1
|
Ding S, Piao Z, Chen M, Li F, Li Y, Liu B, Liu H, Huang X, Li J. MRI guided online adaptive radiotherapy and the dosimetric impact of inter- and intrafractional motion in patients with cervical cancer. Clin Transl Radiat Oncol 2025; 50:100881. [PMID: 39553384 PMCID: PMC11567100 DOI: 10.1016/j.ctro.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose The aim of this study was to evaluate the inter- and intrafractional organs motions and dosimetric advantages of MRI guided online adaptive radiotherapy for cervical cancer. Methods A total of 150 fractions treated on the 1.5 T Unity MR-Linac were included in this study. Each fraction, pre-treatment, position validation and post-treatment MRI scans were obtained. Structures including CTV, rectum and bladder were delineated by the same radiation oncologists on each MRI. The inter- and intrafractional changes of contours were assessed by Hausdorff distance (HD), dice similarity coefficient (DSC), relative volume difference (ΔV) and the relative positions of the geometric center. The non-ART plans and online adaptive plans were obtained by recalculating or re-optimizing from reference plans on daily MRI, respectively. CTV coverage and OARs constraints were evaluated between ART and non-ART plans. Results For each fraction, the interfractional changes of HD, ΔV and DSC for CTV, bladder and rectum were significant. Our study also examined the relationship of bladder and rectum filling on CTV position. For 150 non-ART plans, CTV coverage constraints (D98% ≥ 45 Gy) were not met by 45 %, while 15 % were not covered by more than 5 % of the prescribed dose. Compared to the non-ART plans, the ART plans had higher CTV coverage and lower dose to the bladder and rectum (P < 0.05). During the treatment, the intrafractional changes of bladder, rectum and CTV may affect actual dose delivery. And we observed an intrafractional time trend in the motion of the CTV. There were 15 % fractions failing the CTV coverage constraints in post-MRI due to intrafractional motion. The adaptive plans optimized with 3 mm margin could cover CTV of post-MRI in 98 % fractions. Conclusions Considerable inter- and intrafractional CTV and OARs changes were observed in cervical cancer patients treated on MR-Linac. MRI guided online ART has significant dosimetric advantages in cervical cancer and is an ideal approach for achieving individualized and precise radiotherapy.
Collapse
Affiliation(s)
- Shouliang Ding
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co., Ltd, Guangzhou 510060, PR China
| | - Zun Piao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Meining Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Fanghua Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Yongbao Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Biaoshui Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Hongdong Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Xiaoyan Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co., Ltd, Guangzhou 510060, PR China
| | - Junyun Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| |
Collapse
|
2
|
Alshamrani A, Aznar M, Hoskin P, Chuter R, Eccles CL. The Current use of Adaptive Strategies for External Beam Radiotherapy in Cervical Cancer: A Systematic Review. Clin Oncol (R Coll Radiol) 2024; 36:e483-e493. [PMID: 39366856 DOI: 10.1016/j.clon.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
AIMS Variability in the target and organs at risk (OARs) in cervical cancer treatment presents challenges for precise radiotherapy. Adaptive radiotherapy (ART) offers the potential to enhance treatment precision and outcomes. However, the increased workload and a lack of consensus on the most suitable ART approach hinder its clinical adoption. This systematic review aims to assess the current use of adaptive strategies for cervical cancer and define the optimal approach. MATERIALS AND METHODS A systematic review of current literature published between January 2012 and May 2023 was conducted. Searches used PubMed/Medline, Cochrane Library, and Web of Science databases, supplemented with the University of Manchester, Google Scholar, and papers retrieved from reference lists. The review assessed workflows, compared dosimetric benefits, and examined resources for each identified strategy. Excluded were abstracts, conference abstracts, reviews, articles unrelated to ART management, proton therapy, brachytherapy, or qualitative studies. A narrative synthesis involved data tabulation, summarizing selected studies detailing workflow for cervical cancer and dosimetric outcomes for targets and OARs. RESULTS Sixteen articles met the inclusion criteria; these were mostly retrospective simulation planning studies, except four studies that had been clinically implemented. We identified five approaches for ART radiotherapy for cervical cancer: reactive and scheduled adaptation, internal target volume (ITV)-based approach using library of plans (LOP), fixed-margin approach using LOP, and real-time adaptation, with each approach reducing irradiated volumes without compromising target coverage compared to the non-ART approach. The LOP-based ITV approach is the most used and clinically assessed. CONCLUSION Identifying the optimal strategy is challenging due to dosimetric assessment limitations. Implementing cervical cancer ART necessitates strategic optimization of clinical benefits and resources through research, including studies to identify the optimal frequency, and prospective evaluations of toxicity.
