1
|
Mijatovic E, Ascenção K, Szabo C, Majtan T. Cellular turnover and degradation of the most common missense cystathionine beta-synthase variants causing homocystinuria. Protein Sci 2024; 33:e5123. [PMID: 39041895 PMCID: PMC11264351 DOI: 10.1002/pro.5123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Homocystinuria (HCU) due to cystathionine beta-synthase (CBS) deficiency is the most common inborn error of sulfur amino acid metabolism. Recent work suggests that missense pathogenic mutations-regardless of their topology-cause instability of the C-terminal regulatory domain, which likely translates into CBS misfolding, impaired assembly, and loss of function. However, it is unknown how instability of the regulatory domain translates into cellular CBS turnover and which degradation pathways are involved in CBS proteostasis. Here, we developed a human HEK293-based cellular model lacking intrinsic CBS and stably overexpressing wild-type (WT) CBS or its 10 most common missense HCU mutants. We found that HCU mutants, except the I278T variant, expressed similarly or better than CBS WT, with some of them showing impaired oligomerization, activity and response to allosteric activator S-adenosylmethionine. Cellular stability of all HCU mutants, except P49L and A114V, was significantly lower than the stability of CBS WT, suggesting their increased degradation. Ubiquitination analysis of CBS WT and two representative CBS mutants (T191M and I278T) showed that proteasomal degradation is the major pathway for CBS disposal, with a minor involvement of lysosomal-autophagic and endoplasmic reticulum-associated degradation (ERAD) pathways for HCU mutants. Proteasomal inhibition significantly increased the half-life and activity of T191M and I278T CBS mutants. Lysosomal and ERAD inhibition had only a minor impact on CBS turnover, but ERAD inhibition rescued the activity of T191M and I278T CBS mutants similarly as proteasomal inhibition. In conclusion, the present study provides new insights into proteostasis of CBS in HCU.
Collapse
Affiliation(s)
- Ela Mijatovic
- Section of Pharmacology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Kelly Ascenção
- Section of Pharmacology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Csaba Szabo
- Section of Pharmacology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Tomas Majtan
- Section of Pharmacology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
2
|
Yang W, Dong Y, Ma X, Xie J, Mei J. Effects of multi-frequency ultrasound-assisted immersion freezing processing on myofibrillar protein structure and lipid oxidation of large yellow croaker (Larimichthys crocea) during long-time frozen storage. ULTRASONICS SONOCHEMISTRY 2024; 107:106945. [PMID: 38857567 PMCID: PMC11209630 DOI: 10.1016/j.ultsonch.2024.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/09/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
In this study, large yellow croaker (Larimichthys crocea) was frozen using multi-frequency ultrasound-assisted freezing (MUIF) with different powers (160 W, 175 W, and 190 W, respectively) and stored at -18 °C for ten months. The effect of different ultrasound powers on the myofibrillar protein (MP) structures and lipid oxidation of large yellow croaker was investigated. The results showed that MUIF significantly slowed down the oxidation of MP by inhibiting carbonyl formation and maintaining high sulfhydryl contents. These treatments also held a high activity of Ca2+-ATPase in the MP. MUIF maintained a higher ratio of α-helix to β-sheet during frozen storage, thereby protecting the secondary structure of the tissue and stabilizing the tertiary structure. In addition, MUIF inhibited the production of thiobarbituric acid reactive substances value and the loss of unsaturated fatty acid content, indicating that MUIF could better inhibit lipid oxidation of large yellow croaker during long-time frozen storage.
