1
|
Bret C, Desmots-Loyer F, Moreaux J, Fest T. BHLHE41, a transcriptional repressor involved in physiological processes and tumor development. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00973-3. [PMID: 39254779 DOI: 10.1007/s13402-024-00973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 09/11/2024] Open
Abstract
BHLHE41 is a nuclear transcriptional repressor that belongs to the basic helix-loop-helix protein superfamily. BHLHE41 expression tends to be restricted to specific tissues and is regulated by environmental cues and biological events. BHLHE41 homodimerizes or heterodimerizes with various partners, influencing its transcription factor function. BHLHE41 is involved in the regulation of many physiological processes implicated in tissue/organ homeostasis, such as myogenesis, adipogenesis, circadian rhythms and DNA repair. At cellular level, BHLHE41 is involved in the regulation of mesenchymal stem cell properties, tissue-specific macrophage functions and lymphoid lineage physiology. In several cancer types, BHLHE41 modulates the expression of different transcriptional programs influencing cell cycle control, apoptosis, invasiveness, epithelial to mesenchymal transition and hypoxia response in the tumor environment. Depending on the cancer cell type, BHLHE41 can act as a tumor suppressor or an oncogene, and could be a target for innovative therapies. This review summarizes the available knowledge on BHLHE41 structure, biological functions, regulation and potential partners, as well as its role in physiological processes, and its implication in major cancer steps.
Collapse
Affiliation(s)
- Caroline Bret
- Department of Biological Hematology, CHU Montpellier, Montpellier, 34295, France.
- Faculty of Medicine of Montpellier and Nîmes, University of Montpellier, Montpellier, 34090, France.
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, 34396, France.
| | - Fabienne Desmots-Loyer
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.
- Pôle de Biologie, Rennes University Medical Center, Rennes, France.
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, 34295, France.
- Faculty of Medicine of Montpellier and Nîmes, University of Montpellier, Montpellier, 34090, France.
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, 34396, France.
- Institut Universitaire de France, Paris, France.
| | - Thierry Fest
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.
- Pôle de Biologie, Rennes University Medical Center, Rennes, France.
| |
Collapse
|
2
|
Calì F, Vinci M, Treccarichi S, Papa C, Gloria A, Musumeci A, Federico C, Vitello GA, Nicotera AG, Di Rosa G, Vetri L, Saccone S, Elia M. PLEKHG1: New Potential Candidate Gene for Periventricular White Matter Abnormalities. Genes (Basel) 2024; 15:1096. [PMID: 39202455 PMCID: PMC11353482 DOI: 10.3390/genes15081096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Hypoxic-ischemic brain damage presents a significant neurological challenge, often manifesting during the perinatal period. Specifically, periventricular leukomalacia (PVL) is emerging as a notable contributor to cerebral palsy and intellectual disabilities. It compromises cerebral microcirculation, resulting in insufficient oxygen or blood flow to the periventricular region of the brain. As widely documented, these pathological conditions can be caused by several factors encompassing preterm birth (4-5% of the total cases), as well single cotwin abortion and genetic variants such as those associated with GTPase pathways. Whole exome sequencing (WES) analysis identified a de novo causative variant within the pleckstrin homology domain-containing family G member 1 (PLEKHG1) gene in a patient presenting with PVL. The PLEKHG1 gene is ubiquitously expressed, showing high expression patterns in brain tissues. PLEKHG1 is part of a family of Rho guanine nucleotide exchange factors, and the protein is essential for cell division control protein 42 (CDC42) activation in the GTPase pathway. CDC42 is a key small GTPase of the Rho-subfamily, regulating various cellular functions such as cell morphology, migration, endocytosis, and cell cycle progression. The molecular mechanism involving PLEKHG1 and CDC42 has an intriguing role in the reorientation of cells in the vascular endothelium, thus suggesting that disruption responses to mechanical stress in endothelial cells may be involved in the formation of white matter lesions. Significantly, CDC42 association with white matter abnormalities is underscored by its MIM phenotype number. In contrast, although PLEKHG1 has been recently associated with patients showing white matter hyperintensities, it currently lacks a MIM phenotype number. Additionally, in silico analyses classified the identified variant as pathogenic. Although the patient was born prematurely and subsequently to dichorionic gestation, during which its cotwin died, we suggest that the variant described can strongly contribute to PVL. The aim of the current study is to establish a plausible association between the PLEKHG1 gene and PVL.