Collapse
Affiliation(s)
- A Alshamrani
- Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK; Princess Nourah Bint Abdulrahman University, Department of Radiological Sciences, College of Health and Rehabilitation Sciences, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - M Aznar
- Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK.
| | - P Hoskin
- Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK; The Christie NHS Foundation Trust, Clinical Oncology, Wilmslow Road, Manchester, M20 4BX, UK; 3 Mount Vernon Cancer Centre, Northwood, Middlesex HA6 2RN, UK.
| | - R Chuter
- Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK; The Christie NHS Foundation Trust, Clinical Oncology, Wilmslow Road, Manchester, M20 4BX, UK.
| | - C L Eccles
- Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK; The Christie NHS Foundation Trust, Clinical Oncology, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
3
|
Ma C, Zhou J. First Application of Demand-Triggered Online Adaptive Radiotherapy in the Treatment of Cervical Cancer: A Clinical Report. Cureus 2024; 16:e69703. [PMID: 39429366 PMCID: PMC11490271 DOI: 10.7759/cureus.69703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Gynecology cancers can reap significant benefits from adaptive radiation therapy (ART) for four major reasons: organ motion, organ deformation, density change, and cavity filling. There are three recognized types of adaptive radiotherapy: offline, online, and real-time. This balance of improved dosimetry versus clinic resources, as well as the optimal timing for adaptations, is still under investigation. The emergence of on-demand online adaptive radiotherapy (OART) can solve the above problems. In this context, we introduce two patients with cervical cancer who used on-demand OART for the first time. One patient with cervical cancer received radical radiotherapy on the United Imaging uCT-ART platform, and another patient with cervical cancer received postoperative adjuvant radiotherapy. The radiotherapy process used OART, which was triggered by senior radiotherapists, assisted by artificial intelligence, and guided by fan-beam computer tomography. Patient 1, who was 54 years old with cervical squamous cell carcinoma, International Federation of Gynecology and Obstetrics (FIGO) stage ⅢC1, underwent radical concurrent chemoradiotherapy. The target volume was reduced in the late stage of radiotherapy. The target volume coverage of the OART plan was better, and the bladder and rectum doses were lower than those of the image-guided radiotherapy plan. Patient 2, who was 56 years old with cervical adenocarcinoma, FIGO stage ⅡA1, underwent postoperative concurrent chemoradiotherapy. If the fractionated treatment during radiotherapy was carried out according to the original plan, treatment off-target would occur, while the OART plan could ensure target coverage. The acute toxic reactions that occurred in both patients during radiotherapy were patient-reported outcome Common Terminology Criteria for Adverse Events 1-2, and no toxic reactions of grade 3 or above occurred. This is the first description of the successful implementation of the uCT-ART-based OART system in EBRT for cervical cancer.
Collapse
Affiliation(s)
- Chenying Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, CHN
| | - Juying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, CHN
| |
Collapse
|
4
|
Wang L, Mohajer J, McNair H, Harris E, Lalondrelle S. Implementing Plan of the Day for Cervical Cancer: A Comparison of Target Volume Generation Methods. Adv Radiat Oncol 2024; 9:101560. [PMID: 39155886 PMCID: PMC11328065 DOI: 10.1016/j.adro.2024.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/04/2024] [Indexed: 08/20/2024] Open
Abstract
Purpose Owing to substantial interfraction motion in cervical cancer, plan-of-the-day (PotD) adaptive radiation therapy may be of benefit to patients. Implementation is limited by uncertainty over how to generate the planning target volumes (PTVs). We compared published methods on our own patients. Methods and Materials Forty patients each had 3 planning scans with variable bladder filling and daily cone beam computed tomographies (cone beam CTs) during radiation therapy; 5 to 11 cone beam CTs were selected to represent interfraction motion. Clinical target volumes (CTVs) and organs at risk were contoured following EMBRACE-II guidelines. A literature search identified 30 adaptive and nonadaptive solutions to PTV generation, which we applied to our patients. PTV sizes and mean coverage of the daily CTV were determined. For 11 patients, the clinically implemented, subjectively edited plan library was also investigated. Results Eleven studies assessed 15 PotD strategies against nonadaptive comparators on a median of 14 patients (range, 9-23). Some PotD approaches applied margin recipes to the CTV on each planning scan, some modeled the CTV against bladder volume, and others applied incremental isotropic margins to the CTV with a single planning scan. Generally, coverage improved as PTV size increased. The fixed isotropic margin required to provide 100% coverage of all patients was 44 mm, with a mean PTV size of 3316 cm3. The PotD strategy with the best coverage was a 2-plan library formed by modeling the CTV against bladder volume with extrapolation; it provided 98% mean coverage with 1419-cm3 mean PTV size. A 3-plan library consisting of the CTV on each planning scan with 10-mm margin provided 96% mean coverage with 1346-cm3 mean PTV size. The clinically implemented solution that employed subjective extrapolation had mean 100% coverage and 1282-cm3 PTV size on the 11-patient subset. Coverage provided by the best nonadaptive strategies was not statistically superior to the best PotD strategy (P = .13), but PTVs were larger (P = .02). Conclusions We identified a modeled 2-plan method and a simple 3-plan method, both of which provided excellent coverage with small PTVs compared with nonadaptive strategies.