Collapse
Affiliation(s)
- Weihao Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yixuan Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuan Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, 201306,China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, 201306,China.
| |
Collapse
|
3
|
Wang Z, Liu Z, Qu J, Sun Y, Zhou W. Role of natural products in tumor therapy from basic research and clinical perspectives. ACTA MATERIA MEDICA 2024; 3. [DOI: 10.15212/amm-2023-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cancer is the leading cause of morbidity and mortality worldwide and is an important barrier to lengthening life expectancy in every country. Natural products are receiving increased attention from researchers globally and increasing numbers of natural products are approved for clinical studies involving cancer in recent years. To gain more insight into natural products that have undergone clinical trials for cancer treatment, a comprehensive search was conducted. The https://clinicaltrials.gov website was searched for relevant clinical trials and natural product information up to December 2022. The search terms included different types of cancers, such as colorectal, lung, breast, gynecologic, kidney, bladder, melanoma, pancreatic, hepatocellular, gastric and haematologic. Then, PubMed and Web of Science were searched for relevant articles up to February 2024. Hence, we listed existing clinical trials about natural products used in the treatment of cancers and discussed the preclinical and clinical studies of some promising natural products and their targets, indications, and underlying mechanisms of action. Our intent was to provide basic information to readers who are interested or majoring in natural products and obtain a deeper understanding of the progress and actions of natural product mechanisms of action.
Collapse
|
4
|
Zhang C, Kuo JCT, Huang Y, Hu Y, Deng L, Yung BC, Zhao X, Zhang Z, Pan J, Ma Y, Lee RJ. Optimized Liposomal Delivery of Bortezomib for Advancing Treatment of Multiple Myeloma. Pharmaceutics 2023; 15:2674. [PMID: 38140015 PMCID: PMC10747406 DOI: 10.3390/pharmaceutics15122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Bortezomib (BTZ), a boronic acid-derived proteasome inhibitor, is commonly employed in treating multiple myeloma (MM). However, the applications of BTZ are limited due to its poor stability and low bioavailability. Herein, we develop an optimized liposomal formulation of BTZ (L-BTZ) by employing a remote-loading strategy. This formulation uses Tiron, a divalent anionic catechol derivative, as the internal complexing agent. Compared to earlier BTZ-related formulations, this alternative formulation showed significantly greater stability due to the Tiron-BTZ complex's higher pH stability and negative charges, compared to the meglumine-BTZ complex. Significantly, the plasma AUC of L-BTZ was found to be 30 times greater than that of free BTZ, suggesting an extended blood circulation duration. In subsequent therapeutic evaluations using two murine xenograft tumor models of MM, the NCI-H929 and OPM2 models showed tumor growth inhibition (TGI) values of 37% and 57%, respectively. In contrast, free BTZ demonstrated TGI values of 17% and 11% in these models. Further, L-BTZ presented enhanced antitumor efficacy in the Hepa1-6 HCC syngeneic model, indicating its potential broader applicability as an antineoplastic agent. These findings suggest that the optimized L-BTZ formulation offers a significant advancement in BTZ delivery, holding substantial promise for clinical investigation in not merely MM, but other cancer types.
Collapse
Affiliation(s)
- Chi Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Y.H.); (Z.Z.)
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Y.H.); (Z.Z.)
| | - Yirui Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Y.H.); (Z.Z.)
| | - Yingwen Hu
- The Whiteoak Group, Inc., Rockville, MD 20855, USA; (Y.H.); (L.D.); (B.C.Y.); (X.Z.)
| | - Lan Deng
- The Whiteoak Group, Inc., Rockville, MD 20855, USA; (Y.H.); (L.D.); (B.C.Y.); (X.Z.)
| | - Bryant C. Yung
- The Whiteoak Group, Inc., Rockville, MD 20855, USA; (Y.H.); (L.D.); (B.C.Y.); (X.Z.)
| | - Xiaobin Zhao
- The Whiteoak Group, Inc., Rockville, MD 20855, USA; (Y.H.); (L.D.); (B.C.Y.); (X.Z.)
| | - Zhongkun Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Y.H.); (Z.Z.)
| | - Junjie Pan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Yifan Ma
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Y.H.); (Z.Z.)
