1
|
Chinen LTD, Torres JA, Calsavara VF, Brito ABC, Silva VSE, Novello RGS, Fernandes TC, Decina A, Dachez R, Paterlini-Brechot P. Circulating Polyploid Giant Cancer Cells, a Potential Prognostic Marker in Patients with Carcinoma. Int J Mol Sci 2024; 25:9841. [PMID: 39337327 PMCID: PMC11432346 DOI: 10.3390/ijms25189841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Polyploid Giant Cancer Cells (PGCCs) have been recognized as tumor cells that are resistant to anticancer therapies. However, it remains unclear whether their presence in the bloodstream can be consistently detected and utilized as a clinical marker to guide therapeutic anticancer regimens. To address these questions, we conducted a retrospective study involving 228 patients diagnosed with six different types of carcinomas (colon, gastric, NSCLC, breast, anal canal, kidney), with the majority of them (70%) being non-metastatic. Employing a highly sensitive liquid biopsy approach, ISET®, and cytopathological readout, we isolated and detected circulating PGCCs in the patients' blood samples. PGCCs were identified in 46 (20.18%) out of 228 patients, including in 14.47% of 152 non-metastatic and 29.85% of 67 metastatic cases. Patients were subsequently monitored for a mean follow up period of 44.74 months (95%CI: 33.39-55.79 months). Remarkably, the presence of circulating PGCCs emerged as a statistically significant indicator of poor overall survival. Our findings suggest that circulating PGCCs hold promise as a reliable prognostic indicator. They underscore the importance of further extensive investigations into the role of circulating PGCCs as a prognostic marker and the development of anti-PGCC therapeutic strategies to improve cancer management and patient survival.
Collapse
Affiliation(s)
| | | | - Vinicius Fernando Calsavara
- Department of Computational Biomedicine, Biostatistics Shared Resource, Cedars-Sinai Cancer Center, Los Angeles, CA 90069, USA
| | | | - Virgílio Sousa E Silva
- Department of Clinical Oncology, A.C. Camargo Cancer Center, São Paulo 01509-900, Brazil
| | | | | | - Alessandra Decina
- Rarecells Faculté de Médecine Necker, 160 Rue de Vaugirard, 75015 Paris, France
| | - Roger Dachez
- Cytopathology Laboratory Innodiag, F-92100 Boulogne-Billancourt, France
| | | |
Collapse
|
2
|
Yaghoubi Naei V, Ivanova E, Mullally W, O'Leary CG, Ladwa R, O'Byrne K, Warkiani ME, Kulasinghe A. Characterisation of circulating tumor-associated and immune cells in patients with advanced-stage non-small cell lung cancer. Clin Transl Immunology 2024; 13:e1516. [PMID: 38835954 PMCID: PMC11147668 DOI: 10.1002/cti2.1516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Objectives Globally, non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer and the leading cause of cancer-related deaths. Tumor-associated circulating cells in NSCLC can have a wide variety of morphological and phenotypic characteristics, including epithelial, immunological or hybrid subtypes. The distinctive characteristics and potential clinical significance of these cells in patients with NSCLC are explored in this study. Methods We utilised a spiral microfluidic device to enrich large cells and cell aggregates from the peripheral blood samples of NSCLC patients. These cells were characterised through high-resolution immunofluorescent imaging and statistical analysis, correlating findings with clinical information from our patient cohort. Results We have identified varied populations of heterotypic circulating tumor cell clusters with differing immune cell composition that included a distinct class of atypical tumor-associated macrophages that exhibits unique morphology and cell size. This subtype's prevalence is positively correlated with the tumor stage, progression and metastasis. Conclusions Our study reveals a heterogeneous landscape of circulating tumor cells and their clusters, underscoring the complexity of NSCLC pathobiology. The identification of a unique subtype of atypical tumor-associatedmacrophages that simultaneously express both tumor and immune markers and whose presence correlates with late disease stages, poor clinical outcomes and metastatic risk infers the potential of these cells as biomarkers for NSCLC staging and prognosis. Future studies should focus on the role of these cells in the tumor microenvironment and their potential as therapeutic targets. Additionally, longitudinal studies tracking these cell types through disease progression could provide further insights into their roles in NSCLC evolution and response to treatment.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Ekaterina Ivanova
- Cancer and Ageing Research Program, Centre for Genomics and Personalised HealthQueensland University of TechnologyWoolloongabbaQLDAustralia
| | | | | | - Rahul Ladwa
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
- The Princess Alexandra HospitalBrisbaneQLDAustralia
| | - Ken O'Byrne
- The Princess Alexandra HospitalBrisbaneQLDAustralia
| | - Majid E Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
3
|
Li S, Sheng J, Zhang D, Qin H. Targeting tumor-associated macrophages to reverse antitumor drug resistance. Aging (Albany NY) 2024; 16:10165-10196. [PMID: 38787372 PMCID: PMC11210230 DOI: 10.18632/aging.205858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Currently, antitumor drugs show limited clinical outcomes, mainly due to adaptive resistance. Clinical evidence has highlighted the importance of the tumor microenvironment (TME) and tumor-associated macrophages (TAMs) in tumor response to conventional antitumor drugs. Preclinical studies show that TAMs following antitumor agent can be reprogrammed to an immunosuppressive phenotype and proangiogenic activities through different mechanisms, mediating drug resistance and poor prognosis. Potential extrinsic inhibitors targeting TAMs repolarize to an M1-like phenotype or downregulate proangiogenic function, enhancing therapeutic efficacy of anti-tumor therapy. Moreover, pharmacological modulation of macrophages that restore the immune stimulatory characteristics is useful to reshaping the tumor microenvironment, thus further limiting tumor growth. This review aims to introduce macrophage response in tumor therapy and provide a potential therapeutic combination strategy of TAM-targeting immunomodulation with conventional antitumor drugs.