Collapse
Affiliation(s)
- Lei Wang
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Jonathan Mohajer
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Helen McNair
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Emma Harris
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Susan Lalondrelle
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| |
Collapse
|
5
|
Weykamp F, Meixner E, Arians N, Hoegen-Saßmannshausen P, Kim JY, Tawk B, Knoll M, Huber P, König L, Sander A, Mokry T, Meinzer C, Schlemmer HP, Jäkel O, Debus J, Hörner-Rieber J. Daily AI-Based Treatment Adaptation under Weekly Offline MR Guidance in Chemoradiotherapy for Cervical Cancer 1: The AIM-C1 Trial. J Clin Med 2024; 13:957. [PMID: 38398270 PMCID: PMC10889253 DOI: 10.3390/jcm13040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: External beam radiotherapy (EBRT) and concurrent chemotherapy, followed by brachytherapy (BT), offer a standard of care for patients with locally advanced cervical carcinoma. Conventionally, large safety margins are required to compensate for organ movement, potentially increasing toxicity. Lately, daily high-quality cone beam CT (CBCT)-guided adaptive radiotherapy, aided by artificial intelligence (AI), became clinically available. Thus, online treatment plans can be adapted to the current position of the tumor and the adjacent organs at risk (OAR), while the patient is lying on the treatment couch. We sought to evaluate the potential of this new technology, including a weekly shuttle-based 3T-MRI scan in various treatment positions for tumor evaluation and for decreasing treatment-related side effects. (2) Methods: This is a prospective one-armed phase-II trial consisting of 40 patients with cervical carcinoma (FIGO IB-IIIC1) with an age ≥ 18 years and a Karnofsky performance score ≥ 70%. EBRT (45-50.4 Gy in 25-28 fractions with 55.0-58.8 Gy simultaneous integrated boosts to lymph node metastases) will be accompanied by weekly shuttle-based MRIs. Concurrent platinum-based chemotherapy will be given, followed by 28 Gy of BT (four fractions). The primary endpoint will be the occurrence of overall early bowel and bladder toxicity CTCAE grade 2 or higher (CTCAE v5.0). Secondary outcomes include clinical feasibility, quality of life, and imaging-based response assessment.