| |
Collapse
|
5
|
Shah UA, Parikh R, Castro F, Bellone M, Lesokhin AM. Dietary and microbiome evidence in multiple myeloma and other plasma cell disorders. Leukemia 2023; 37:964-980. [PMID: 36997677 PMCID: PMC10443185 DOI: 10.1038/s41375-023-01874-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 05/11/2023]
Abstract
Multiple Myeloma (MM) remains an incurable plasma cell neoplasm. Although little is known about the etiology of MM, several metabolic risk factors such as obesity, diabetes mellitus, diet, and the human intestinal microbiome have been linked to the pathogenesis of MM. In this article, we provide a detailed review of dietary and microbiome factors involved in the pathogenesis of MM and their impact on outcomes. Concurrent with treatment advancements that have improved survival in MM, focused efforts are needed to reduce the burden of MM as well as improve MM specific and overall outcomes once MM is diagnosed. The findings presented in this review will provide a comprehensive guide on the evidence available to date of the impact of dietary and other lifestyle interventions on the gut microbiome and on MM incidence, outcomes, and quality of life. Data generated from such studies can help formulate evidence-based guidelines for healthcare providers to counsel individuals at risk such as those with Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM) as well as MM survivors with respect to their dietary habits.
Collapse
Affiliation(s)
- Urvi A Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Richa Parikh
- Department of Hematology/Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Francesca Castro
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matteo Bellone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alexander M Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
6
|
Sheng X, Wang S, Huang M, Fan K, Wang J, Lu Q. Bioinformatics Analysis of the Key Genes and Pathways in Multiple Myeloma. Int J Gen Med 2022; 15:6999-7016. [PMID: 36090706 PMCID: PMC9462443 DOI: 10.2147/ijgm.s377321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To study the differentially expressed genes between multiple myeloma and healthy whole blood samples by bioinformatics analysis, find out the key genes involved in the occurrence, development and prognosis of multiple myeloma, and analyze and predict their functions. Methods The gene chip data GSE146649 was downloaded from the GEO expression database. The gene chip data GSE146649 was analyzed by R language to obtain the genes with different expression in multiple myeloma and healthy samples, and the cluster analysis heat map was constructed. At the same time, the protein-protein interaction (PPI) networks of these DEGs were established by STRING and Cytoscape software. The gene co-expression module was constructed by weighted correlation network analysis (WGCNA). The hub genes were identified from key gene and central gene. TCGA database was used to analyze the expression of differentially expressed genes in patients with multiple myeloma. Finally, the expression level of TNFSF11 in whole blood samples from patients with multiple myeloma was analyzed by RT qPCR. Results We identified four genes (TNFSF11, FGF2, SGMS2, IGFBP7) as hub genes of multiple myeloma. Then, TCGA database was used to analyze the survival of TNFSF11, FGF2, SGMS2 and IGFBP7 in patients with multiple myeloma. Finally, the expression level of TNFSF11 in whole blood samples from patients with multiple myeloma was analyzed by RT qPCR. Conclusion The study suggests that TNFSF11, FGF2, SGMS2 and IGFBP7 are important research targets to explore the pathogenesis, diagnosis and treatment of multiple myeloma.
Collapse
Affiliation(s)
- Xinge Sheng
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, People’s Republic of China
- Clinical Medicine Department, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Shuo Wang
- Clinical Medicine Department, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Meijiao Huang
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, People’s Republic of China
| | - Kaiwen Fan
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, People’s Republic of China
- Clinical Medicine Department, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Jiaqi Wang
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, People’s Republic of China
- Clinical Medicine Department, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Quanyi Lu
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, People’s Republic of China
- Clinical Medicine Department, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Correspondence: Quanyi Lu, Tel +86 13600959425, Email
| |
Collapse
|
7
|
Chen J, Wang S, Blokhuis B, Ruijtenbeek R, Garssen J, Redegeld F. Cell Death Triggers Induce MLKL Cleavage in Multiple Myeloma Cells, Which may Promote Cell Death. Front Oncol 2022; 12:907036. [PMID: 35965541 PMCID: PMC9369655 DOI: 10.3389/fonc.2022.907036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Necroptosis is a type of caspase-independent programmed cell death that has been implicated in cancer development. Activation of the canonical necroptotic pathway is often characterized with successive signaling events as the phosphorylation of mixed lineage kinase domain-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3), followed by MLKL oligomerization and plasma membrane rupture. Here, we demonstrate that omega-3 polyunsaturated fatty acids DHA/EPA and the proteasome inhibitor bortezomib induce necroptosis in human multiple myeloma (MM) cells in a RIPK3 independent manner. In addition, it seemed to be that phosphorylation of MLKL was not essential for necroptosis induction in MM cells. We show that treatment of MM cells with these cytotoxic compounds induced cleavage of MLKL into a 35 kDa protein. Furthermore, proteolytic cleavage of MLKL was triggered by activated caspase-3/8/10, and mutation of Asp140Ala in MLKL blocked this cleavage. The pan-caspase inhibitor ZVAD-FMK efficiently prevented DHA/EPA and bortezomib induced cell death. In addition, nuclear translocation of total MLKL and the C-terminus were detected in treated MM cells. Collectively, this present study suggests that caspase-mediated necroptosis may occur under (patho)physiological conditions, delineating a novel regulatory mechanism of necroptosis in RIPK3-deficient cancer cells.