Collapse
Affiliation(s)
- Sheng Li
- The Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Ali AM, Raza A. scRNAseq and High-Throughput Spatial Analysis of Tumor and Normal Microenvironment in Solid Tumors Reveal a Possible Origin of Circulating Tumor Hybrid Cells. Cancers (Basel) 2024; 16:1444. [PMID: 38611120 PMCID: PMC11010995 DOI: 10.3390/cancers16071444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Metastatic cancer is a leading cause of death in cancer patients worldwide. While circulating hybrid cells (CHCs) are implicated in metastatic spread, studies documenting their tissue origin remain sparse, with limited candidate approaches using one-two markers. Utilizing high-throughput single-cell and spatial transcriptomics, we identified tumor hybrid cells (THCs) co-expressing epithelial and macrophage markers and expressing a distinct transcriptome. Rarely, normal tissue showed these cells (NHCs), but their transcriptome was easily distinguishable from THCs. THCs with unique transcriptomes were observed in breast and colon cancers, suggesting this to be a generalizable phenomenon across cancer types. This study establishes a framework for HC identification in large datasets, providing compelling evidence for their tissue residence and offering comprehensive transcriptomic characterization. Furthermore, it sheds light on their differential function and identifies pathways that could explain their newly acquired invasive capabilities. THCs should be considered as potential therapeutic targets.
Collapse
Affiliation(s)
- Abdullah Mahmood Ali
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Edward P Evans MDS Center, Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| | - Azra Raza
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Edward P Evans MDS Center, Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| |
Collapse
|
5
|
Basak U, Sarkar T, Mukherjee S, Chakraborty S, Dutta A, Dutta S, Nayak D, Kaushik S, Das T, Sa G. Tumor-associated macrophages: an effective player of the tumor microenvironment. Front Immunol 2023; 14:1295257. [PMID: 38035101 PMCID: PMC10687432 DOI: 10.3389/fimmu.2023.1295257] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer progression is primarily caused by interactions between transformed cells and the components of the tumor microenvironment (TME). TAMs (tumor-associated macrophages) make up the majority of the invading immune components, which are further categorized as anti-tumor M1 and pro-tumor M2 subtypes. While M1 is known to have anti-cancer properties, M2 is recognized to extend a protective role to the tumor. As a result, the tumor manipulates the TME in such a way that it induces macrophage infiltration and M1 to M2 switching bias to secure its survival. This M2-TAM bias in the TME promotes cancer cell proliferation, neoangiogenesis, lymphangiogenesis, epithelial-to-mesenchymal transition, matrix remodeling for metastatic support, and TME manipulation to an immunosuppressive state. TAMs additionally promote the emergence of cancer stem cells (CSCs), which are known for their ability to originate, metastasize, and relapse into tumors. CSCs also help M2-TAM by revealing immune escape and survival strategies during the initiation and relapse phases. This review describes the reasons for immunotherapy failure and, thereby, devises better strategies to impair the tumor-TAM crosstalk. This study will shed light on the understudied TAM-mediated tumor progression and address the much-needed holistic approach to anti-cancer therapy, which encompasses targeting cancer cells, CSCs, and TAMs all at the same time.
Collapse
Affiliation(s)
- Udit Basak
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Tania Sarkar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Debadatta Nayak
- Central Council for Research in Homeopathy (CCRH), New Delhi, India
| | - Subhash Kaushik
- Central Council for Research in Homeopathy (CCRH), New Delhi, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
6
|
Meira DD, de Castro e Caetano MC, Casotti MC, Zetum ASS, Gonçalves AFM, Moreira AR, de Oliveira AH, Pesente F, Santana GM, de Almeida Duque D, Pereira GSC, de Castro GDSC, Pavan IP, Chagas JPS, Bourguignon JHB, de Oliveira JR, Barbosa KRM, Altoé LSC, Louro LS, Merigueti LP, Alves LNR, Machado MRR, Roque MLRO, Prates PS, de Paula Segáua SH, dos Santos Uchiya T, Louro TES, Daleprane VE, Guaitolini YM, Vicente CR, dos Reis Trabach RS, de Araújo BC, dos Santos EDVW, de Paula F, Lopes TJS, de Carvalho EF, Louro ID. Prognostic Factors and Markers in Non-Small Cell Lung Cancer: Recent Progress and Future Challenges. Genes (Basel) 2023; 14:1906. [PMID: 37895255 PMCID: PMC10606762 DOI: 10.3390/genes14101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer is a highly aggressive neoplasm and, despite the development of recent therapies, tumor progression and recurrence following the initial response remains unsolved. Several questions remain unanswered about non-small cell lung cancer (NSCLC): (1) Which patients will actually benefit from therapy? (2) What are the predictive factors of response to MAbs and TKIs? (3) What are the best combination strategies with conventional treatments or new antineoplastic drugs? To answer these questions, an integrative literature review was carried out, searching articles in PUBMED, NCBI-PMC, Google Academic, and others. Here, we will examine the molecular genetics of lung cancer, emphasizing NSCLC, and delineate the primary categories of inhibitors based on their molecular targets, alongside the main treatment alternatives depending on the type of acquired resistance. We highlighted new therapies based on epigenetic information and a single-cell approach as a potential source of new biomarkers. The current and future of NSCLC management hinges upon genotyping correct prognostic markers, as well as on the evolution of precision medicine, which guarantees a tailored drug combination with precise targeting.
