1
|
Wang XB, Cui NH, Fang ZQ, Gao MJ, Cai D. Platelet bioenergetic profiling uncovers a metabolic pattern of high dependency on mitochondrial fatty acid oxidation in type 2 diabetic patients who developed in-stent restenosis. Redox Biol 2024; 72:103146. [PMID: 38579589 PMCID: PMC11000186 DOI: 10.1016/j.redox.2024.103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024] Open
Abstract
Although platelet bioenergetic dysfunction is evident early in the pathogenesis of diabetic macrovascular complications, the bioenergetic characteristics in type 2 diabetic patients who developed coronary in-stent restenosis (ISR) and their effects on platelet function remain unclear. Here, we performed platelet bioenergetic profiling to characterize the bioenergetic alterations in 28 type 2 diabetic patients with ISR compared with 28 type 2 diabetic patients without ISR (non-ISR) and 28 healthy individuals. Generally, platelets from type 2 diabetic patients with ISR exhibited a specific bioenergetic alteration characterized by high dependency on fatty acid (FA) oxidation, which subsequently induced complex III deficiency, causing decreased mitochondrial respiration, increased mitochondrial oxidant production, and low efficiency of mitochondrial ATP generation. This pattern of bioenergetic dysfunction showed close relationships with both α-granule and dense granule secretion as measured by surface P-selectin expression, ATP release, and profiles of granule cargo proteins in platelet releasates. Importantly, ex vivo reproduction of high dependency on FA oxidation by exposing non-ISR platelets to its agonist mimicked the bioenergetic dysfunction observed in ISR platelets and enhanced platelet secretion, whereas pharmaceutical inhibition of FA oxidation normalized the respiratory and redox states of ISR platelets and diminished platelet secretion. Further, causal mediation analyses identified a strong association between high dependency on FA oxidation and increased angiographical severity of ISR, which was significantly mediated by the status of platelet secretion. Our findings, for the first time, uncover a pattern of bioenergetic dysfunction in ISR and enhance current understanding of the mechanistic link of high dependency on FA oxidation to platelet abnormalities in the context of diabetes.
Collapse
Affiliation(s)
- Xue-Bin Wang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Ning-Hua Cui
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zi-Qi Fang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mi-Jie Gao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dan Cai
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
2
|
Gao MJ, Cui NH, Liu X, Wang XB. Inhibition of mitochondrial complex I leading to NAD +/NADH imbalance in type 2 diabetic patients who developed late stent thrombosis: Evidence from an integrative analysis of platelet bioenergetics and metabolomics. Redox Biol 2022; 57:102507. [PMID: 36244294 PMCID: PMC9579714 DOI: 10.1016/j.redox.2022.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a strong indicator of late stent thrombosis (LST). Platelet bioenergetic dysfunction, although critical to the pathogenesis of diabetic macrovascular complications, remains uncharacterized in T2DM patients who developed LST. Here, we explored the mechanistic link between the alterations in platelet bioenergetics and LST in the setting of T2DM. Platelet bioenergetics, metabolomics, and their interactomes were analyzed in a nested case-control study including 15 T2DM patients who developed LST and 15 matched T2DM patients who did not develop LST (non-LST). Overall, we identified a bioenergetic alteration in T2DM patients with LST characterized by an imbalanced NAD+/NADH redox state resulting from deficient mitochondrial complex I (NADH: ubiquinone oxidoreductase) activity, which led to reduced ATP-linked and maximal mitochondrial respiration, increased glycolytic flux, and platelet hyperactivation compared with non-LST patients. Congruently, platelets from LST patients exhibited downregulation of tricarboxylic acid cycle and NAD+ biosynthetic pathways as well as upregulation of the proximal glycolytic pathway, a metabolomic change that was primarily attributed to compromised mitochondrial respiration rather than increased glycolytic flux as evidenced by the integrative analysis of bioenergetics and metabolomics. Importantly, both bioenergetic and metabolomic aberrancies in LST platelets could be recapitulated ex vivo by exposing the non-LST platelets to a low dose of rotenone, a complex I inhibitor. In contrast, normalization of the NAD+/NADH redox state, either by increasing NAD+ biosynthesis or by inhibiting NAD+ consumption, was able to improve mitochondrial respiration, inhibit mitochondrial oxidant generation, and consequently attenuate platelet aggregation in both LST platelets and non-LST platelets pretreated with low-dose rotenone. These data, for the first time, delineate the specific patterns of bioenergetic and metabolomic alterations for T2DM patients who suffer from LST, and establish the deficiency of complex I-derived NAD+ as a potential pathogenic mechanism in platelet abnormalities.