Collapse
Affiliation(s)
- Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (J.H.-R.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (J.H.-R.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Nathalie Arians
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (J.H.-R.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (J.H.-R.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ji-Young Kim
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (J.H.-R.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Bouchra Tawk
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (J.H.-R.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Maximilian Knoll
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (J.H.-R.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Huber
- Clinical Cooperation Unit Molecular Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (J.H.-R.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Anja Sander
- Institute of Medical Biometry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Theresa Mokry
- Department of Radiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Clara Meinzer
- Department of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Oliver Jäkel
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (J.H.-R.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site, 69120 Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (J.H.-R.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Zhong J, Kobus M, Maitre P, Datta A, Eccles C, Dubec M, McHugh D, Buckley D, Scarsbrook A, Hoskin P, Henry A, Choudhury A. MRI-guided Pelvic Radiation Therapy: A Primer for Radiologists. Radiographics 2023; 43:e230052. [PMID: 37796729 DOI: 10.1148/rg.230052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Radiation therapy (RT) is a core pillar of oncologic treatment, and half of all patients with cancer receive this therapy as a curative or palliative treatment. The recent integration of MRI into the RT workflow has led to the advent of MRI-guided RT (MRIgRT). Using MRI rather than CT has clear advantages for guiding RT to pelvic tumors, including superior soft-tissue contrast, improved organ motion visualization, and the potential to image tumor phenotypic characteristics to identify the most aggressive or treatment-resistant areas, which can be targeted with a more focal higher radiation dose. Radiologists should be familiar with the potential uses of MRI in planning pelvic RT; the various RT techniques used, such as brachytherapy and external beam RT; and the impact of MRIgRT on treatment paradigms. Current clinical experience with and the evidence base for MRIgRT in the settings of prostate, cervical, and bladder cancer are discussed, and examples of treated cases are illustrated. In addition, the benefits of MRIgRT, such as real-time online adaptation of RT (during treatment) and interfraction and/or intrafraction adaptation to organ motion, as well as how MRIgRT can decrease toxic effects and improve oncologic outcomes, are highlighted. MRIgRT is particularly beneficial for treating mobile pelvic structures, and real-time adaptive RT for tumors can be achieved by using advanced MRI-guided linear accelerator systems to spare organs at risk. Future opportunities for development of biologically driven adapted RT with use of functional MRI sequences and radiogenomic approaches also are outlined. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Jim Zhong
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Marta Kobus
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Priyamvada Maitre
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Anubhav Datta
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Cynthia Eccles
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Michael Dubec
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Damien McHugh
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - David Buckley
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Andrew Scarsbrook
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Peter Hoskin
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Ann Henry
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Ananya Choudhury
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| |
Collapse
|
7
|
Sagae S, Toita T, Matsuura M, Saito M, Matsuda T, Sato N, Shimizu A, Endo T, Fujii M, Gaffney DK, Small W. Improvement in radiation techniques for locally advanced cervical cancer during the last two decades. Int J Gynecol Cancer 2023; 33:1295-1303. [PMID: 37041022 PMCID: PMC10423558 DOI: 10.1136/ijgc-2022-004230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Since the National Cancer Institute (NCI) alert of concurrent chemoradiotherapy, radiotherapy has been changed from external beam radiotherapy plus brachytherapy to platinum-based concurrent chemoradiotherapy. Therefore, concurrent chemoradiotherapy plus brachytherapy has become a standard treatment for locally advanced cervical cancer. Simultaneously, definitive radiotherapy has been changed gradually from external beam radiotherapy plus low-dose-rate intracavitary brachytherapy to external beam radiotherapy plus high-dose-rate intracavitary brachytherapy. Cervix cancer is uncommon in developed countries; hence, international collaborations have been critical in large-scale clinical trials. The Cervical Cancer Research Network (CCRN), created from the Gynecologic Cancer InterGroup (GCIG), has investigated various concurrent chemotherapy regimens and sequential methods of radiation and chemotherapy. Most recently, many clinical trials of combining immune checkpoint inhibitors with radiotherapy have been ongoing for sequential or concurrent settings. During the last decade, the method of standard radiation therapy has changed from three-dimensional conformal radiation therapy to intensity-modulated radiation therapy for external beam radiotherapy and from two-dimensional to three-dimensional image-guided approaches for brachytherapy. Recent improvements include stereotactic ablative body radiotherapy and MRI-guided linear accelerator (MRI-LINAC) using adaptive radiotherapy. Here we review the current progress of radiation therapy during the last two decades.