Collapse
Affiliation(s)
- Francesco Calì
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.C.); (M.V.); (S.T.); (C.P.); (A.G.); (A.M.); (G.A.V.); (L.V.); (M.E.)
| | - Mirella Vinci
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.C.); (M.V.); (S.T.); (C.P.); (A.G.); (A.M.); (G.A.V.); (L.V.); (M.E.)
| | - Simone Treccarichi
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.C.); (M.V.); (S.T.); (C.P.); (A.G.); (A.M.); (G.A.V.); (L.V.); (M.E.)
| | - Carla Papa
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.C.); (M.V.); (S.T.); (C.P.); (A.G.); (A.M.); (G.A.V.); (L.V.); (M.E.)
| | - Angelo Gloria
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.C.); (M.V.); (S.T.); (C.P.); (A.G.); (A.M.); (G.A.V.); (L.V.); (M.E.)
| | - Antonino Musumeci
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.C.); (M.V.); (S.T.); (C.P.); (A.G.); (A.M.); (G.A.V.); (L.V.); (M.E.)
| | - Concetta Federico
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Girolamo Aurelio Vitello
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.C.); (M.V.); (S.T.); (C.P.); (A.G.); (A.M.); (G.A.V.); (L.V.); (M.E.)
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, 98124 Messina, Italy; (A.G.N.); (G.D.R.)
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, 98124 Messina, Italy; (A.G.N.); (G.D.R.)
| | - Luigi Vetri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.C.); (M.V.); (S.T.); (C.P.); (A.G.); (A.M.); (G.A.V.); (L.V.); (M.E.)
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Maurizio Elia
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.C.); (M.V.); (S.T.); (C.P.); (A.G.); (A.M.); (G.A.V.); (L.V.); (M.E.)
| |
Collapse
|
3
|
Drandi D, Decruyenaere P, Ferrante M, Offner F, Vandesompele J, Ferrero S. Nucleic Acid Biomarkers in Waldenström Macroglobulinemia and IgM-MGUS: Current Insights and Clinical Relevance. Diagnostics (Basel) 2022; 12:diagnostics12040969. [PMID: 35454017 PMCID: PMC9028641 DOI: 10.3390/diagnostics12040969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Waldenström Macroglobulinemia (WM) is an indolent lymphoplasmacytic lymphoma, characterized by the production of excess immunoglobulin M monoclonal protein. WM belongs to the spectrum of IgM gammopathies, ranging from asymptomatic IgM monoclonal gammopathy of undetermined significance (IgM-MGUS), through IgM-related disorders and asymptomatic WM to symptomatic WM. In recent years, its complex genomic and transcriptomic landscape has been extensively explored, hereby elucidating the biological mechanisms underlying disease onset, progression and therapy response. An increasing number of mutations, cytogenetic abnormalities, and molecular signatures have been described that have diagnostic, phenotype defining or prognostic implications. Moreover, cell-free nucleic acid biomarkers are increasingly being investigated, benefiting the patient in a minimally invasive way. This review aims to provide an extensive overview of molecular biomarkers in WM and IgM-MGUS, considering current shortcomings, as well as potential future applications in a precision medicine approach.
Collapse
Affiliation(s)
- Daniela Drandi
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, 10126 Torino, Italy; (M.F.); (S.F.)
- Correspondence: (D.D.); (P.D.)
| | - Philippe Decruyenaere
- Department of Hematology, Ghent University Hospital, 9000 Ghent, Belgium;
- OncoRNALab, Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Correspondence: (D.D.); (P.D.)
| | - Martina Ferrante
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, 10126 Torino, Italy; (M.F.); (S.F.)
| | - Fritz Offner
- Department of Hematology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Simone Ferrero
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, 10126 Torino, Italy; (M.F.); (S.F.)