Collapse
Affiliation(s)
- Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Clara de Castro e Caetano
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Aléxia Stefani Siqueira Zetum
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Felipe Monteiro Gonçalves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Rodrigues Moreira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Augusto Henrique de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Fellipe Pesente
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Daniel de Almeida Duque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gierleson Santos Cangussu Pereira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Giulia de Souza Cupertino de Castro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Isabele Pagani Pavan
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - João Pedro Sarcinelli Chagas
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - José Henrique Borges Bourguignon
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Juliana Ribeiro de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Karen Ruth Michio Barbosa
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Luiza Poppe Merigueti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Marlon Ramos Rosado Machado
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Luísa Rodrigues Oliveira Roque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Pedro Santana Prates
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Sayuri Honorio de Paula Segáua
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Taissa dos Santos Uchiya
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Curso de Medicina, Vitória 29027-502, Brazil
| | - Vinicius Eduardo Daleprane
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Yasmin Moreto Guaitolini
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Creuza Rachel Vicente
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória 29090-040, Brazil
| | - Raquel Silva dos Reis Trabach
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Bruno Cancian de Araújo
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Eldamária de Vargas Wolfgramm dos Santos
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Flávia de Paula
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Tiago José S. Lopes
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Tokyo 157-8535, Japan
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| |
Collapse
|
7
|
Gironda DJ, Bergan RC, Alpaugh RK, Danila DC, Chuang TL, Hurtado BY, Ho T, Adams DL. Cancer Associated Macrophage-like Cells Are Prognostic for Highly Aggressive Prostate Cancer in Both the Non-Metastatic and Metastatic Settings. Cancers (Basel) 2023; 15:3725. [PMID: 37509385 PMCID: PMC10378487 DOI: 10.3390/cancers15143725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Despite advancements in the early-stage detection and expansion of treatments for prostate cancer (PCa), patient mortality rates remain high in patients with aggressive disease and the overtreatment of indolent disease remains a major issue. Prostate-specific antigen (PSA), a standard PCa blood biomarker, is limited in its ability to differentiate disease subtypes resulting in the overtreatment of non-aggressive indolent disease. Here we assess engorged cancer-associated macrophage-like cells (CAMLs), a ≥50 µm, cancer-specific, polynucleated circulating cell type found in the blood of patients with PCa as a potential companion biomarker to PSA for patient risk stratification. We found that rising PSA is positively correlated with increasing CAML size (r = 0.307, p = 0.004) and number of CAMLs in circulation (r = 0.399, p < 0.001). Over a 2-year period, the presence of a single engorged CAML was associated with 20.9 times increased likelihood of progression (p = 0.016) in non-metastatic PCa, and 2.4 times likelihood of progression (p = 0.031) with 5.4 times likelihood of death (p < 0.001) in metastatic PCa. These preliminary data suggest that CAML cell monitoring, in combination with PSA, may aid in differentiating non-aggressive from aggressive PCas by adding biological information that complements traditional clinical biomarkers, thereby helping guide treatment strategies.
Collapse
Affiliation(s)
- Daniel J. Gironda
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Division of Life Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Creatv MicroTech, Inc., Monmouth Junction, NJ 08852, USA
| | - Raymond C. Bergan
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Daniel C. Danila
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tuan L. Chuang
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Brenda Y. Hurtado
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thai Ho
- Mayo Clinic Cancer Center, Phoenix, AZ 85054, USA
| | | |
Collapse
|
8
|
Ali A, Adams DL, Kasabwala DM, Tang CM, Ho TH. Cancer associated macrophage-like cells in metastatic renal cell carcinoma predicts for poor prognosis and tracks treatment response in real time. Sci Rep 2023; 13:10544. [PMID: 37386095 PMCID: PMC10310728 DOI: 10.1038/s41598-023-37671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/26/2023] [Indexed: 07/01/2023] Open
Abstract
Renal Cell Carcinoma (RCC) is a fatal urological cancer, with one third of patients diagnosed with metastasis, resulting in a 5-year survival of only 12%. Recent advancements in therapies have increased survival in mRCC, but lack efficacy in subtypes, due to treatment resistance and toxic side effects. Currently, white blood cells, hemoglobin, and platelets are limitedly used as blood based biomarkers to help determine RCC prognosis. Cancer associated macrophage-like cells (CAMLs) are a potential mRCC biomarker which have been identified in peripheral blood of patients with malignant tumors and have been shown to predict poor clinical patient outcomes based on their number and size. In this study, blood samples from 40 RCC patients were obtained to evaluate the clinical utility of CAMLs. CAML changes were monitored during treatment regimens to evaluate their ability to predict treatment efficacy. It was observed that patients with smaller CAMLs had better progression free survival (HR = 2.84, 95% CI 1.22-6.60, p = 0.0273) and overall survival (HR = 3.95, 95% CI 1.45-10.78, p = 0.0154) versus patients with larger CAMLs. These findings suggest that CAMLs can be used as a diagnostic, prognostic, and predictive biomarker for patients with RCC which may help improve management of advanced RCC.
Collapse
Affiliation(s)
- Amama Ali
- Creatv Bio, Division of Creatv MicroTech, Inc., 9 Deer Park Dr, Monmouth Junction, NJ, 08852, USA
| | - Daniel L Adams
- Creatv Bio, Division of Creatv MicroTech, Inc., 9 Deer Park Dr, Monmouth Junction, NJ, 08852, USA.