Collapse
Affiliation(s)
- Jing Chen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | | | - Bart Blokhuis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | | | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Nutricia Research, Utrecht, Netherlands
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- *Correspondence: Frank Redegeld,
| |
Collapse
|
8
|
Shadyro O, Sosnovskaya A, Edimecheva I, Ihnatovich L, Dubovik B, Krasny S, Tzerkovsky D, Protopovich E. In Vivo Antitumoral Effects of Linseed Oil and Its Combination With Doxorubicin. Front Pharmacol 2022; 13:882197. [PMID: 35800445 PMCID: PMC9254224 DOI: 10.3389/fphar.2022.882197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Linseed oil (LO) is known for its exceptional nutritional value due to the high content of alpha-linolenic acid (ALA), an essential omega-3 polyunsaturated fatty acid; its anticarcinogenic effect has been established in several experimental and epidemiological studies. As an adjuvant of chemotherapeutic agents, LO and other ALA-rich vegetable oils have been studied in only a handful of studies at the experimental level. However, the efficacy of antitumoral therapy using doxorubicin (Dox) in combination with ALA and ALA-rich substrates has not yet been investigated. In this work, the antitumor activity of LO in a wide dose range was studied with monotherapy and combined with Dox in animal models with Pliss lymphosarcoma (PLS) and Lewis lung adenocarcinoma (LLC). It was founded the daily oral administration of LO (1, 3, and 10 ml per 1 kg) to rats (PLS) and 6 ml/kg to mice (LLC) for 11–12 days from 7 days after subcutaneous transplantation of tumors has a stable statistically significant effect on the dynamics of tumor growth, reducing the intensity of tumor growth and increasing the frequency of complete tumor regressions (CR) compared with the control. LO showed high antimetastatic activity in the LLC model. Furthermore, LO at a dose of 3 ml/kg potentiates the antitumor effect of Dox in the PLS model, reducing the volume of tumors at the end of treatment by 2.0 times (p = 0.013), the value of the tumor growth index by 1.6 times (p < 0.03) and increasing the frequency of CR 60 days after the start of therapy by 3.5 times (p = 0.019) compared with the use of Dox alone. The combination of Dox and LO or fish oil allows growing efficiency therapy of LLC in comparison with Dox alone, increasing the frequency of CR to 73.68% and 94.4%, respectively, and reducing the frequency of metastasis to zero.
