonoscopy (for colon and rectum) for the corresponding hypermetabolic regions, or with diffuse (not focal) hypermetabolism were excluded. Finally, 88 regions of focal colorectal hypermetabolism in 85 patients (48 men and 37 women with mean age 67.0 ± 13.4 years and 63.4 ± 15.8 years, respectively), 48 focal thyroid uptakes in 48 patients (12 men and 36 women with mean age 62.2 ± 13.1 years and 60.8 ± 12.4 years, respectively), and 39 focal prostate uptakes in 39 patients (mean age 71.8 ± 7.5 years) were eligible for this study. For those unexpected focal hypermetabolic regions, rates of malignancy were calculated, PET parameters, such as standardized uptake value (SUV), capable of distinguishing between malignant and benign lesions were investigated, and the cutoffs of those PET parameters were determined by plotting receiver operating characteristic curves.
RESULTS In the colon and rectum, 29.5% (26/88) were malignant and 33.0% (29/88) were premalignant lesions. Both SUVmax and SUVpeak differentiated malignant/premalignant from benign lesions, however, no parameters could distinguish malignant from premalignant lesions. Higher area under the curve was shown with SUVmax (0.752, 95%CI: 0.649-0.856, P < 0.001) and the cutoff was 7.6. In the thyroid, 60.4% (29/48) were malignant. The majority were well-differentiated thyroid cancers (89.7%, 26/29). The results of BRAF mutation tests were available for 20 of the 26 well-differentiated thyroid cancers and all 20 had the mutation. Solely SUVmax differentiated malignant from benign lesions and the cutoff was 6.9. In the prostate, 56.4% (22/39) were malignant. Only SUVmax differentiated malignant from benign lesions and the cutoff was 3.8. Overall, among the 175 focal hypermetabolic regions, 60.6% (106/175) were proven to be malignant and premalignant (in colon and rectum) lesions.
CONCLUSION Approximately 60% of the incidentally observed focal F-18 FDG uptake in the colon/rectum, thyroid, and prostate were found to be malignant. Of the several PET parameters, SUVmax was superior to others in distinguishing between malignant/premalignant and benign lesions. Based on these findings, incidental focal hypermetabolism should not be ignored and lead physicians to conduct further investigations with greater confidence.
Collapse
Affiliation(s)
- Haejun Lee
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| | - Kyung-Hoon Hwang
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| |
Collapse
|
10
|
Ling T, Zhang L, Peng R, Yue C, Huang L. Prognostic value of 18F-FDG PET/CT in patients with advanced or metastatic non-small-cell lung cancer treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front Immunol 2022; 13:1014063. [PMID: 36466905 PMCID: PMC9713836 DOI: 10.3389/fimmu.2022.1014063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/20/2022] [Indexed: 08/30/2023] Open
Abstract
PURPOSE This study aimed to investigate the value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in predicting early immunotherapy response of immune checkpoint inhibitors (ICIs) in patients with advanced or metastatic non-small-cell lung cancer (NSCLC). METHODS A comprehensive search of PubMed, Web of science, Embase and the Cochrane library was performed to examine the prognostic value of 18F-FDG PET/CT in predicting early immunotherapy response of ICIs in patients with NSCLC. The main outcomes for evaluation were overall survival (OS) and progression-free survival (PFS). Detailed data from each study were extracted and analyzed using STATA 14.0 software. RESULTS 13 eligible articles were included in this systematic review. Compared to baseline 18F-FDG PET/CT imaging, the pooled hazard ratios (HR) of maximum and mean standardized uptake values SUVmax, SUVmean, MTV and TLG for OS were 0.88 (95% CI: 0.69-1.12), 0.79 (95% CI: 0.50-1.27), 2.10 (95% CI: 1.57-2.82) and 1.58 (95% CI: 1.03-2.44), respectively. The pooled HR of SUVmax, SUVmean, MTV and TLG for PFS were 1.06 (95% CI: 0.68-1.65), 0.66 (95% CI: 0.48-0.90), 1.50 (95% CI: 1.26-1.79), 1.27 (95% CI: 0.92-1.77), respectively. Subgroup analysis showed that high MTV group had shorter OS than low MTV group in both first line group (HR: 1.97, 95% CI: 1.39-2.79) and undefined line group (HR: 2.11, 95% CI: 1.61-2.77). High MTV group also showed a shorter PFS in first line group (HR: 1.85, 95% CI: 1.28-2.68), and low TLG group had a longer OS in undefined group (HR: 1.37, 95% CI: 1.00-1.86). No significant differences were in other subgroup analysis. CONCLUSION Baseline MTV and TLG may have predictive value and should be prospectively studied in clinical trials. Baseline SUVmax and SUVmean may not be appropriate prognostic markers in advanced or metastatic NSCLC patients treated with ICIs. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=323906, identifier CRD42022323906.
