1
|
Combination of Histone Deacetylase Inhibitor Panobinostat (LBH589) with β-Catenin Inhibitor Tegavivint (BC2059) Exerts Significant Anti-Myeloma Activity Both In Vitro and In Vivo. Cancers (Basel) 2022; 14:cancers14030840. [PMID: 35159107 PMCID: PMC8834319 DOI: 10.3390/cancers14030840] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023] Open
Abstract
Over the last three decades changes in the treatment paradigm for newly diagnosed multiple myeloma (MM) have led to a significant increase in overall survival. Despite this, the majority of patients relapse after one or more lines of treatment while acquiring resistance to available therapies. Panobinostat, a pan-histone deacetylase inhibitor, was approved by the FDA in 2015 for patients with relapsed MM but how to incorporate panobinostat most effectively into everyday practice remains unclear. Dysregulation of the Wnt canonical pathway, and its key mediator β-catenin, has been shown to be important for the evolution of MM and the acquisition of drug resistance, making it a potentially attractive therapeutic target. Despite concerns regarding the safety of Wnt pathway inhibitors, we have recently shown that the β-catenin inhibitor Tegavivint is deliverable and effective in in vivo models of MM. In this study we show that the combination of low concentrations of panobinostat and Tegavivint have significant in vitro and in vivo anti-MM effects including in the context of proteasome inhibitor resistance, by targeting both aerobic glycolysis and mitochondrial respiration and the down-regulation of down-stream β-catenin targets including myc, cyclinD1, and cyclinD2. The significant anti-MM effect of this novel combination warrants further evaluation for the treatment of MM patients with relapsed and/or refractory MM.
Collapse
|
2
|
Lomas OC, Gooding S, Cabes M, Dreau H, Wilson E, Polzella P, Ramasamy K, Hamblin AD. Validation of clinical-grade whole genome sequencing reproduces cytogenetic analysis and identifies mutational landscape in newly-diagnosed multiple myeloma patients: A pilot study from the 100,000 Genomes Project. EJHAEM 2021; 2:809-812. [PMID: 35845211 PMCID: PMC9175844 DOI: 10.1002/jha2.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022]
Abstract
Multiple myeloma is characterized by chromosomal abnormalities and genetic variation, which may inform prognosis and guide treatment. This pilot study sought to examine the feasibility of incorporating Whole Genome Sequencing (WGS) alongside the routine laboratory evaluation of 14 patients with newly diagnosed multiple myeloma who had enrolled in the 100,000 Genomes Project. In all 14 cases, WGS data could be obtained in a timely fashion within existing clinical frameworks in a tertiary hospital setting. The data not only replicated standard-of-care FISH analysis of chromosomal abnormalities but also provided further chromosomal and molecular genetic insights that may influence patient management.
Collapse
Affiliation(s)
- Oliver C. Lomas
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| | - Sarah Gooding
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| | - Maite Cabes
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| | - Helene Dreau
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| | - Edward Wilson
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| | - Paolo Polzella
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| | | | - Karthik Ramasamy
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| | - Angela D. Hamblin
- Department of ClinicalHaematologyJohn Radcliffe and Churchill HospitalsOxford University Hospitals NHS TrustOxfordUK
| |
Collapse
|
3
|
Papadimitriou K, Kostopoulos IV, Tsopanidou A, Orologas-Stavrou N, Kastritis E, Tsitsilonis OE, Dimopoulos MA, Terpos E. Ex Vivo Models Simulating the Bone Marrow Environment and Predicting Response to Therapy in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12082006. [PMID: 32707884 PMCID: PMC7463609 DOI: 10.3390/cancers12082006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 01/10/2023] Open
Abstract
Multiple myeloma (MM) remains incurable despite the abundance of novel drugs. As it has been previously shown, preclinical 2D models fail to predict disease progression due to their inability to simulate the microenvironment of the bone marrow. In this review, we focus on 3D models and present all currently available ex vivo MM models that fulfil certain criteria, such as development of complex 3D environments using patients' cells and ability to test different drugs in order to assess personalized MM treatment efficacy of various regimens and combinations. We selected models representing the top-notch ex vivo platforms and evaluated them in terms of cost, time-span, and feasibility of the method. Finally, we propose where such a model can be more informative in a patient's treatment timeline. Overall, advanced 3D preclinical models are very promising as they may eventually offer the opportunity to precisely select the optimal personalized treatment for each MM patient.
Collapse
Affiliation(s)
- Konstantinos Papadimitriou
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.P.); (A.T.); (N.O.-S.); (O.E.T.)
| | - Ioannis V. Kostopoulos
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.P.); (A.T.); (N.O.-S.); (O.E.T.)