Collapse
Affiliation(s)
- Oleg Shadyro
- Laboratory of Chemistry of Free-Radical Processes, Research Institute for Physical and Chemical Problems, Belarusian State University, Minsk, Belarus
- Department of Chemistry, Belarusian State University, Minsk, Belarus
- *Correspondence: Oleg Shadyro,
| | - Anna Sosnovskaya
- Laboratory of Chemistry of Free-Radical Processes, Research Institute for Physical and Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Irina Edimecheva
- Laboratory of Chemistry of Free-Radical Processes, Research Institute for Physical and Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Lana Ihnatovich
- Laboratory of Chemistry of Free-Radical Processes, Research Institute for Physical and Chemical Problems, Belarusian State University, Minsk, Belarus
- Department of Chemistry, Belarusian State University, Minsk, Belarus
| | - Boris Dubovik
- Department of Pharmacology, Belarusian State Medical University, Minsk, Belarus
| | - Sergei Krasny
- Laboratory of Photodynamic Therapy and Hyperthermia, N.N. Alexandrov National Cancer Center, Lesnoy, Belarus
| | - Dmitry Tzerkovsky
- Laboratory of Photodynamic Therapy and Hyperthermia, N.N. Alexandrov National Cancer Center, Lesnoy, Belarus
| | - Egor Protopovich
- Laboratory of Photodynamic Therapy and Hyperthermia, N.N. Alexandrov National Cancer Center, Lesnoy, Belarus
| |
Collapse
|
9
|
Yang X, Li B, Tian H, Cheng X, Zhou T, Zhao J. Curcumenol Mitigates the Inflammation and Ameliorates the Catabolism Status of the Intervertebral Discs In Vivo and In Vitro via Inhibiting the TNFα/NFκB Pathway. Front Pharmacol 2022; 13:905966. [PMID: 35795557 PMCID: PMC9252100 DOI: 10.3389/fphar.2022.905966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Low back pain (LBP) caused by intervertebral disc degeneration (IVDD) is accredited to the release of inflammatory cytokines followed by biomechanical and structural deterioration. In our study, we used a plant-derived medicine, curcumenol, to treat IVDD. A cell viability test was carried out to evaluate the possibility of using curcumenol. RNA-seq was used to determine relative pathways involved with curcumenol addition. Using TNFα as a trigger of inflammation, the activation of the NF-κB signaling pathway and expression of the MMP family were determined by qPCR and western blotting. Nucleus pulposus (NP) cells and the rats’ primary NP cells were cultured. The catabolism status was evaluated by an ex vivo model. A lumbar instability mouse model was carried out to show the effects of curcumenol in vivo. In general, RNA-seq revealed that multiple signaling pathways changed with curcumenol addition, especially the TNFα/NF-κB pathway. So, the NP cells and primary NP cells were induced to suffer inflammation with the activated TNFα/NF-κB signaling pathway and increased expression of the MMP family, such as MMP3, MMP9, and MMP13, which would be mitigated by curcumenol. Owing to the protective effects of curcumenol, the height loss and osteophyte formation of the disc could be prevented in the lumbar instability mouse model in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Zhao
- *Correspondence: Tangjun Zhou, ; Jie Zhao,
| |
Collapse
|
10
|
Chen J, Ruijtenbeek R, Garssen J, Redegeld FA. Esterified derivatives of DHA and EPA increase bortezomib cytotoxicity in human multiple myeloma cells. Eur J Pharmacol 2022; 922:174883. [PMID: 35341783 DOI: 10.1016/j.ejphar.2022.174883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND & AIMS Although the proteasome inhibitor bortezomib has greatly improved the clinical outcome of patients with multiple myeloma (MM), acquired drug resistance remains the greatest obstacle on the road of treating MM. We previously showed that omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) with the chemotherapeutic agent bortezomib can overcome its chemoresistance in MM cells. However, most DHA/EPA are esterified shortly after oral administration, which may affect its bioactivity. This study was to evaluate the cytotoxicity of ethyl ester-DHA/EPA in human MM cells. The mechanisms relevant for the cytotoxicity of these esterified-fatty acids were further investigated. METHODS Human MM cell lines L363, OPM2, U266 were treated with ethyl ester-DHA/EPA with or without bortezomib. The percentage of dead cells and intracellular reactive oxygen species (ROS) levels were analyzed by flow cytometry. RESULTS Ethyl ester-DHA and -EPA were much more potent than DHA/EPA to induce cytotoxicity in MM cells, even in DHA/EPA-resistant MM cells. Pretreating MM cells with esterified-DHA/EPA before bortezomib potently increased its chemosensitivity. Additionally, intracellular ROS levels were upregulated in MM cells after treatment with ethyl ester-DHA/EPA, which reflected the enhanced oxidative stress in treated cells. CONCLUSIONS This study provides evidence that ethyl ester-DHA/EPA in combination with bortezomib may improve the overall efficacy in MM cells, similar to DHA/EPA, relieving the concern that esterification of DHA/EPA may affect its bioactivity and further supporting the potential clinical use of fatty acids DHA/EPA for combating drug resistance during MM therapy.