| | - Dimpal M Kasabwala
- Creatv Bio, Division of Creatv MicroTech, Inc., 9 Deer Park Dr, Monmouth Junction, NJ, 08852, USA
| | - Cha-Mei Tang
- Creatv Bio, Division of Creatv MicroTech, Inc., 9900 Belward Campus Dr., Rockville, MD, 20850, USA
| | - Thai H Ho
- Division of Hematology/Oncology, Mayo Clinic Arizona, 5777 East Mayo Boulevard, Phoenix, AZ, 85054, USA
| |
Collapse
|
9
|
Pore AA, Dhanasekara CS, Navaid HB, Vanapalli SA, Rahman RL. Comprehensive Profiling of Cancer-Associated Cells in the Blood of Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy to Predict Pathological Complete Response. Bioengineering (Basel) 2023; 10:bioengineering10040485. [PMID: 37106672 PMCID: PMC10136335 DOI: 10.3390/bioengineering10040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) can affect pathological complete response (pCR) in breast cancers; the resection that follows identifies patients with residual disease who are then offered second-line therapies. Circulating tumor cells (CTCs) and cancer-associated macrophage-like cells (CAMLs) in the blood can be used as potential biomarkers for predicting pCR before resection. CTCs are of epithelial origin that undergo epithelial-to-mesenchymal transition to become more motile and invasive, thereby leading to invasive mesenchymal cells that seed in distant organs, causing metastasis. Additionally, CAMLs in the blood of cancer patients are reported to either engulf or aid the transport of cancer cells to distant organs. To study these rare cancer-associated cells, we conducted a preliminary study where we collected blood from patients treated with NAC after obtaining their written and informed consent. Blood was collected before, during, and after NAC, and Labyrinth microfluidic technology was used to isolate CTCs and CAMLs. Demographic, tumor marker, and treatment response data were collected. Non-parametric tests were used to compare pCR and non-pCR groups. Univariate and multivariate models were used where CTCs and CAMLs were analyzed for predicting pCR. Sixty-three samples from 21 patients were analyzed. The median(IQR) pre-NAC total and mesenchymal CTC count/5 mL was lower in the pCR vs. non-pCR group [1(3.5) vs. 5(5.75); p = 0.096], [0 vs. 2.5(7.5); p = 0.084], respectively. The median(IQR) post-NAC CAML count/5 mL was higher in the pCR vs. non-pCR group [15(6) vs. 6(4.5); p = 0.004]. The pCR group was more likely to have >10 CAMLs post-NAC vs. non-pCR group [7(100%) vs. 3(21.4%); p = 0.001]. In a multivariate logistic regression model predicting pCR, CAML count was positively associated with the log-odds of pCR [OR = 1.49(1.01, 2.18); p = 0.041], while CTCs showed a negative trend [Odds Ratio (OR) = 0.44(0.18, 1.06); p = 0.068]. In conclusion, increased CAMLs in circulation after treatment combined with lowered CTCs was associated with pCR.
Collapse
Affiliation(s)
- Adity A Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Hunaiz Bin Navaid
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | |
Collapse
|
10
|
Moran JA, Adams DL, Edelman MJ, Lopez P, He J, Qiao Y, Xu T, Liao Z, Gardner KP, Tang CM, Lin SH. Monitoring PD-L1 Expression on Circulating Tumor-Associated Cells in Recurrent Metastatic Non-Small-Cell Lung Carcinoma Predicts Response to Immunotherapy With Radiation Therapy. JCO Precis Oncol 2022; 6:e2200457. [PMID: 36516370 PMCID: PMC10166406 DOI: 10.1200/po.22.00457] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Current diagnostic methods to determine programmed death 1 (PD-1) receptor and its ligand (PD-L1)/PD-1 immunotherapy (immune checkpoint inhibitor [ICI]) efficacy in recurrent or metastatic non-small-cell lung carcinoma (rmNSCLC) are imprecise. Although previously shown that patients with high tumor PD-L1 (≥ 50%) demonstrate clinical benefit in the form of disease reduction and improved survival, patients with low PD-L1 (< 50%) sometimes benefit from treatment. Since the PD-L1/PD-1 pathway is dynamic, monitoring PD-L1 levels during treatment may be more accurate than a static baseline tumor biopsy; however, rebiopsying the primary or metastatic disease is rarely feasible. Liquid biopsies that measure the upregulation of PD-L1 on tumor-associated cells (TACs), ie, cancer-associated macrophage-like cells and circulating tumor cells, have been performed, but their predictive value for ICI therapy efficacy is unknown. MATERIALS AND METHODS We initiated a single-blind prospective study to evaluate TAC PD-L1 expression changes in rmNSCLC from blood samples before (T0) and after (T1) treatment with ICI (ICI, n = 41) or without ICI (no ICI, n = 41). Anonymized blood was filtered to isolate TACs, which were then quantified for high/low PD-L1 expression. Progression-free survival (PFS) or overall survival (OS) hazard ratios (HRs) were evaluated at 18 and 24 months by censored univariate analysis. RESULTS Increased TAC PD-L1 expression between T0 and T1 in patients who were not treated with ICI had no relationship with PFS or OS. However, increased TAC PD-L1 expression between T0 and T1 in patients treated with ICI had significantly better PFS (HR, 3.49; 95% CI, 1.5 to 8.3; P = .0091) and OS (HR, 3.058; 95% CI, 1.2 to 7.9; P = .0410). CONCLUSION Blood-based monitoring of dynamic changes in PD-L1 in TACs appears to identify patients with rmNSCLC who may benefit from ICI.