Collapse
Affiliation(s)
- Tao Ling
- Department of Pharmacy, Suqian First Hospital, Suqian, China
| | - Lianghui Zhang
- Department of Oncology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Rui Peng
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Yue
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lingli Huang
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Santos PMG, Li X, Gomez DR. Local Consolidative Therapy for Oligometastatic Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:3977. [PMID: 36010969 PMCID: PMC9406686 DOI: 10.3390/cancers14163977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
In the last 20 years, significant strides have been made in our understanding of the biological mechanisms driving disease pathogenesis in metastatic non-small cell lung cancer (NSCLC). Notably, the development and application of predictive biomarkers as well as refined treatment regimens in the form of chemoimmunotherapy and novel targeted agents have led to substantial improvements in survival. Parallel to these remarkable advancements in modern systemic therapy has been a growing recognition of "oligometastatic disease" as a distinct clinical entity-defined by the presence of a controlled primary tumor and ≤5 sites of metastatic disease amenable to local consolidative therapy (LAT), with surgery or stereotactic ablative body radiotherapy (SABR). To date, three randomized studies have provided clinical evidence supporting the use of LAT/SABR in the treatment of oligometastatic NSCLC. In this review, we summarize clinical evidence from these landmark studies and highlight ongoing trials evaluating the use of LAT/SABR in a variety of clinical contexts along the oligometastatic disease spectrum. We discuss important implications and caveats of the available data, including considerations surrounding patient selection and application in routine clinical practice. We conclude by offering potential avenues for further investigation in the oligometastatic disease space.
Collapse
Affiliation(s)
| | | | - Daniel R. Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
12
|
Integrated 18F-FDG PET/CT parameter defines metabolic oligometastatic non-small cell lung cancer. Nucl Med Commun 2022; 43:1026-1033. [DOI: 10.1097/mnm.0000000000001599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Lee H, Hwang KH, Kwon KA. Assessment of incidental focal colorectal uptake by analysis of fluorine-18 fluorodeoxyglucose positron emission tomography parameters. World J Clin Cases 2022; 10:5634-5645. [PMID: 35979099 PMCID: PMC9258383 DOI: 10.12998/wjcc.v10.i17.5634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/11/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colon and rectal cancers are among the top five cancers worldwide in terms of their incidence and mortality rates. As the treatment options for cure include surgery even in specific advanced-stage cases, the early detection of lesions is important for applying active treatment methods. Fluorine-18 fluorodeoxyglucose (F-18 FDG) positron emission tomography/computed tomography (PET/CT) is an established imaging study for many types of cancers; however, physiologic uptake in the gastrointestinal tract is a frequent finding and may interfere with lesion identification. Nevertheless, as unexpectedly observed focal colorectal F-18 FDG uptake may harbor malignant lesions, further examination must not be avoided.
AIM To assess the clinical implications of unexpected focal colorectal F-18 FDG uptake by analyzing FDG PET parameters.
METHODS A total of 15143 F-18 FDG PET/CT scans performed at our hospital between January 2016 and September 2021 were retrospectively reviewed to identify incidentally observed focal colorectal FDG uptake. Finally, 83 regions showing focal colorectal FDG uptake with final histopathological reports from 80 patients (45 men and 35 women with mean ages of 66.9 ± 10.7 years and 63.7 ± 15.3 years, respectively) were eligible for inclusion in the present study. Each focal hypermetabolic colorectal region was classified as malignant, premalignant, or benign according to the histopathological report. PET parameters such as maximum and peak standardized uptake value (SUVmax and SUVpeak), metabolic tumor volume (MTV), mean SUV of the metabolic tumor volume (mSUVmtv), and total lesion glycolysis (TLG) were measured or calculated for the corresponding hypermetabolic regions. Parametric and non-parametric statistical comparisons of these parameters were performed among the three groups. Receiver operating characteristic curves were plotted to identify cut-off values.