| |
Collapse
|
4
|
Identification of a Candidate Gene Set Signature for the Risk of Progression in IgM MGUS to Smoldering/Symptomatic Waldenström Macroglobulinemia (WM) by a Comparative Transcriptome Analysis of B Cells and Plasma Cells. Cancers (Basel) 2021; 13:cancers13081837. [PMID: 33921415 PMCID: PMC8070603 DOI: 10.3390/cancers13081837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 02/04/2023] Open
Abstract
Waldenström Macroglobulinemia (WM) is a B-cell lymphoma characterized by the precursor condition IgM monoclonal gammopathies of undetermined significance (IgM MGUS). We performed a gene expression profiling study to compare the transcriptome signatures of bone marrow (BM) B-cells and plasma cells of 36 WM patients, 13 IgM MGUS cases, and 7 healthy subjects used as controls (CTRLs) by Affymetrix microarray. We determined 2038 differentially expressed genes (DEGs) in CD19+ cells and 29 DEGs genes in CD138+ cells, respectively. The DEGs identified in B-cells were associated with KEGG pathways, mainly involved in hematopoietic cell lineage antigens, cell adhesion/focal adhesion/transmembrane proteins, adherens junctions, Wnt-signaling pathway, BCR-signaling pathway, calcium signaling pathway, complement/coagulation cascade, platelet activation, cytokine-cytokine receptor interactions, and signaling pathways responsible for cell cycle, apoptosis, proliferation and survival. In conclusion, we showed the deregulation of groups of genes belonging to KEGG pathways in the comparison among WM vs. IgM MGUS vs. CTRLs in B-cells. Interestingly, a small set of genes in B-cells displayed a common transcriptome expression profile between WM and IgM MGUS compared to CTRLs, suggesting its possible role in the risk of transformation of IgM MGUS to WM.
Collapse
|
5
|
Lee N, Kim SM, Lee Y, Jeong D, Yun J, Ryu S, Yoon SS, Ahn YO, Hwang SM, Lee DS. Prognostic value of integrated cytogenetic, somatic variation, and copy number variation analyses in Korean patients with newly diagnosed multiple myeloma. PLoS One 2021; 16:e0246322. [PMID: 33544757 PMCID: PMC7864461 DOI: 10.1371/journal.pone.0246322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/15/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND To investigate the prognostic value of gene variants and copy number variations (CNVs) in patients with newly diagnosed multiple myeloma (NDMM), an integrative genomic analysis was performed. METHODS Sixty-seven patients with NDMM exhibiting more than 60% plasma cells in the bone marrow aspirate were enrolled in the study. Whole-exome sequencing was conducted on bone marrow nucleated cells. Mutation and CNV analyses were performed using the CNVkit and Nexus Copy Number software. In addition, karyotype and fluorescent in situ hybridization were utilized for the integrated analysis. RESULTS Eighty-three driver gene mutations were detected in 63 patients with NDMM. The median number of mutations per patient was 2.0 (95% confidence interval [CI] = 2.0-3.0, range = 0-8). MAML2 and BHLHE41 mutations were associated with decreased survival. CNVs were detected in 56 patients (72.7%; 56/67). The median number of CNVs per patient was 6.0 (95% CI = 5.7-7.0; range = 0-16). Among the CNVs, 1q gain, 6p gain, 6q loss, 8p loss, and 13q loss were associated with decreased survival. Additionally, 1q gain and 6p gain were independent adverse prognostic factors. Increased numbers of CNVs and driver gene mutations were associated with poor clinical outcomes. Cluster analysis revealed that patients with the highest number of driver mutations along with 1q gain, 6p gain, and 13q loss exhibited the poorest prognosis. CONCLUSIONS In addition to the known prognostic factors, the integrated analysis of genetic variations and CNVs could contribute to prognostic stratification of patients with NDMM.