Collapse
Affiliation(s)
- Jillian A Moran
- Rutgers, The State University of New Jersey, New Brunswick, NJ.,Creatv MicroTech, Inc, Monmouth Junction, NJ
| | - Daniel L Adams
- Rutgers, The State University of New Jersey, New Brunswick, NJ.,Creatv MicroTech, Inc, Monmouth Junction, NJ
| | | | | | | | | | - Ting Xu
- MD Anderson Cancer Center, Houston, TX
| | | | - Kirby P Gardner
- Creatv MicroTech, Inc, Monmouth Junction, NJ.,Rutgers University, School of Graduate Studies, Piscataway, NJ
| | | | | |
Collapse
|
11
|
Pore AA, Bithi SS, Zeinali M, Navaid HB, Nagrath S, Layeequr Rahman R, Vanapalli SA. Phenotyping of rare circulating cells in the blood of non-metastatic breast cancer patients using microfluidic Labyrinth technology. BIOMICROFLUIDICS 2022; 16:064107. [PMID: 36536791 PMCID: PMC9759355 DOI: 10.1063/5.0129602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 05/13/2023]
Abstract
Label-free technologies for isolating rare circulating cells in breast cancer patients are widely available; however, they are mostly validated on metastatic patient blood samples. Given the need to use blood-based biomarkers to inform on disease progression and treatment decisions, it is important to validate these technologies in non-metastatic patient blood samples. In this study, we specifically focus on a recently established label-free microfluidic technology Labyrinth and assess its capabilities to phenotype a variety of rare circulating tumor cells indicative of epithelial-to-mesenchymal transition as well as cancer-associated macrophage-like (CAML) cells. We specifically chose a patient cohort that is non-metastatic and selected to undergo neoadjuvant chemotherapy to assess the performance of the Labyrinth technology. We enrolled 21 treatment naïve non-metastatic breast cancer patients of various disease stages. Our results indicate that (i) Labyrinth microfluidic technology is successfully able to isolate different phenotypes of CTCs despite the counts being low. (ii) Invasive phenotypes of CTCs such as transitioning CTCs and mesenchymal CTCs were found to be present in high numbers in stage III patients as compared to stage II patients. (iii) As the total load of CTCs increased, the mesenchymal CTCs were found to be increasing. (iv) Labyrinth was able to isolate CAMLs with the counts being higher in stage III patients as compared to stage II patients. Our study demonstrates the ability of the Labyrinth microfluidic technology to isolate rare cancer-associated cells from the blood of treatment naïve non-metastatic breast cancer patients, laying the foundation for tracking oncogenic spread and immune response in patients undergoing neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Adity A. Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Swastika S. Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Mina Zeinali
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 79430, USA
| | - Hunaiz Bin Navaid
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 79430, USA
| | | | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
12
|
Micronuclei in Circulating Tumor Associated Macrophages Predicts Progression in Advanced Colorectal Cancer. Biomedicines 2022; 10:biomedicines10112898. [PMID: 36428466 PMCID: PMC9687174 DOI: 10.3390/biomedicines10112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Micronuclei (MN) are fragments of damaged nucleic acids which budded from a cell’s nuclei as a repair mechanism for chromosomal instabilities, which within circulating white blood cells (cWBCs) signifies increased cancer risk, and in tumor cells indicates aggressive subtypes. MN form overtime and with therapy induction, which requires sequential monitoring of rarer cell subpopulations. We evaluated the peripheral blood (7.5 mL) for MN in Circulating Stromal Cells (CStCs) in a prospective pilot study of advanced colorectal cancer patients (n = 25), identifying MN by DAPI+ structures (<3 µm) within the cellular cytoplasm. MN+ was compared to genotoxic induction, progression free survival (PFS) or overall survival (OS) hazard ratios (HR) over three years. MN were identified in 44% (n = 11/25) of CStCs, but were not associated with genotoxic therapies (p = 0.110) nor stage (p = 0.137). However, presence of MN in CStCs was independently prognostic for PFS (HR = 17.2, 95% CI 3.6−80.9, p = 0.001) and OS (HR = 70.3, 95% CI 6.6−752.8, p = 0.002), indicating a non-interventional mechanism in their formation. Additionally, MN formation did not appear associated with chemotherapy induction, but was correlated with tumor response. MN formation in colorectal cancer is an underlying biological mechanism that appears independent of chemotherapeutic genotoxins, changes during treatment, and predicts for poor clinical outcomes.
Collapse
|
13
|
Chen P, Liu Y, Wen Y, Zhou C. Non-small cell lung cancer in China. Cancer Commun (Lond) 2022; 42:937-970. [PMID: 36075878 PMCID: PMC9558689 DOI: 10.1002/cac2.12359] [Citation(s) in RCA: 204] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 04/08/2023] Open
Abstract
In China, lung cancer is a primary cancer type with high incidence and mortality. Risk factors for lung cancer include tobacco use, family history, radiation exposure, and the presence of chronic lung diseases. Most early-stage non-small cell lung cancer (NSCLC) patients miss the optimal timing for treatment due to the lack of clinical presentations. Population-based nationwide screening programs are of significant help in increasing the early detection and survival rates of NSCLC in China. The understanding of molecular carcinogenesis and the identification of oncogenic drivers dramatically facilitate the development of targeted therapy for NSCLC, thus prolonging survival in patients with positive drivers. In the exploration of immune escape mechanisms, programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitor monotherapy and PD-1/PD-L1 inhibitor plus chemotherapy have become a standard of care for advanced NSCLC in China. In the Chinese Society of Clinical Oncology's guidelines for NSCLC, maintenance immunotherapy is recommended for locally advanced NSCLC after chemoradiotherapy. Adjuvant immunotherapy and neoadjuvant chemoimmunotherapy will be approved for resectable NSCLC. In this review, we summarized recent advances in NSCLC in China in terms of epidemiology, biology, molecular pathology, pathogenesis, screening, diagnosis, targeted therapy, and immunotherapy.
Collapse
Affiliation(s)
- Peixin Chen
- School of MedicineTongji UniversityShanghai200092P. R. China
- Department of Medical OncologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yunhuan Liu
- Department of Respiratory and Critical Care MedicineHuadong HospitalFudan UniversityShanghai200040P. R. China
| | - Yaokai Wen
- School of MedicineTongji UniversityShanghai200092P. R. China
- Department of Medical OncologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Caicun Zhou
- School of MedicineTongji UniversityShanghai200092P. R. China
- Department of Medical OncologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| |
Collapse
|
14
|
Pereira-Veiga T, Schneegans S, Pantel K, Wikman H. Circulating tumor cell-blood cell crosstalk: Biology and clinical relevance. Cell Rep 2022; 40:111298. [PMID: 36044866 DOI: 10.1016/j.celrep.2022.111298] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Accepted: 08/09/2022] [Indexed: 01/17/2023] Open
Abstract
Circulating tumor cells (CTCs) are the seeds of distant metastasis, and the number of CTCs detected in the blood of cancer patients is associated with a worse prognosis. CTCs face critical challenges for their survival in circulation, such as anoikis, shearing forces, and immune surveillance. Thus, understanding the mechanisms and interactions of CTCs within the blood microenvironment is crucial for better understanding of metastatic progression and the development of novel treatment strategies. CTCs interact with different hematopoietic cells, such as platelets, red blood cells, neutrophils, macrophages, natural killer (NK) cells, lymphocytes, endothelial cells, and cancer-associated fibroblasts, which can affect CTC survival in blood. This interaction may take place either via direct cell-cell contact or through secreted molecules. Here, we review interactions of CTCs with blood cells and discuss the potential clinical relevance of these interactions as biomarkers or as targets for anti-metastatic therapies.