RESULTS The detection rate of incidental focal colorectal uptake was 0.53% (80/15,143). Of the 83 regions with unexpected focal colorectal hypermetabolism, 28.9% (24/83) were malignant, 32.5% (27/83) were premalignant, and 38.6% (32/83) were benign. Overall, 61.4% of the regions had malignant or premalignant lesions. SUVmax, SUVpeak, and mSUVmtv differentiated malignant and/or premalignant lesions from benign lesions with statistical significance (P < 0.05). mSUVmtv3.5 differentiated malignant from benign lesions, with the largest area under the curve (AUC) of 0.792 and a cut-off of 4.9. SUVmax showed the largest AUC of 0.758 with a cut-off value of 7.5 for distinguishing between premalignant and benign lesions. Overall, SUVmax with a cut-off value of 7.6 (AUC: 0.770, 95% confidence interval (CI): 0.668-0.872; sensitivity, 0.686; specificity, 0.688) was a superior parameter for distinguishing between malignant/premalignant and benign lesions or physiologic uptake. No parameters differentiated malignant from premalignant lesions. Moderate or weak positive correlations were observed between the long diameter of the malignant lesions and PET parameters such as SUVpeak and some mSUVmtv.
CONCLUSION Approximately two-thirds (61.4%) of incidental focal hypermetabolic colorectal regions were malignant/premalignant lesions, for which SUVmax was an independent diagnostic parameter. Unexpected suspicious focal colorectal FDG uptake should not be avoided and consideration for further evaluation is strongly recommended not to miss the two-thirds.
Collapse
Affiliation(s)
- Haejun Lee
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| | - Kyung-Hoon Hwang
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| | - Kwang An Kwon
- Department of Gastroenterology, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| |
Collapse
|
14
|
Eze C, Schmidt-Hegemann NS, Sawicki LM, Kirchner J, Roengvoraphoj O, Käsmann L, Mittlmeier LM, Kunz WG, Tufman A, Dinkel J, Ricke J, Belka C, Manapov F, Unterrainer M. PET/CT imaging for evaluation of multimodal treatment efficacy and toxicity in advanced NSCLC-current state and future directions. Eur J Nucl Med Mol Imaging 2021; 48:3975-3989. [PMID: 33760957 PMCID: PMC8484219 DOI: 10.1007/s00259-021-05211-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The advent of immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced NSCLC, leading to a string of approvals in recent years. Herein, a narrative review on the role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) in the ever-evolving treatment landscape of advanced NSCLC is presented. METHODS This comprehensive review will begin with an introduction into current treatment paradigms incorporating ICIs; the evolution of CT-based criteria; moving onto novel phenomena observed with ICIs and the current state of hybrid imaging for diagnosis, treatment planning, evaluation of treatment efficacy and toxicity in advanced NSCLC, also taking into consideration its limitations and future directions. CONCLUSIONS The advent of ICIs marks the dawn of a new era bringing forth new challenges particularly vis-à-vis treatment response assessment and observation of novel phenomena accompanied by novel systemic side effects. While FDG PET/CT is widely adopted for tumor volume delineation in locally advanced disease, response assessment to immunotherapy based on current criteria is of high clinical value but has its inherent limitations. In recent years, modifications of established (PET)/CT criteria have been proposed to provide more refined approaches towards response evaluation. Not only a comprehensive inclusion of PET-based response criteria in prospective randomized controlled trials, but also a general harmonization within the variety of PET-based response criteria is pertinent to strengthen clinical implementation and widespread use of hybrid imaging for response assessment in NSCLC.