- Correspondence: (I.V.K.); (E.T.); Tel.: +30-210-7274929 (I.V.K.); +30-213-216-2846 (E.T.); Fax: +30-210-7274635 (I.V.K.); +30-213-216-2511 (E.T.)
| | - Anastasia Tsopanidou
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.P.); (A.T.); (N.O.-S.); (O.E.T.)
| | - Nikolaos Orologas-Stavrou
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.P.); (A.T.); (N.O.-S.); (O.E.T.)
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.K.); (M.A.D.)
| | - Ourania E. Tsitsilonis
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.P.); (A.T.); (N.O.-S.); (O.E.T.)
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.K.); (M.A.D.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.K.); (M.A.D.)
- Correspondence: (I.V.K.); (E.T.); Tel.: +30-210-7274929 (I.V.K.); +30-213-216-2846 (E.T.); Fax: +30-210-7274635 (I.V.K.); +30-213-216-2511 (E.T.)
| |
Collapse
|
4
|
Iftikhar A, Hassan H, Iftikhar N, Mushtaq A, Sohail A, Rosko N, Chakraborty R, Razzaq F, Sandeep S, Valent JN, Kanate AS, Anwer F. Investigational Monoclonal Antibodies in the Treatment of Multiple Myeloma: A Systematic Review of Agents under Clinical Development. Antibodies (Basel) 2019; 8:E34. [PMID: 31544840 PMCID: PMC6640719 DOI: 10.3390/antib8020034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Immunotherapy for multiple myeloma (MM) has been the focus in recent years due to its myeloma-specific immune responses. We reviewed the literature on non-Food and Drug Administration (FDA) approved monoclonal antibodies (mAbs) to highlight future perspectives. We searched PubMed, EMBASE, Web of Science, Cochrane Library and ClinicalTrials.gov to include phase I/II clinical trials. Data from 39 studies (1906 patients) were included. Of all the agents, Isatuximab (Isa, anti-CD38) and F50067 (anti-CXCR4) were the only mAbs to produce encouraging results as monotherapy with overall response rates (ORRs) of 66.7% and 32% respectively. Isa showed activity when used in combination with lenalidomide (Len) and dexamethasone (Dex), producing a clinical benefit rate (CBR) of 83%. Additionally, Isa used in combination with pomalidomide (Pom) and Dex resulted in a CBR of 73%. Indatuximab Ravtansine (anti-CD138 antibody-drug conjugate) produced an ORR of 78% and 79% when used in combination with Len-Dex and Pom-Dex, respectively. CONCLUSIONS Combination therapy using mAbs such as indatuximab, pembrolizumab, lorvotuzumab, siltuximab or dacetuzumab with chemotherapy agents produced better outcomes as compared to monotherapies. Further clinical trials investigating mAbs targeting CD38 used in combination therapy are warranted.
Collapse
Affiliation(s)
- Ahmad Iftikhar
- Department of Internal Medicine, The University of Arizona, Tucson, AZ 85721, USA.
| | - Hamza Hassan
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY 14621, USA.
| | - Nimra Iftikhar
- Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Adeela Mushtaq
- Department of Internal Medicine, University of Pittsburgh Medical Center, McKeesport, PA 16148, USA.
| | - Atif Sohail
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY 14621, USA.
| | - Nathaniel Rosko
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA.
| | | | - Faryal Razzaq
- Foundation University Medical College, Islamabad 44000, Pakistan.
| | - Sonia Sandeep
- Department of Pathology, Wilson Medical Center, Wilson, NC 27893, USA.
| | | | | | - Faiz Anwer
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA.
| |
Collapse
|
5
|
Towards Molecular Profiling in Multiple Myeloma: A Literature Review and Early Indications of Its Efficacy for Informing Treatment Strategies. Int J Mol Sci 2018; 19:ijms19072087. [PMID: 30021955 PMCID: PMC6073692 DOI: 10.3390/ijms19072087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 12/26/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic malignancy, is characterized by the clonal expansion of plasma cells. Despite dramatic improvements in patients′ survival over the past decade due to advances in therapy exploiting novel molecular targets (immunomodulatory drugs, proteasome inhibitors and monoclonal antibodies), the treatment of relapsed and refractory disease remains challenging. Recent studies confirmed complex, dynamic, and heterogeneous genomic alterations without unifying gene mutations in MM patients. In the current review, we survey recent therapeutic strategies, as well as molecular profiling data on MM, with emphasis on relapsed and refractory cases. A critical appraisal of novel findings and of their potential therapeutic implications will be discussed in detail, along with the author’s own experiences/views.
Collapse
|