Collapse
Affiliation(s)
- Thais Pereira-Veiga
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Svenja Schneegans
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
15
|
Sutton TL, Patel RK, Anderson AN, Bowden SG, Whalen R, Giske NR, Wong MH. Circulating Cells with Macrophage-like Characteristics in Cancer: The Importance of Circulating Neoplastic-Immune Hybrid Cells in Cancer. Cancers (Basel) 2022; 14:cancers14163871. [PMID: 36010865 PMCID: PMC9405966 DOI: 10.3390/cancers14163871] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary In cancer, disseminated neoplastic cells circulating in blood are a source of tumor DNA, RNA, and protein, which can be harnessed to diagnose, monitor, and better understand the biology of the tumor from which they are derived. Historically, circulating tumor cells (CTCs) have dominated this field of study. While CTCs are shed directly into circulation from a primary tumor, they remain relatively rare, particularly in early stages of disease, and thus are difficult to utilize as a reliable cancer biomarker. Neoplastic-immune hybrid cells represent a novel subpopulation of circulating cells that are more reliably attainable as compared to their CTC counterparts. Here, we review two recently identified circulating cell populations in cancer—cancer-associated macrophage-like cells and circulating hybrid cells—and discuss the future impact for the exciting area of disseminated hybrid cells. Abstract Cancer remains a significant cause of mortality in developed countries, due in part to difficulties in early detection, understanding disease biology, and assessing treatment response. If effectively harnessed, circulating biomarkers promise to fulfill these needs through non-invasive “liquid” biopsy. While tumors disseminate genetic material and cellular debris into circulation, identifying clinically relevant information from these analytes has proven difficult. In contrast, cell-based circulating biomarkers have multiple advantages, including a source for tumor DNA and protein, and as a cellular reflection of the evolving tumor. While circulating tumor cells (CTCs) have dominated the circulating cell biomarker field, their clinical utility beyond that of prognostication has remained elusive, due to their rarity. Recently, two novel populations of circulating tumor-immune hybrid cells in cancer have been characterized: cancer-associated macrophage-like cells (CAMLs) and circulating hybrid cells (CHCs). CAMLs are macrophage-like cells containing phagocytosed tumor material, while CHCs can result from cell fusion between cancer and immune cells and play a role in the metastatic cascade. Both are detected in higher numbers than CTCs in peripheral blood and demonstrate utility in prognostication and assessing treatment response. Additionally, both cell populations are heterogeneous in their genetic, transcriptomic, and proteomic signatures, and thus have the potential to inform on heterogeneity within tumors. Herein, we review the advances in this exciting field.
Collapse
Affiliation(s)
- Thomas L. Sutton
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ranish K. Patel
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashley N. Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Stephen G. Bowden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Riley Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nicole R. Giske
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Correspondence: ; Tel.: +1-503-494-8749; Fax: +1-503-494-4253
| |
Collapse
|
16
|
Wu M, Huang Y, Zhou Y, Zhao H, Lan Y, Yu Z, Jia C, Cong H, Zhao J. The Discovery of Novel Circulating Cancer-Related Cells in Circulation Poses New Challenges to Microfluidic Devices for Enrichment and Detection. SMALL METHODS 2022; 6:e2200226. [PMID: 35595707 DOI: 10.1002/smtd.202200226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Circulating tumor cells (CTCs) enumeration has been widely used as a surrogate predictive marker for early diagnoses, the evaluation of chemotherapy efficacy, and cancer prognosis. Microfluidic technologies for CTCs enrichment and detection have been developed and commercialized as automation platforms. Currently, in addition to CTCs, some new types of circulating cancer-related cells (e.g., CCSCs, CTECs, CAMLs, and heterotypic CTC clusters) in circulation are also reported to be correlated to cancer diagnosis, metastasis, or prognosis. And they widely differ from the conventional CTCs in positive markers, cellular morphology, or size, which presents a new technological challenge to microfluidic devices that use affinity-based capture methods or size-based filtration methods for CTCs detection. This review focuses on the biological and physical properties as well as clinical significance of the novel circulating cancer-related cells, and discusses the challenges of their discovery to microfluidic chip for enrichment. Finally, the current challenges of CTCs detection in clinical application and future opportunities are also discussed.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Huang
- Shanghai Normal University, Shanghai, 200030, China
| | - Yang Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuwei Lan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Raghavakaimal A, Cristofanilli M, Tang CM, Alpaugh RK, Gardner KP, Chumsri S, Adams DL. CCR5 activation and endocytosis in circulating tumor-derived cells isolated from the blood of breast cancer patients provide information about clinical outcome. Breast Cancer Res 2022; 24:35. [PMID: 35606863 PMCID: PMC9125938 DOI: 10.1186/s13058-022-01528-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/10/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND CCR5 is a motility chemokine receptor implicated in tumor progression, whose activation and subsequent endocytosis may identify highly aggressive breast cancer cell subtypes likely to spread into the circulatory system. METHODS The MDA-MB-231 cell line was used to model and visualize CCR5 activation by stimulation with RANTES, in an effort to quantify CCR5 endocytosis from the cell surface to the perinuclear space. CCR5 expression was then examined in tumor-associated cells (TACs), consisting of circulating tumor cells and circulating stromal cells, isolated from the peripheral blood of 54 metastatic breast cancer (mBC) patients to evaluate these CCR5 pooling patterns as they relate to progression and survival over 2 years. RESULTS In MB231 experiments, it was observed that CCR5 formed ~ 1 micron clusters identified as "CCR5 pools" on the surface of the cell, which in the presence of RANTES were endocytosed and translocated to the cell cytoplasm. When TACs from patients were analyzed, CCR5 pools were observed on the cell surface and translocating to the nuclear area, with CCR5 also having a positive statistical correlation between increased numbers of TACs and increased CCR5 pools on the cells. Further, it was determined that patients with very high numbers of CCR5 (> 10 CCR5 pools), specifically in the circulating stromal cells, were associated with worse progression-free survival (hazard ratio = 4.5, p = 0.002) and worse overall survival (hazard ratio = 3.7, p = 0.014). CONCLUSIONS Using a liquid biopsy approach, we evaluated two populations of tumor-associated cells emanating from primary tumors, with data suggesting that upregulation of the motility chemokine CCR5 in TACs provides clinically relevant opportunities for treating and tracking drug targetable receptors in mBC.