Collapse
Affiliation(s)
- Nuri Lee
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Sung-Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Youngeun Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dajeong Jeong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jiwon Yun
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sohee Ryu
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Clinical Research Institute, Seoul National University Hospital, Cancer Research Institute, Seoul National University, College of Medicine, Seoul, Korea
| | - Yong-Oon Ahn
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Soon Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
6
|
Jiménez C, Prieto-Conde MI, García-Álvarez M, Alcoceba M, Escalante F, Chillón MDC, García de Coca A, Balanzategui A, Cantalapiedra A, Aguilar C, Corral R, González-López T, Marín LA, Bárez A, Puig N, García-Mateo A, Gutiérrez NC, Sarasquete ME, González M, García-Sanz R. Unraveling the heterogeneity of IgM monoclonal gammopathies: a gene mutational and gene expression study. Ann Hematol 2018; 97:475-484. [PMID: 29353304 DOI: 10.1007/s00277-017-3207-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022]
Abstract
Immunoglobulin M (IgM) monoclonal gammopathies show considerable variability, involving three different stages of presentation: IgM monoclonal gammopathy of undetermined significance (IgM-MGUS), asymptomatic Waldenström's macroglobulinemia (AWM), and symptomatic WM (SWM). Despite recent findings about the genomic and transcriptomic characteristics of such disorders, we know little about the causes of this clinical heterogeneity or the mechanisms involved in the progression from indolent to symptomatic forms. To clarify these matters, we have performed a gene expression and mutational study in a well-characterized cohort of 69 patients, distinguishing between the three disease presentations in an attempt to establish the relationship with the clinical and biological features of the patients. Results showed that the frequency of genetic alterations progressively increased from IgM-MGUS to AWM and SWM. This means that, in contrast to MYD88 p.L265P and CXCR4 WHIM mutations, present from the beginning of the pathogenesis, most of them would be acquired during the course of the disease. Moreover, the expression study revealed a higher level of expression of genes belonging to the Toll-like receptor (TLR) signaling pathway in symptomatic versus indolent forms, which was also reflected in the disease presentation and prognosis. In conclusion, our findings showed that IgM monoclonal gammopathies present higher mutational burden as the disease progresses, in parallel to the upregulation of relevant pathogenic pathways. This study provides a translational view of the genomic basis of WM pathogenesis.
Collapse
Affiliation(s)
- Cristina Jiménez
- Hematology Department, University Hospital of Salamanca and Research Biomedical Institute of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain
| | - María Isabel Prieto-Conde
- Hematology Department, University Hospital of Salamanca and Research Biomedical Institute of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain
| | - María García-Álvarez
- Hematology Department, University Hospital of Salamanca and Research Biomedical Institute of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain
| | - Miguel Alcoceba
- Hematology Department, University Hospital of Salamanca and Research Biomedical Institute of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain.,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain
| | | | - María Del Carmen Chillón
- Hematology Department, University Hospital of Salamanca and Research Biomedical Institute of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain.,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain
| | | | - Ana Balanzategui
- Hematology Department, University Hospital of Salamanca and Research Biomedical Institute of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain
| | | | - Carlos Aguilar
- Hematology Department, Santa Bárbara Hospital, Soria, Spain
| | - Rocío Corral
- Hematology Department, University Hospital of Salamanca and Research Biomedical Institute of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain
| | | | - Luis A Marín
- Hematology Department, University Hospital of Salamanca and Research Biomedical Institute of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain
| | - Abelardo Bárez
- Hematology Department, Nuestra Señora de Sonsoles Hospital, Ávila, Spain
| | - Noemí Puig
- Hematology Department, University Hospital of Salamanca and Research Biomedical Institute of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain
| | | | - Norma C Gutiérrez
- Hematology Department, University Hospital of Salamanca and Research Biomedical Institute of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain
| | - María Eugenia Sarasquete
- Hematology Department, University Hospital of Salamanca and Research Biomedical Institute of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain.,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain
| | - Marcos González
- Hematology Department, University Hospital of Salamanca and Research Biomedical Institute of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain. .,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain.
| | - Ramón García-Sanz
- Hematology Department, University Hospital of Salamanca and Research Biomedical Institute of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007, Salamanca, Spain.,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain
| |
Collapse
|
7
|
Paludo J, Ansell SM. Advances in the understanding of IgM monoclonal gammopathy of undetermined significance. F1000Res 2017; 6:2142. [PMID: 29399323 PMCID: PMC5785715 DOI: 10.12688/f1000research.12880.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Among monoclonal gammopathies of undetermined significance (MGUSs), the immunoglobulin M (IgM) MGUS subtype stands as a unique entity and plays a pivotal role as a pre-malignant condition for multiple B-cell non-Hodgkin lymphomas, most notably Waldenström macroglobulinemia (WM). A relationship between IgM MGUS and WM has been proposed for decades. However, insight regarding the pathobiology of these two conditions improved significantly in recent years, strengthening the hypothesis that WM and IgM MGUS are different stages of the same disease. Therefore, the understanding of IgM MGUS and that of WM are interconnected and advances in one will likely impact the other. Furthermore, IgM MGUS has been more commonly recognized as the underlying etiology of IgM-related disorders. In this review, we explore recent advances in the understanding of the pathobiology of IgM MGUS and WM and the treatment of common IgM-related disorders.