Collapse
Affiliation(s)
- Mi-Jie Gao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ning-Hua Cui
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xia'nan Liu
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xue-Bin Wang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
3
|
Wang XB, Cui NH, Liu X. A novel 6-metabolite signature for prediction of clinical outcomes in type 2 diabetic patients undergoing percutaneous coronary intervention. Cardiovasc Diabetol 2022; 21:126. [PMID: 35788230 PMCID: PMC9254602 DOI: 10.1186/s12933-022-01561-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023] Open
Abstract
Background Outcome prediction tools for patients with type 2 diabetes mellitus (T2DM) undergoing percutaneous coronary intervention (PCI) are lacking. Here, we developed a machine learning-based metabolite classifier for predicting 1-year major adverse cardiovascular events (MACEs) after PCI among patients with T2DM. Methods Serum metabolomic profiling was performed in a nested case–control study of 108 matched pairs of patients with T2DM occurring and not occurring MACEs at 1 year after PCI, then the matched pairs were 1:1 assigned into the discovery and internal validation sets. External validation was conducted using targeted metabolite analyses in an independent prospective cohort of 301 patients with T2DM receiving PCI. The function of candidate metabolites was explored in high glucose-cultured human aortic smooth muscle cells (HASMCs). Results Overall, serum metabolome profiles differed between diabetic patients with and without 1-year MACEs after PCI. Through VSURF, a machine learning approach for feature selection, we identified the 6 most important metabolic predictors, which mainly targeted the nicotinamide adenine dinucleotide (NAD+) metabolism. The 6-metabolite model based on random forest and XGBoost algorithms yielded an area under the curve (AUC) of ≥ 0.90 for predicting MACEs in both discovery and internal validation sets. External validation of the 6-metabolite classifier also showed good accuracy in predicting MACEs (AUC 0.94, 95% CI 0.91–0.97) and target lesion failure (AUC 0.89, 95% CI 0.83–0.95). In vitro, there were significant impacts of altering NAD+ biosynthesis on bioenergetic profiles, inflammation and proliferation of HASMCs. Conclusion The 6-metabolite model may help for noninvasive prediction of 1-year MACEs following PCI among patients with T2DM. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01561-1.
Collapse
Affiliation(s)
- Xue-Bin Wang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road No.1, Zhengzhou, 450000, Henan, China.
| | - Ning-Hua Cui
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xia'nan Liu
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road No.1, Zhengzhou, 450000, Henan, China
| |
Collapse
|
4
|
The Role of Mitochondrial DNA Mutations in Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23020952. [PMID: 35055137 PMCID: PMC8778138 DOI: 10.3390/ijms23020952] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of morbidity and mortality worldwide. mtDNA (mitochondrial DNA) mutations are known to participate in the development and progression of some CVD. Moreover, specific types of mitochondria-mediated CVD have been discovered, such as MIEH (maternally inherited essential hypertension) and maternally inherited CHD (coronary heart disease). Maternally inherited mitochondrial CVD is caused by certain mutations in the mtDNA, which encode structural mitochondrial proteins and mitochondrial tRNA. In this review, we focus on recently identified mtDNA mutations associated with CVD (coronary artery disease and hypertension). Additionally, new data suggest the role of mtDNA mutations in Brugada syndrome and ischemic stroke, which before were considered only as a result of mutations in nuclear genes. Moreover, we discuss the molecular mechanisms of mtDNA involvement in the development of the disease.
Collapse
|
5
|
Asbaghi O, Ashtary-Larky D, Bagheri R, Nazarian B, Pourmirzaei Olyaei H, Rezaei Kelishadi M, Nordvall M, Wong A, Dutheil F, Naeini AA. Beneficial effects of folic acid supplementation on lipid markers in adults: A GRADE-assessed systematic review and dose-response meta-analysis of data from 21,787 participants in 34 randomized controlled trials. Crit Rev Food Sci Nutr 2021; 62:8435-8453. [PMID: 34002661 DOI: 10.1080/10408398.2021.1928598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Folic acid supplementation has received considerable attention in the literature, yet there is a large discrepancy in its effects on lipid markers in adults. Therefore, this systematic review and meta-analysis of 38 randomized controlled trials (RCTs) evaluated the effects of folic acid supplementation on triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol concentrations in a cohort of 21,787 participants. A systematic search current as of March 2021 was performed in PubMed/Medline, Scopus, Web of Science, and Embase using relevant keywords to identify eligible studies. A fix or random-effects model was used to estimate the weighted mean difference (WMD) and 95% confidence intervals (CIs). Thirty-four RCTs were included in this meta-analysis. The pooled analysis revealed that serum TG (WMD: -9.78 mg/dL; 95% CI: -15.5 to -4.00; p = 0.001, I2=0.0%, p = 0.965) and TC (WMD: -3.96 mg/dL; 95% CI: -6.71 to -1.21; p = 0.005, I2=46.9%, p = 0.001) concentrations were significantly reduced following folic acid supplementation compared to placebo. However, folic acid supplementation did not affect serum concentrations of LDL (WMD: -0.97 mg/dL; 95% CI: -6.82 to 4.89; p = 0.746, I2=60.6%, p < 0.001) or HDL cholesterol (WMD: 0.44 mg/dL; 95% CI: -0.53 to 1.41; p = 0.378, I2= 0.0%, p = 0.831). A significant dose-response relationship was observed between the dose of folic acid supplementation and serum concentrations of HDL cholesterols (r = 2.22, p = 0.047). Folic acid supplementation reduced serum concentrations of TG and TC without affecting LDL or HDL cholesterols. Future large RCTs on various populations are needed to show further beneficial effects of folic acid supplementation on lipid profile.
Collapse
Affiliation(s)
- Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Behzad Nazarian
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael Nordvall
- Department of Health and Human Performance, Marymount University, Arlington, Virginia, USA
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, Virginia, USA
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Clermont-Ferrand, France
| | - Amirmansour Alavi Naeini
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|