Elcim Y. Effects of electron density force to 1.0 and fill to 1.0 on VMAT treatment plans for lung SBRT.
J Appl Clin Med Phys 2024;
25:e14488. [PMID:
39226472 PMCID:
PMC11466475 DOI:
10.1002/acm2.14488]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 09/05/2024] Open
Abstract
PURPOSE
The aim of this study is to determine the effect of forcing and filling the electron density (ED) to 1.0 of the planning target volume (PTV) overdose distribution in lung SBRT treatment leading to shortening patient treatment time and increasing patient comfort by reducing MU/fraction due to ED manipulation effect.
METHODS
In this study, 36 lung SBRT plans of 12 suitable patients who prescribed a total dose of 50 Gy in five fractions were generated with Monaco v.5.10 TPS using the Monte Carlo (MC) algorithm and volumetric modulated arc therapy (VMAT) technique by PTV ED values forcing as well as filling to 1.0 and comparatively assessed. The first group of plans was created by using the patient's original ED, second and third groups of plans were reoptimized by forcing and filling the ED of PTV to 1.0, respectively, therefore acquiring a new dose distribution which lead to comparatively assessment the effects of changes in ED on PTV and OAR doses.
RESULTS
Assessment of treatment plans revealed that mean MU/fx numbers were decreased by 76% and 75.25% between Groups 1 and 2, Groups 1 and 3, respectively. The number of segments was also reduced in Group 1 by up to 15% compared with Groups 2 and 3. Maximum HI and CI differences for PTV between Groups 1 and 2 were less than 1% and Groups 1 and 3 were 1.5% which indicates all 3 group plans were comparable in terms of dose distribution within PTV.
CONCLUSIONS
Forcing and filling the ED of PTV to 1.0 strategy has provided reduced a number of segments and MU/fx without a significant change in PTV mean and maximum doses, thereby decreasing treatment time and patient discomfort during treatment. This process should be considered in line of a potential number of patients as well as prescribed dose and MU/fx numbers.
Collapse