Collapse
Affiliation(s)
- Jonas Paludo
- Department of Medicine, Division of Hematology, Mayo Clinic , Rochester, USA
| | - Stephen M Ansell
- Department of Medicine, Division of Hematology, Mayo Clinic , Rochester, USA
| |
Collapse
|
8
|
Growková K, Kryukova E, Kufová Z, Filipová J, Ševčíková T, Říhová L, Kaščák M, Kryukov F, Hájek R. Waldenström's macroglobulinemia: Two malignant clones in a monoclonal disease? Molecular background and clinical reflection. Eur J Haematol 2017; 99:469-478. [PMID: 28886236 DOI: 10.1111/ejh.12959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/12/2022]
Abstract
Waldenström's macroglobulinemia (WM) is a complex disease characterized by apparent morphological heterogeneity within the malignant clonal cells representing a continuum of small lymphocytes, plasmacytoid lymphocytes, and plasma cells. At the molecular level, the neoplastic B cell-derived clone has undergone somatic hypermutation, but not isotype switching, and retains the capability of plasmacytic differentiation. Although by classical definition, WM is formed by monoclonal expansion, long-lived clonal B lymphocytes are of heterogeneous origin. Even more, according to current opinion, plasma cells also conform certain population with pathogenic and clinical significance. In this article, we review the recent advances in the WM clonal architecture, briefly describe B-cell development during which the molecular changes lead to the malignant transformation and mainly focus on differences between two principal B-lineage clones, including analysis of their genome and transcriptome profiles, as well as immunophenotype features. We assume that the correct identification of a number of specific immunophenotypic molecular and expression alterations leading to proper aberrant clone detection can help to guide patient monitoring throughout treatment and successfully implement therapy strategies directed against both B- and plasma cell tumor WM clones.
Collapse
Affiliation(s)
- Kateřina Growková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Department of Clinical Studies, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Elena Kryukova
- Department of Clinical Studies, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Department of Haemato-Oncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Zuzana Kufová
- Department of Clinical Studies, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jana Filipová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Department of Clinical Studies, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Department of Clinical Studies, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Lucie Říhová
- Department of Clinical Haematology, University Hospital Brno, Brno, Czech Republic
| | - Michal Kaščák
- Department of Haemato-Oncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Fedor Kryukov
- Department of Clinical Studies, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Department of Haemato-Oncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Roman Hájek
- Department of Clinical Studies, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Department of Haemato-Oncology, University Hospital Ostrava, Ostrava, Czech Republic
| |
Collapse
|
9
|
The cellular origin and malignant transformation of Waldenström macroglobulinemia. Blood 2015; 125:2370-80. [DOI: 10.1182/blood-2014-09-602565] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/27/2015] [Indexed: 01/14/2023] Open
Abstract
Key Points
Benign (ie, IgM MGUS and smoldering WM) clonal B cells already harbor the phenotypic and molecular signatures of the malignant WM clone. Multistep transformation from benign (ie, IgM MGUS and smoldering WM) to malignant WM may require specific copy number abnormalities.
Collapse
|
10
|
Sahin I, Leblebjian H, Treon SP, Ghobrial IM. Waldenström macroglobulinemia: from biology to treatment. Expert Rev Hematol 2014; 7:157-68. [PMID: 24405328 DOI: 10.1586/17474086.2014.871494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Waldenström macroglobulinemia (WM) is distinct B-cell lymphoproliferative disorder primarily characterized by bone marrow infiltration of lymphoplasmacytic cells along with production of a serum monoclonal (IgM). In this review, we describe the biology of WM, the diagnostic evaluation for WM with a discussion of other conditions that are in the differential diagnosis and clinical manifestations of the disease as well as current treatment options. Within the novel agents discussed are everolimus, perifosine, enzastaurin, panobinostat, bortezomib and carfilzomib, pomalidomide and ibrutinib. Many of the novel agents have shown good responses and have a better toxicity profile compared to traditional chemotherapeutic agents, which makes them good candidates to be used as primary therapies for WM in the future.
Collapse
Affiliation(s)
- Ilyas Sahin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|