Collapse
Affiliation(s)
- Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| | | | - Lino Morris Sawicki
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, D-40225, Dusseldorf, Germany
| | - Julian Kirchner
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, D-40225, Dusseldorf, Germany
| | - Olarn Roengvoraphoj
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Lena M Mittlmeier
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Amanda Tufman
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V, Thoracic Oncology Center Munich, University of Munich (LMU), Munich, Germany
| | - Julien Dinkel
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, Asklepios Lung Center Munich-Gauting, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
15
|
Differential role of residual metabolic tumor volume in inoperable stage III NSCLC after chemoradiotherapy ± immune checkpoint inhibition. Eur J Nucl Med Mol Imaging 2021; 49:1407-1416. [PMID: 34664091 PMCID: PMC8921088 DOI: 10.1007/s00259-021-05584-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The PET-derived metabolic tumor volume (MTV) is an independent prognosticator in non-small cell lung cancer (NSCLC) patients. We analyzed the prognostic value of residual MTV (rMTV) after completion of chemoradiotherapy (CRT) in inoperable stage III NSCLC patients with and without immune checkpoint inhibition (ICI). METHODS Fifty-six inoperable stage III NSCLC patients (16 female, median 65.0 years) underwent 18F-FDG PET/CT after completion of standard CRT. rMTV was delineated on 18F-FDG PET/CT using a standard threshold (liver SUVmean + 2 × standard deviation). 21/56 patients underwent additional ICI (CRT-IO, 21/56 patients) thereafter. Patients were divided in volumetric subgroups using median split dichotomization (MTV ≤ 4.3 ml vs. > 4.3 ml). rMTV, clinical features, and ICI-application were correlated with clinical outcome parameters (progression-free survival (PFS), local PFS (LPFS), and overall survival (OS). RESULTS Overall, median follow-up was 52.0 months. Smaller rMTV was associated with longer median PFS (29.3 vs. 10.5 months, p = 0.015), LPFS (49.9 vs. 13.5 months, p = 0.001), and OS (63.0 vs. 23.0 months, p = 0.003). CRT-IO patients compared to CRT patients showed significantly longer median PFS (29.3 vs. 11.2 months, p = 0.034), LPFS (median not reached vs. 14.0 months, p = 0.016), and OS (median not reached vs. 25.2 months, p = 0.007). In the CRT subgroup, smaller rMTV was associated with longer median PFS (33.5 vs. 8.6 months, p = 0.001), LPFS (49.9 vs. 10.1 months, p = 0.001), and OS (63.0 vs. 16.3 months, p = 0.004). In the CRT-IO subgroup, neither PFS, LPFS, nor OS were associated with MTV (p > 0.05 each). The findings were confirmed in subsequent multivariate analyses. CONCLUSION In stage III NSCLC, smaller rMTV is highly associated with superior clinical outcome, especially in patients undergoing CRT without ICI. Patients with CRT-IO show significantly improved outcome compared to CRT patients. Of note, clinical outcome in CRT-IO patients is independent of residual MTV. Hence, even patients with large rMTV might profit from ICI despite extensive tumor load.
Collapse
|
16
|
Meng L, Xu J, Ye Y, Wang Y, Luo S, Gong X. The Combination of Radiotherapy With Immunotherapy and Potential Predictive Biomarkers for Treatment of Non-Small Cell Lung Cancer Patients. Front Immunol 2021; 12:723609. [PMID: 34621270 PMCID: PMC8490639 DOI: 10.3389/fimmu.2021.723609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy is an effective local treatment modality of NSCLC. Its capabilities of eliminating tumor cells by inducing double strand DNA (dsDNA) damage and modulating anti-tumor immune response in irradiated and nonirradiated sites have been elucidated. The novel ICIs therapy has brought hope to patients resistant to traditional treatment methods, including radiotherapy. The integration of radiotherapy with immunotherapy has shown improved efficacy to control tumor progression and prolong survival in NSCLC. In this context, biomarkers that help choose the most effective treatment modality for individuals and avoid unnecessary toxicities caused by ineffective treatment are urgently needed. This article summarized the effects of radiation in the tumor immune microenvironment and the mechanisms involved. Outcomes of multiple clinical trials investigating immuno-radiotherapy were also discussed here. Furthermore, we outlined the emerging biomarkers for the efficacy of PD-1/PD-L1 blockades and radiation therapy and discussed their predictive value in NSCLC.
Collapse
Affiliation(s)
- Lu Meng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianfang Xu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Ye
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingying Wang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shilan Luo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaomei Gong
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Zhao X, Zhang Y, Gao Z, Han Y. Prognostic value of peripheral naive CD8 + T cells in oligometastatic non-small-cell lung cancer. Future Oncol 2021; 18:55-65. [PMID: 34608815 DOI: 10.2217/fon-2021-0728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: This study aimed to investigate the prognostic value of peripheral naive and memory CD8+ and CD4+ T cells and other immune cells in patients with oligometastatic non-small-cell lung cancer (NSCLC) undergoing radiotherapy (RT). Methods: A total of 142 patients with oligometastatic NSCLC treated with RT were enrolled, and their blood samples were collected within 3 days before RT. Immune cells were identified by flow cytometry. Results: Patients with high levels of naive CD8+ T cells had longer overall survival (p = 0.004) and progression-free survival (p = 0.001) than those with low levels of naive CD8+ T cells. Multivariate analyses revealed that naive CD8+ T cells were independently correlated with overall survival (p = 0.019) and progression-free survival (p = 0.024). Conclusion: The results suggest that peripheral naive CD8+ T cells may be an independent prognostic indicator for patients with oligometastatic NSCLC undergoing RT.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Oncology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yan Zhang
- Department of Oncology, Hebei Medical University, Shijiazhuang 050017, PR China.,Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang 050030, PR China
| | - Zhenlin Gao
- Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang 050030, PR China
| | - Yaguang Han
- Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang 050030, PR China
| |
Collapse
|
18
|
Franceschini D, Teriaca MA, Dominici L, Franzese C, Scorsetti M. Knowing When to Use Stereotactic Ablative Radiation Therapy in Oligometastatic Cancer. Cancer Manag Res 2021; 13:7009-7031. [PMID: 34522143 PMCID: PMC8434826 DOI: 10.2147/cmar.s294116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/28/2021] [Indexed: 11/23/2022] Open
Abstract
Oligometastatic patients are a heterogeneous and yet not well-defined population. The actual definition identifies as oligometastatic, patients with 1-5 metastases in 1-3 different organs. However, only a proportion of these patients are "true" oligometastatic and therefore derive some kinds of benefit from local ablative approaches like stereotactic ablative radiation therapy (SABR). Since SABR is an easily accessible, effective and well-tolerated treatment, it is widely employed in the oligometastatic scenarios, without a particular focus on selection criteria. However, it should be crucial to identify predictive and prognostic features that could be clinically implemented. Therefore, we conducted this narrative review of the available literature to summarize all clinical, radiomic, genetic and epigenetic features found to be predictive of overall survival, progression-free survival or local control of oligometastatic patients treated with SABR.