Collapse
Affiliation(s)
- Jing Chen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, 3508, TB, the Netherlands
| | - Rob Ruijtenbeek
- Pamgene International, 5200 BJ, s-Hertogenbosch, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, 3508, TB, the Netherlands; Nutricia Research, Utrecht, 3508, TC, the Netherlands
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, 3508, TB, the Netherlands.
| |
Collapse
|
11
|
Yang Y, Xu Y, Zhao C, Zhang L, Nuerbol A, Wang L, Jiao Y. Pronounced Enhancement in Radiosensitization of Esophagus Cancer Cultivated in Docosahexaenoic Acid via the PPAR -γ Activation. Front Med (Lausanne) 2022; 9:922228. [PMID: 37153924 PMCID: PMC10155814 DOI: 10.3389/fmed.2022.922228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/22/2022] [Indexed: 05/10/2023] Open
Abstract
Docosahexaenoic acid (DHA) has been reported to suppress the tumor growth and improve prognosis and has been used to cooperate with many other chemotherapy medicines. Up to now, surveys focused on the Interaction between DHA and radiation are relatively modest. Our study sought to evaluate the radiosensitivity changes caused by DHA on esophageal cancer cells. We selected TE-1 and TE-10 esophagus cancer cells as models and performed routine cell proliferation assay and cloning assay to detect the impact of DHA combined with X-ray. We used cell cycle assay, lipid peroxidation assay, comet assay, and apoptosis assay to unearth the potential causes. We also launched a mouse transplanted tumor experiment to verify the synergetic effect of DHA and irradiation. Finally, a western blot assay was used to find a novel mechanism. As a result, DHA improved TE-1 and TE-10 radiosensitivity in vivo and in vitro. What's more, PPAR-γ expression increased due to the DHA supplement. Inhibiting PPAR-γ could attenuate benefits brought out by DHA somehow. Due to its explicit usage and convenience, DHA would serve as an adjuvant therapy before radiotherapy if the clinical trials indicated positive.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Congzhao Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Lirong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Aslibek Nuerbol
- Department of Ultrasound Diagnosis, Gaochun Peoples' Hospital, Affiliated Hospital of Nanjing Drum Tower Hospital, Nanjing, China
| | - Lili Wang
- Department of Radiotherapy, Second Hospital of Soochow University, Suzhou, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- *Correspondence: Yang Jiao
| |
Collapse
|
12
|
Omega-3 Fatty Acids DHA and EPA Reduce Bortezomib Resistance in Multiple Myeloma Cells by Promoting Glutathione Degradation. Cells 2021; 10:cells10092287. [PMID: 34571936 PMCID: PMC8465636 DOI: 10.3390/cells10092287] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy that exhibits aberrantly high levels of proteasome activity. While treatment with the proteasome inhibitor bortezomib substantially increases overall survival of MM patients, acquired drug resistance remains the main challenge for MM treatment. Using a combination treatment of docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) and bortezomib, it was demonstrated previously that pretreatment with DHA/EPA significantly increased bortezomib chemosensitivity in MM cells. In the current study, both transcriptome and metabolome analysis were performed to comprehensively evaluate the underlying mechanism. It was demonstrated that pretreating MM cells with DHA/EPA before bortezomib potently decreased the cellular glutathione (GSH) level and altered the expression of the related metabolites and key enzymes in GSH metabolism, whereas simultaneous treatment only showed minor effects on these factors, thereby suggesting the critical role of GSH degradation in overcoming bortezomib resistance in MM cells. Moreover, RNA-seq results revealed that the nuclear factor erythroid 2-related factor 2 (NRF2)-activating transcription factor 3/4 (ATF3/4)-ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1) signaling pathway may be implicated as the central player in the GSH degradation. Pathways of necroptosis, ferroptosis, p53, NRF2, ATF4, WNT, MAPK, NF-κB, EGFR, and ERK may be connected to the tumor suppressive effect caused by pretreatment of DHA/EPA prior to bortezomib. Collectively, this work implicates GSH degradation as a potential therapeutic target in MM and provides novel mechanistic insights into its significant role in combating bortezomib resistance.