Collapse
Affiliation(s)
| | | | - Cha-Mei Tang
- Creatv MicroTech, Inc., Rockville, MD, 20850, USA
| | - R K Alpaugh
- Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Kirby P Gardner
- Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Creatv MicroTech, Inc., Monmouth Junction, South Brunswick, NJ, 08852, USA
| | | | - Daniel L Adams
- Creatv MicroTech, Inc., Monmouth Junction, South Brunswick, NJ, 08852, USA
| |
Collapse
|
18
|
Comments on "Detection of circulating tumour cells before and following adjuvant chemotherapy and long-term prognosis of early breast cancer". Br J Cancer 2022; 126:1659-1660. [PMID: 35414689 PMCID: PMC9130133 DOI: 10.1038/s41416-022-01804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
|
19
|
Kaigorodova EV, Kozik AV, Zavaruev IS, Grishchenko MY. Hybrid/Atypical Forms of Circulating Tumor Cells: Current State of the Art. BIOCHEMISTRY (MOSCOW) 2022; 87:380-390. [PMID: 35527376 PMCID: PMC8993035 DOI: 10.1134/s0006297922040071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cancer is one of the most common diseases worldwide, and its treatment is associated with many challenges such as drug and radioresistance and formation of metastases. These difficulties are due to tumor heterogeneity, which has many causes. One may be the cell fusion, a process that is relevant to both physiological (e.g., wound healing) and pathophysiological (cancer and viral infection) processes. This literature review aimed to summarize the existing data on the hybrid/atypical forms of circulating cancer cells and their role in tumor progression. For that, the bioinformatics search in universal databases, such as PubMed, NCBI, and Google Scholar was conducted by using the keywords “hybrid cancer cells”, “cancer cell fusion”, etc. In this review the latest information related to the hybrid tumor cells, theories of their genesis, characteristics of different variants with data from our own researches are presented. Many aspects of the hybrid cell research are still in their infancy. However, with the level of knowledge already accumulated, circulating hybrids such as CAML and CHC could be considered as promising biomarkers of cancerous tumors, and even more as a new approach to cancer treatment.
Collapse
Affiliation(s)
- Evgeniya V Kaigorodova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
- Siberian State Medical University, Tomsk, 634050, Russia
| | - Alexey V Kozik
- Siberian State Medical University, Tomsk, 634050, Russia
| | | | | |
Collapse
|
20
|
Tang CM, Adams DL. Clinical Applications of Cancer-Associated Cells Present in the Blood of Cancer Patients. Biomedicines 2022; 10:biomedicines10030587. [PMID: 35327389 PMCID: PMC8945841 DOI: 10.3390/biomedicines10030587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
The ability to obtain tumor material from cells in the blood of cancer patients provides a significant benefit over the use of tumor tissue as a diagnostic to make treatment decisions. However, the traditionally defined circulating tumor cell (CTC) has been shown to be useful only in some cases. A recently identified type of circulating stromal cell, which appears to be more frequent than CTCs, was found engulfing tumor material at the tumor site and then entering the blood stream. These cells were defined as cancer-associated macrophage-like cells (CAMLs). Together, CTCs and CAMLs may be able to provide information for cancer detection and diagnosis, without the use of tissue. CTCs and CAMLs have many clinical applications, three of which are summarized in this review: for prognosis, as companion diagnostics, and for residual disease monitoring.
Collapse
Affiliation(s)
- Cha-Mei Tang
- Creatv MicroTech, Inc., 9900 Belward Campus Drive, Suite 330, Rockville, MD 20850, USA
- Correspondence:
| | - Daniel L. Adams
- Creatv MicroTech, Inc., 9 Deer Park Drive, Suite M5, Middlesex County, NJ 08852, USA;
| |
Collapse
|
21
|
Identification of Atypical Circulating Tumor Cells with Prognostic Value in Metastatic Breast Cancer Patients. Cancers (Basel) 2022; 14:cancers14040932. [PMID: 35205679 PMCID: PMC8869799 DOI: 10.3390/cancers14040932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary In this study we have isolated and analyzed atypical cells found in the blood of metastatic breast cancer patients using a micro-filtration technic. This technic, being very easy to implement, was also extremely useful for studying circulating tumors cells’ (CTCs) heterogeneity in cancer patients. We highlighted three subsets of CTCs, with different independent unfavorable prognostic values for progression-free and overall survival. We demonstrated that these cells can further be analyzed by immunofluorescence to narrow their molecular profiles and identify specific characteristics. Moreover, we identified a subset of CTCs, for which positivity might be a useful stratification tool to select patients more susceptible to benefit from early clinical trials testing novel therapeutics, which frequently enroll late-stage, already heavily pre-treated and thus poor-responder patients. Abstract Circulating tumor cells have a strong potential as a quasi-non-invasive tool for setting up a precision medicine strategy for cancer patients. Using a second-generation “filtration-based” technology to isolate CTCs, the Screencell™ technology (Sarcelles, France), we performed a large and simultaneous analysis of all atypical circulating tumor cells (aCTCs) isolated from the blood of metastatic breast cancer (mBC) patients. We correlated their presence with clinicopathological and survival data. We included 91 mBC patients from the PERMED-01 study. The median number of aCTCs was 8.3 per mL of blood. Three subsets of aCTCs, absent from controls, were observed in patients: single (s-aCTCs), circulating tumor micro-emboli (CTM), and giant-aCTCs (g-aCTCs). The presence of g-aCTCs was associated with shorter progression free survival and overall survival. This study highlights the heterogeneity of aCTCs in mBC patients both at the cytomorphological and molecular levels. In addition, it suggests the usefulness of the g-aCTC subset as a prognostic factor and a potential stratification tool to treat late-stage mBC patients and improve their chances of benefiting from early clinical trials.