Collapse
Affiliation(s)
- Davide Franceschini
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Maria Ausilia Teriaca
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Dominici
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ciro Franzese
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marta Scorsetti
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
19
|
Cortinovis D, Malapelle U, Pagni F, Russo A, Banna GL, Sala E, Rolfo C. Diagnostic and prognostic biomarkers in oligometastatic non-small cell lung cancer: a literature review. Transl Lung Cancer Res 2021; 10:3385-3400. [PMID: 34430374 PMCID: PMC8350105 DOI: 10.21037/tlcr-20-1067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Objective This review aims to summarize the possibilities of recently discovered molecular diagnostic techniques in lung cancer, by evaluating their impact on diagnosis, monitoring, and prognosis in oligometastatic disease. Background Oligometastatic non-small cell lung cancer (OM-NSCLC) is currently defined based on morphological rather than biological features. Major advances in the detection of molecular biomarkers in cell-free tumoral DNA and the models of oncogene addiction make as feasible an early diagnosis and guide the therapeutic decision-making progress to improve the prognosis. Methods This narrative review EXAMINES current approaches of diagnosis, monitoring, and prognosis of OM-NSCLC and describes the fast-evolving therapeutic scenario of this disease. We provide an overview of the powerful capability of liquid biopsy techniques applied to blood and fluid and we focus on the technological advancement of circulant biomolecular factors in OM NSCLC pathology, starting from apparently simpler models such as oncogene addicted tumors to evaluate themselves in the light of treatment with immune-checkpoint inhibitors. Conclusions A better understanding of spatial and temporal evolution of oligometastatic diseases would contribute to a more accurate diagnosis and tailored treatment. Data from prospective clinical trials in the early stage of disease, coupled with knowledge of genetic characteristics of lung tumors, are warranted. These efforts would lead to improving the possibility to eradicate the residual disease in these low burden tumoral settings, thus enhancing the definitive cure perspectives.
Collapse
Affiliation(s)
- Diego Cortinovis
- SC Medical Oncology/SS Lung Unit, ASST-Monza San Gerardo Hospital, Monza, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Fabio Pagni
- Department of Anatomic Pathology, University of Milano-Bicocca, Milan, Italy
| | | | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Elisa Sala
- SC Medical Oncology/SS Lung Unit, ASST-Monza San Gerardo Hospital, Monza, Italy
| | - Christian Rolfo
- Marlene and Stewart Greenbaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Abstract
Oligometastatic non-small cell lung cancer (NSCLC) has been recognized as a unique, yet common, clinical entity over the past 2-3 decades. Numerous retrospective series and early phase single arm trials have demonstrated the efficacy and safety of aggressive approaches in select patients. In addition, results from recent randomized trials have demonstrated potential benefits of radiation therapy and surgery as a form of local ablative therapy (LAT) in prolonging disease-free survival and overall survival. However, more questions remain given the limitation of existing clinical evidence and the lack of well validated biomarkers. Advances in late stage randomized trials with biological correlatives may further clarify the role of LAT to assist with clinical decision making in treating patients with oligometastatic NSCLC. In this review, we discuss the clinical and biologic data surrounding patient selection for LAT in oligometastatic NSCLC, as well as future directions in prospective and translational studies.