Collapse
|
13
|
Yang X, Zhou Y, Chen Z, Chen C, Han C, Li X, Tian H, Cheng X, Zhang K, Zhou T, Zhao J. Curcumenol mitigates chondrocyte inflammation by inhibiting the NF‑κB and MAPK pathways, and ameliorates DMM‑induced OA in mice. Int J Mol Med 2021; 48:192. [PMID: 34435650 PMCID: PMC8416138 DOI: 10.3892/ijmm.2021.5025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
At present, an increasing number of individuals are affected by osteoarthritis (OA), resulting in a heavy socioeconomic burden. OA in knee joints is caused by the release of inflammatory cytokines and subsequent biomechanical and structural deterioration. To determine its anti‑inflammatory function, the current study investigated the use of the plant‑derived medicine, curcumenol, in OA treatment. Curcumenol was not cytotoxic to ATDC5 chondrocytes and primary chondrocytes, as determined using a cell viability test. When these cells were treated with TNF‑α and IL‑1β to induce inflammation, curcumenol treatment inhibited the progression of inflammation by inactivating the NF‑κB and MAPK signaling pathways, as well as decreasing the expression levels of MMP3 (as indicated by reverse transcription‑quantitative PCR and western blotting). Moreover, to analyze metabolic and catabolic status in high‑density and pellet culture, catalytic changes and the degradation of the extracellular matrix induced by TNF‑α and IL‑1β, were evaluated by alcian blue staining. These catalytic deteriorations were ameliorated by curcumenol. Using curcumenol in disease management, the mechanical and metabolic disruption of cartilage caused in the destabilization of medial meniscus (DMM) model was prevented in vivo. Thus, curcumenol mitigated inflammation in ATDC5 chondrocytes and primary mice chondrocytes, and also ameliorated OA in a DMM‑induced mouse model.
Collapse
Affiliation(s)
- Xiao Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Yifan Zhou
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhiqian Chen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Chen Chen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Chen Han
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Xunlin Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Haijun Tian
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiaofei Cheng
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Tangjun Zhou
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
14
|
Reagan MR, Fairfield H, Rosen CJ. Bone Marrow Adipocytes: A Link between Obesity and Bone Cancer. Cancers (Basel) 2021; 13:364. [PMID: 33498240 PMCID: PMC7863952 DOI: 10.3390/cancers13030364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/24/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Cancers that grow in the bone marrow are for most patients scary, painful, and incurable. These cancers are especially hard to treat due to the supportive microenvironment provided by the bone marrow niche in which they reside. New therapies designed to target tumor cells have extended the life expectancy for these patients, but better therapies are needed and new ideas for how to target these cancers are crucial. This need has led researchers to interrogate whether bone marrow adipocytes (BMAds), which increase in number and size during aging and in obesity, contribute to cancer initiation or progression within the bone marrow. Across the globe, the consensus in the field is a unified "yes". However, how to target these adipocytes or the factors they produce and how BMAds interact with different tumor cells are open research questions. Herein, we review this research field, with the goal of accelerating research in the network of laboratories working in this area and attracting bright scientists with new perspectives and ideas to the field in order to bring about better therapies for patients with bone cancers.
Collapse
Affiliation(s)
- Michaela R. Reagan
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, ME 04074, USA; (H.F.); (C.J.R.)
- School of Medicine, Tufts University, Boston, MA 02111, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Heather Fairfield
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, ME 04074, USA; (H.F.); (C.J.R.)
- School of Medicine, Tufts University, Boston, MA 02111, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Clifford J. Rosen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, ME 04074, USA; (H.F.); (C.J.R.)
- School of Medicine, Tufts University, Boston, MA 02111, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|