1
|
Comparison of Intermolecular Interactions of Irreversible and Reversible Inhibitors with Bruton’s Tyrosine Kinase via Molecular Dynamics Simulations. Molecules 2022; 27:molecules27217451. [DOI: 10.3390/molecules27217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a key protein from the TEC family and is involved in B-cell lymphoma occurrence and development. Targeting BTK is therefore an effective strategy for B-cell lymphoma treatment. Since previous studies on BTK have been limited to structure-function analyses of static protein structures, the dynamics of conformational change of BTK upon inhibitor binding remain unclear. Here, molecular dynamics simulations were conducted to investigate the molecular mechanisms of association and dissociation of a reversible (ARQ531) and irreversible (ibrutinib) small-molecule inhibitor to/from BTK. The results indicated that the BTK kinase domain was found to be locked in an inactive state through local conformational changes in the DFG motif, and P-, A-, and gatekeeper loops. The binding of the inhibitors drove the outward rotation of the C-helix, resulting in the upfolded state of Trp395 and the formation of the salt bridge of Glu445-Arg544, which maintained the inactive conformation state. Met477 and Glu475 in the hinge region were found to be the key residues for inhibitor binding. These findings can be used to evaluate the inhibitory activity of the pharmacophore and applied to the design of effective BTK inhibitors. In addition, the drug resistance to the irreversible inhibitor Ibrutinib was mainly from the strong interaction of Cys481, which was evidenced by the mutational experiment, and further confirmed by the measurement of rupture force and rupture times from steered molecular dynamics simulation. Our results provide mechanistic insights into resistance against BTK-targeting drugs and the key interaction sites for the development of high-quality BTK inhibitors. The steered dynamics simulation also offers a means to rapidly assess the binding capacity of newly designed inhibitors.
Collapse
|
2
|
Profitós-Pelejà N, Santos JC, Marín-Niebla A, Roué G, Ribeiro ML. Regulation of B-Cell Receptor Signaling and Its Therapeutic Relevance in Aggressive B-Cell Lymphomas. Cancers (Basel) 2022; 14:860. [PMID: 35205606 PMCID: PMC8870007 DOI: 10.3390/cancers14040860] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
The proliferation and survival signals emanating from the B-cell receptor (BCR) constitute a crucial aspect of mature lymphocyte's life. Dysregulated BCR signaling is considered a potent contributor to tumor survival in different subtypes of B-cell non-Hodgkin lymphomas (B-NHLs). In the last decade, the emergence of BCR-associated kinases as rational therapeutic targets has led to the development and approval of several small molecule inhibitors targeting either Bruton's tyrosine kinase (BTK), spleen tyrosine kinase (SYK), or phosphatidylinositol 3 kinase (PI3K), offering alternative treatment options to standard chemoimmunotherapy, and making some of these drugs valuable assets in the anti-lymphoma armamentarium. Despite their initial effectiveness, these precision medicine strategies are limited by primary resistance in aggressive B-cell lymphoma such as diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL), especially in the case of first generation BTK inhibitors. In these patients, BCR-targeting drugs often fail to produce durable responses, and nearly all cases eventually progress with a dismal outcome, due to secondary resistance. This review will discuss our current understanding of the role of antigen-dependent and antigen-independent BCR signaling in DLBCL and MCL and will cover both approved inhibitors and investigational molecules being evaluated in early preclinical studies. We will discuss how the mechanisms of action of these molecules, and their off/on-target effects can influence their effectiveness and lead to toxicity, and how our actual knowledge supports the development of more specific inhibitors and new, rationally based, combination therapies, for the management of MCL and DLBCL patients.
Collapse
Affiliation(s)
- Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ana Marín-Niebla
- Department of Hematology, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Marcelo Lima Ribeiro
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 12916-900, Brazil
| |
Collapse
|
3
|
Progress in the development of small molecular inhibitors of the Bruton's tyrosine kinase (BTK) as a promising cancer therapy. Bioorg Med Chem 2021; 47:116358. [PMID: 34479103 DOI: 10.1016/j.bmc.2021.116358] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Bruton tyrosine kinase (BTK) is a key kinase in the B cell antigen receptor signal transduction pathway, which is involved in the regulation of the proliferation, differentiation and apoptosis of B cells. BTK has become a significant target for the treatment of hematological malignancies and autoimmune diseases. Ibrutinib, the first-generation BTK inhibitor, has made a great contribution to the treatment of B cell malignant tumors, but there are still some problems such as resistance or miss target of site mutation. Therefore, there is an imperative need to develop novel BTK inhibitors to overcome these problems. Besides, proteolysis targeting chimera (PROTAC) technology has been successfully applied to the development of BTK degradation agents, which has opened a fresh way for the BTK targeted treatment. This paper reviews the biological function of BTK, the discovery and development of BTK targeted drugs as a promising cancer therapy. It mainly reviews the binding sites and structural characteristics of BTK, structure-activity relationships, activity and drug resistance of BTK inhibitors, as well as potential treatment strategies to overcome the resistance of BTK, which provides a reference for the rational design and development of new powerful BTK inhibitors.
Collapse
|
4
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6:201. [PMID: 34054126 PMCID: PMC8165101 DOI: 10.1038/s41392-021-00572-w] [Citation(s) in RCA: 648] [Impact Index Per Article: 216.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the advantages in efficacy and safety compared with traditional chemotherapy drugs, targeted therapeutic drugs have become mainstream cancer treatments. Since the first tyrosine kinase inhibitor imatinib was approved to enter the market by the US Food and Drug Administration (FDA) in 2001, an increasing number of small-molecule targeted drugs have been developed for the treatment of malignancies. By December 2020, 89 small-molecule targeted antitumor drugs have been approved by the US FDA and the National Medical Products Administration (NMPA) of China. Despite great progress, small-molecule targeted anti-cancer drugs still face many challenges, such as a low response rate and drug resistance. To better promote the development of targeted anti-cancer drugs, we conducted a comprehensive review of small-molecule targeted anti-cancer drugs according to the target classification. We present all the approved drugs as well as important drug candidates in clinical trials for each target, discuss the current challenges, and provide insights and perspectives for the research and development of anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chenyu Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Liang C, Tian D, Ren X, Ding S, Jia M, Xin M, Thareja S. The development of Bruton's tyrosine kinase (BTK) inhibitors from 2012 to 2017: A mini-review. Eur J Med Chem 2018; 151:315-326. [DOI: 10.1016/j.ejmech.2018.03.062] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/11/2018] [Accepted: 03/20/2018] [Indexed: 12/15/2022]
|