Collapse
Affiliation(s)
- Xingzhe Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Puneeth Iyengar
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
21
|
Dall'Olio FG, Calabrò D, Conci N, Argalia G, Marchese PV, Fabbri F, Fragomeno B, Ricci D, Fanti S, Ambrosini V, Ardizzoni A. Baseline total metabolic tumour volume on 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography-computed tomography as a promising biomarker in patients with advanced non-small cell lung cancer treated with first-line pembrolizumab. Eur J Cancer 2021; 150:99-107. [PMID: 33892411 DOI: 10.1016/j.ejca.2021.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have become the standard of care in the management of advanced non-small cell lung cancer (NSCLC). Nevertheless, only a small proportion of patients benefit from ICIs. The aim of the present study is to assess whether 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography-computed tomography ([18F]FDG-PET/CT)-derived parameters may be used as biomarkers in patients with advanced NSCLC receiving first-line pembrolizumab. MATERIALS AND METHODS This is a monocentric retrospective cohort study including patients with advanced NSCLC (stage IV) and Programmed death-ligand 1 (PD-L1) expression ≥50% treated with pembrolizumab. A control group of patients treated with epidermal growth factor receptor (EGFR) inhibitors for EGFR-mutated NSCLC was also enrolled. Only patients with a positive [18F]18F-FDG PET/CT result within 60 days from treatment initiation were included.Total metabolic tumour volume (tMTV) was calculated for each lesion using a dedicated software (PET VCAR; GE Healthcare), which semiautomatically delineates the tumour's contours with a maximum standardised uptake value (SUVmax) threshold of 42% within the lesion. tMTV was obtained summing each lesion's MTV. Potential prognostic parameters for overall survival (OS) were analysed (tMTV, SUVmax, bone/liver metastasis, neutrophil:lymphocyte ratio ≥4, Eastern Cooperative Oncology Group performance status ≥2, lactate dehydrogenase above the upper limit of normal). RESULTS Overall, 34 patients treated with first line-pembrolizumab and 40 patients treated with EGFR tyrosine kinase inhibitors were included. In the pembrolizumab group, the median follow-up was 20.3, while the median OS was 4.7 months (95% confidence interval [CI] = 0.3-9.1) for patients with tMTV ≥75 cm3 vs not reached (NR) for patients with tMTV <75 cm3 (95% CI = NR-NR; hazard ratio [HR] = 5.37; 95% CI = 1.72-16.77; p = 0.004). No difference was found in the control group (HR = 1.43; 95% CI = 0.61-3.34; p = 0.411). CONCLUSION Our data suggest that tMTV ≥75cm3 can be used as a prognostic biomarker of poor outcomes in patients with PD-L1-high advanced NSCLC treated with first-line pembrolizumab. This information could be useful for the selection of patients who may require the addition of chemotherapy to pembrolizumab.
Collapse
Affiliation(s)
- Filippo G Dall'Olio
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy.
| | - Diletta Calabrò
- IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy; Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - Nicole Conci
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Giulia Argalia
- IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy; Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | | | - Francesca Fabbri
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Benedetta Fragomeno
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Dalia Ricci
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Stefano Fanti
- IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy; Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - Valentina Ambrosini
- IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy; Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - Andrea Ardizzoni
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy
| |
Collapse
|
22
|
Pellegrino S, Fonti R, Pulcrano A, Del Vecchio S. PET-Based Volumetric Biomarkers for Risk Stratification of Non-Small Cell Lung Cancer Patients. Diagnostics (Basel) 2021; 11:diagnostics11020210. [PMID: 33573333 PMCID: PMC7911597 DOI: 10.3390/diagnostics11020210] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Despite the recent advances in lung cancer biology, molecular pathology, and treatment, this malignancy remains the leading cause of cancer-related death worldwide and non-small cell lung cancer (NSCLC) is the most common form found at diagnosis. Accurate staging of the disease is a fundamental prognostic factor that correctly predicts progression-free (PFS) and overall survival (OS) of NSCLC patients. However, outcome of patients within each TNM staging group can change widely highlighting the need to identify additional prognostic biomarkers to better stratify patients on the basis of risk. 18F-FDG PET/CT plays an essential role in staging, evaluation of treatment response, and tumoral target delineation in NSCLC patients. Moreover, a number of studies showed the prognostic role of imaging parameters derived from PET images, such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG). These parameters represent three-dimensional PET-based measurements providing information on both tumor volume and metabolic activity and previous studies reported their ability to predict OS and PFS of NSCLC patients. This review will primarily focus on the studies that showed the prognostic and predictive role of MTV and TLG in NSCLC patients, addressing also their potential utility in the new era of immunotherapy of NSCLC.