Collapse
|
22
|
Payne RG, Anker CJ, Sprague BL, No HJ, Lin SH, Lester-Coll NH. Active Surveillance for Early Stage Lung Cancer. Clin Lung Cancer 2022; 23:226-235. [DOI: 10.1016/j.cllc.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
|
23
|
Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design. Pharmaceutics 2021; 13:pharmaceutics13111879. [PMID: 34834295 PMCID: PMC8619417 DOI: 10.3390/pharmaceutics13111879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023] Open
Abstract
Designing optimal (neo)adjuvant therapy is a crucial aspect of the treatment of non-small-cell lung carcinoma (NSCLC). Standard methods of chemotherapy, radiotherapy, and immunotherapy represent effective strategies for treatment. However, in some cases with high metastatic activity and high levels of circulating tumour cells (CTCs), the efficacy of standard treatment methods is insufficient and results in treatment failure and reduced patient survival. CTCs are seen not only as an isolated phenomenon but also a key inherent part of the formation of metastasis and a key factor in cancer death. This review discusses the impact of NSCLC therapy strategies based on a meta-analysis of clinical studies. In addition, possible therapeutic strategies for repression when standard methods fail, such as the administration of low-toxicity natural anticancer agents targeting these phenomena (curcumin and flavonoids), are also discussed. These strategies are presented in the context of key mechanisms of tumour biology with a strong influence on CTC spread and metastasis (mechanisms related to tumour-associated and -infiltrating cells, epithelial–mesenchymal transition, and migration of cancer cells).
Collapse
|
24
|
Liu J, Niu N, Li X, Zhang X, Sood AK. The life cycle of polyploid giant cancer cells and dormancy in cancer: Opportunities for novel therapeutic interventions. Semin Cancer Biol 2021; 81:132-144. [PMID: 34670140 DOI: 10.1016/j.semcancer.2021.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Recent data suggest that most genotoxic agents in cancer therapy can lead to shock of genome and increase in cell size, which leads whole genome duplication or multiplication, formation of polyploid giant cancer cells, activation of an early embryonic program, and dedifferentiation of somatic cells. This process is achieved via the giant cell life cycle, a recently proposed mechanism for malignant transformation of somatic cells. Increase in both cell size and ploidy allows cells to completely or partially restructures the genome and develop into a blastocyst-like structure, similar to that observed in blastomere-stage embryogenesis. Although blastocyst-like structures with reprogrammed genome can generate resistant or metastatic daughter cells or benign cells of different lineages, they also acquired ability to undergo embryonic diapause, a reversible state of suspended embryonic development in which cells enter dormancy for survival in response to environmental stress. Therapeutic agents can activate this evolutionarily conserved developmental program, and when cells awaken from embryonic diapause, this leads to recurrence or metastasis. Understanding of the key mechanisms that regulate the different stages of the giant cell life cycle offers new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinsong Liu
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Na Niu
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoran Li
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xudong Zhang
- Departments of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anil K Sood
- Departments of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
25
|
Gardner KP, Aldakkak M, Tang CM, Tsai S, Adams DL. Circulating stromal cells in resectable pancreatic cancer correlates to pathological stage and predicts for poor clinical outcomes. NPJ Precis Oncol 2021; 5:25. [PMID: 33742084 PMCID: PMC7979885 DOI: 10.1038/s41698-021-00161-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer (PC) is notoriously difficult to diagnosis and properly stage resulting in incorrect primary treatment. Diagnostic and prognostic biomarkers are desperately needed to more accurately stage patients and select proper treatments. Recently, a newly discovered circulating stromal cell, i.e. cancer associated macrophage-like cell (CAML), was found to accurately identify solid cancers and predict for worse prognosis. In this pilot study, blood samples were procured from 63 PC patients prior to start of therapeutic intent. CAMLs were found in 95% of samples tested, with ≥12 CAMLs/7.5 mL and ≥50 µm CAMLs both predicting for advanced pathological stage and progression free survival. These data suggest that CAML assessment prior to treatment of PC predicts patients with under-staged disease and with more aggressive PC less likely to respond to standard of care treatment.
Collapse
Affiliation(s)
- Kirby P Gardner
- Creatv MicroTech, Inc., Monmouth Junction, NJ, USA.,Rutgers University, Graduate School of Biomedical Sciences, Piscataway, NJ, USA
| | | | | | - Susan Tsai
- The Medical College of Wisconsin Milwaukee, Milwaukee, WI, USA
| | | |
Collapse
|
26
|
Niu M, Yi M, Li N, Luo S, Wu K. Predictive biomarkers of anti-PD-1/PD-L1 therapy in NSCLC. Exp Hematol Oncol 2021; 10:18. [PMID: 33653420 PMCID: PMC7923338 DOI: 10.1186/s40164-021-00211-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy, especially anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) treatment has significantly improved the survival of non-small cell lung cancer (NSCLC) patients. However, the overall response rate remains unsatisfactory. Many factors affect the outcome of anti-PD-1/PD-L1 treatment, such as PD-L1 expression level, tumor-infiltrating lymphocytes (TILs), tumor mutation burden (TMB), neoantigens, and driver gene mutations. Further exploration of biomarkers would be favorable for the best selection of patients and precisely predict the efficacy of anti-PD-1/PD-L1 treatment. In this review, we summarized the latest advances in this field, and discussed the potential applications of these laboratory findings in the clinic.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|