Collapse
Affiliation(s)
- Sara Pellegrino
- Department of Advanced Biomedical Sciences, University “Federico II”, 80131 Naples, Italy; (S.P.); (A.P.)
| | - Rosa Fonti
- Institute of Biostructures and Bioimages, National Research Council, 80145 Naples, Italy;
| | - Alessandro Pulcrano
- Department of Advanced Biomedical Sciences, University “Federico II”, 80131 Naples, Italy; (S.P.); (A.P.)
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University “Federico II”, 80131 Naples, Italy; (S.P.); (A.P.)
- Correspondence: ; Tel.: +39-081-7463307; Fax: +39-081-5457081
| |
Collapse
|
23
|
Baseline metabolic tumor burden on FDG PET/CT scans predicts outcome in advanced NSCLC patients treated with immune checkpoint inhibitors. Eur J Nucl Med Mol Imaging 2019; 47:1147-1157. [DOI: 10.1007/s00259-019-04615-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
|
24
|
Liu C, Sun B, Hu X, Zhang Y, Wang Q, Yue J, Yu J. Stereotactic Ablative Radiation Therapy for Pulmonary Recurrence-Based Oligometastatic Non-Small Cell Lung Cancer: Survival and Prognostic Value of Regulatory T Cells. Int J Radiat Oncol Biol Phys 2019; 105:1055-1064. [PMID: 31437470 DOI: 10.1016/j.ijrobp.2019.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/26/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE We evaluated survival of patients with pulmonary recurrence-based oligometastatic non-small cell lung cancer (NSCLC) whose lesions were all treated with stereotactic ablative radiation therapy (SABR) and the prognostic value of peripheral immune cells. METHODS AND MATERIALS In this prospective observational cohort study, we prospectively enrolled 63 patients with oligometastatic NSCLC, for whom all metastases were treated with SABR. Peripheral blood samples were collected 3 days before treatment began, and flow cytometry was used to identify proportions of regulatory T cells (Tregs; CD4+CD25+CD127low), B cells, NK cells, γδT cells, CD8+CD28+ T cells, and CD8+CD28- T cells. Overall survival (OS) and progression-free survival (PFS) was estimated by the Kaplan-Meier method, and the potential prognostic value of clinicopathologic factors was evaluated by Cox proportional hazards regression. RESULTS At a median follow-up time of 19.1 months, estimated OS rates were 84.3% at 1 year, 63.4% at 2 years, and 44.0% at 3 years; corresponding PFS rates were 55.2%, 30.9%, and 25.7%. Estimated local control rates were 96.7% at 1 year and 92.7% at both 2 years and 3 years. Patients with high numbers of Tregs had poorer OS and PFS than did those with low numbers of Tregs (OS: 16.1 months vs not reached, P = .006; PFS: 11.0 vs 21.7 months, P = .013). Treg level was found to be an independent predictor of both OS and PFS in multivariate analyses (OS: hazard ratio 2.68, P = .038; PFS: hazard ratio 2.35, P = .011). CONCLUSIONS Our results revealed the independent prognostic value of Tregs in patients treated with SABR for pulmonary recurrence-based oligometastatic NSCLC. Additional treatments may be needed for patients with oligometastatic NSCLC and poor outcomes.
Collapse
Affiliation(s)
- Chao Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Bing Sun
- Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Xiaoyu Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yun Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qian Wang
- Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
25
|
Bowen SR, Hippe DS, Chaovalitwongse WA, Duan C, Thammasorn P, Liu X, Miyaoka RS, Vesselle HJ, Kinahan PE, Rengan R, Zeng J. Voxel Forecast for Precision Oncology: Predicting Spatially Variant and Multiscale Cancer Therapy Response on Longitudinal Quantitative Molecular Imaging. Clin Cancer Res 2019; 25:5027-5037. [PMID: 31142507 DOI: 10.1158/1078-0432.ccr-18-3908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/28/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Prediction of spatially variant response to cancer therapies can inform risk-adaptive management within precision oncology. We developed the "Voxel Forecast" multiscale regression framework for predicting spatially variant tumor response to chemoradiotherapy on fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging. EXPERIMENTAL DESIGN Twenty-five patients with locally advanced non-small cell lung cancer, enrolled on the FLARE-RT phase II trial (NCT02773238), underwent FDG PET/CT imaging prior to (PETpre) and during week 3 (PETmid) of concurrent chemoradiotherapy. Voxel Forecast was designed to predict tumor voxel standardized uptake value (SUV) on PETmid from baseline patient-level and voxel-level covariates using a custom generalized least squares (GLS) algorithm. Matérn covariance matrices were fit to patient- specific empirical variograms of distance-dependent intervoxel correlation. Regression coefficients from variogram-based weights and corresponding standard errors were estimated using the jackknife technique. The framework was validated using statistical simulations of known spatially variant tumor response. Mean absolute prediction errors (MAEs) of Voxel Forecast models were calculated under leave-one-patient-out cross-validation. RESULTS Patient-level forecasts resulted in tumor voxel SUV MAE on PETmid of 1.5 g/mL while combined patient- and voxel-level forecasts achieved lower MAE of 1.0 g/mL (P < 0.0001). PETpre voxel SUV was the most important predictor of PETmid voxel SUV. Patients with a greater percentage of under-responding tumor voxels were classified as PETmid nonresponders (P = 0.030) with worse overall survival prognosis (P < 0.001). CONCLUSIONS Voxel Forecast multiscale regression provides a statistical framework to predict voxel-wise response patterns during therapy. Voxel Forecast can be extended to predict spatially variant response on multimodal quantitative imaging and may eventually guide optimized spatial-temporal dose distributions for precision cancer therapy.
Collapse
Affiliation(s)
- Stephen R Bowen
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington. .,Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Daniel S Hippe
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - W Art Chaovalitwongse
- Department of Industrial Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Chunyan Duan
- Department of Industrial Engineering, University of Arkansas, Fayetteville, Arkansas.,Department of Management Science and Engineering, Tongji University, Shanghai, China
| | - Phawis Thammasorn
- Department of Industrial Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Xiao Liu
- Department of Industrial Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Robert S Miyaoka
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Hubert J Vesselle
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Paul E Kinahan
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
26
|
Liu C, Hu Q, Hu K, Su H, Shi F, Kong L, Zhu H, Yu J. Increased CD8+CD28+ T cells independently predict better early response to stereotactic ablative radiotherapy in patients with lung metastases from non-small cell lung cancer. J Transl Med 2019; 17:120. [PMID: 30971280 PMCID: PMC6458628 DOI: 10.1186/s12967-019-1872-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/04/2019] [Indexed: 12/25/2022] Open
Abstract
Background Stereotactic ablative radiotherapy (SABR) shows a remarkable local control of non-small cell lung cancer (NSCLC) metastases, partially as a result of host immune status. However, the predictors of immune cells for tumor response after SABR are unknown. To that effect, we investigated the ability of pre-SABR immune cells in peripheral blood to predict early tumor response to SABR in patients with lung metastases from NSCLC. Methods This study included 70 patients with lung metastases from NSCLC who were undergoing SABR. We evaluated the early tumor response 1 month and 6 months after SABR in these patients following RECIST 1.1 guidelines. Pre-SABR peripheral CD8+ T cell count, CD8+CD28+ T-cell count, CD8+CD28− T-cell count, CD4+ T-cell count, and Treg-cell count were measured using flow cytometry. Results Increased CD8+CD28+ T-cell counts (14.43 ± 0.65 vs. 10.21 ± 0.66; P = 0.001) and CD4/Treg ratio (16.96 ± 1.76 vs. 11.91 ± 0.74; P = 0.011) were noted in 1-month responsive patients, compared with non-responsive patients. In univariate logistic analyses, high CD8+CD28+ T-cell counts (OR 0.12, 95% CI 0.03–0.48; P = 0.003), CD4/Treg ratio (OR 0.24, 95% CI 0.06–0.90; P = 0.035), and BED10 (OR 0.91, 95% CI 0.84–0.99; P = 0.032) predicted a 1-month tumor response to SABR. According to multivariate logistic analyses, the CD8+CD28+ T-cell count predicted a 1-month tumor response to SABR (OR 0.19, 95% CI 0.04–0.90; P = 0.037) independently. Furthermore, we confirmed the independent predictive value of the CD8+CD28+ T-cell count in predicting tumor response to SABR in 41 patients 6 months after treatment (OR 0.08, 95% CI 0.01–0.85; P = 0.039). Conclusions A pre-SABR CD8+CD28+ T-cell count could predict early tumor response to SABR in patients with lung metastases from NSCLC. Larger, independently prospective analyses are warranted to verify our findings. Electronic supplementary material The online version of this article (10.1186/s12967-019-1872-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.,Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Kai Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huichao Su
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Fang Shi
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Li Kong
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Jinming Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| |
Collapse
|