Collapse
Affiliation(s)
- Satoru Sagae
- Women's Medical Center, Tokeidai Memorial Hospital, Sapporo, Hokkaido, Japan
| | - Takafumi Toita
- Radiation Therapy Center, Okinawa Chubu Hospital, Uruma, Okinawa, Japan
| | - Motoki Matsuura
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Manabu Saito
- Women's Medical Center, Tokeidai Memorial Hospital, Sapporo, Hokkaido, Japan
| | - Takuma Matsuda
- Women's Medical Center, Tokeidai Memorial Hospital, Sapporo, Hokkaido, Japan
| | - Nanaka Sato
- Women's Medical Center, Tokeidai Memorial Hospital, Sapporo, Hokkaido, Japan
| | - Ayumi Shimizu
- Women's Medical Center, Tokeidai Memorial Hospital, Sapporo, Hokkaido, Japan
| | - Toshiaki Endo
- Women's Medical Center, Tokeidai Memorial Hospital, Sapporo, Hokkaido, Japan
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Miho Fujii
- Women's Medical Center, Tokeidai Memorial Hospital, Sapporo, Hokkaido, Japan
| | - David K Gaffney
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - William Small
- Department of Radiation Oncology, Loyola University Chicago, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois, USA
| |
Collapse
|
8
|
Liu X, Li Z, Yin Y. Clinical application of MR-Linac in tumor radiotherapy: a systematic review. Radiat Oncol 2023; 18:52. [PMID: 36918884 PMCID: PMC10015924 DOI: 10.1186/s13014-023-02221-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/01/2023] [Indexed: 03/15/2023] Open
Abstract
Recent years have seen both a fresh knowledge of cancer and impressive advancements in its treatment. However, the clinical treatment paradigm of cancer is still difficult to implement in the twenty-first century due to the rise in its prevalence. Radiotherapy (RT) is a crucial component of cancer treatment that is helpful for almost all cancer types. The accuracy of RT dosage delivery is increasing as a result of the quick development of computer and imaging technology. The use of image-guided radiation (IGRT) has improved cancer outcomes and decreased toxicity. Online adaptive radiotherapy will be made possible by magnetic resonance imaging-guided radiotherapy (MRgRT) using a magnetic resonance linear accelerator (MR-Linac), which will enhance the visibility of malignancies. This review's objectives are to examine the benefits of MR-Linac as a treatment approach from the perspective of various cancer patients' prognoses and to suggest prospective development areas for additional study.
Collapse
Affiliation(s)
- Xin Liu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zhenjiang Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Yong Yin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
9
|
Benson R, Rodgers J, Nelder C, Clough A, Pitt E, Parker J, Whiteside L, Davies L, Bailey R, McMahon J, Kolbe H, Cree A, Dubec M, Van Herk M, Choudhury A, Hoskin P, Eccles C. The impact of an educational tool in cervix image registration across three imaging modalities. Br J Radiol 2022; 95:20211402. [PMID: 35616660 PMCID: PMC10996960 DOI: 10.1259/bjr.20211402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Accurate image registration is vital in cervical cancer where changes in both planning target volume (PTV) and organs at risk (OARs) can make decisions regarding image registration complicated. This work aims to determine the impact of a dedicated educational tool compared with experience gained in MR-guided radiotherapy (MRgRT). METHODS 10 therapeutic radiographers acted as observers and were split into two groups based on previous experience with MRgRT and Monaco treatment planning system. Three CBCT-CT, three MR-CT and two MR-MR registrations were completed per patient by each observer. Observers recorded translations, time to complete image registration and confidence. Data were collected in two phases; prior to and following the introduction of a cervix registration guide. RESULTS No statistically significant differences were noted between imaging modalities. Each group was assessed independently pre- and post-education, no statistically significant differences were noted in either CBCT-CT or MR-CT imaging. Group 1 MR-MR imaging showed a statistically significant reduction in interobserver variability (p=0.04), in Group 2, the result was not statistically significant (p=0.06). Statistically significant increases in confidence were seen in all three modalities (p≤0.05). CONCLUSIONS At The Christie NHS Foundation Trust, radiographers consistently registered images across three different imaging modalities regardless of their previous experience. The implementation of an image registration guide had limited impact on inter- and intraobserver variability. Radiographers' confidence showed statistically significant improvements following the use of the registration manual. ADVANCES IN KNOWLEDGE This work helps evaluate training methods for novel roles that are developing in MRgRT.
Collapse
Affiliation(s)
- Rebecca Benson
- Department of Radiotherapy, The Christie Hospital NHS
Trust, Manchester,
UK
| | - John Rodgers
- Department of Radiotherapy, The Christie Hospital NHS
Trust, Manchester,
UK
| | - Claire Nelder
- Department of Radiotherapy, The Christie Hospital NHS
Trust, Manchester,
UK
| | - Abigael Clough
- Department of Radiotherapy, The Christie Hospital NHS
Trust, Manchester,
UK
| | - Eleanor Pitt
- Department of Radiotherapy, The Christie Hospital NHS
Trust, Manchester,
UK
| | - Jacqui Parker
- Department of Radiotherapy, The Christie Hospital NHS
Trust, Manchester,
UK
| | - Lee Whiteside
- Department of Radiotherapy, The Christie Hospital NHS
Trust, Manchester,
UK
| | - Lucy Davies
- Department of Radiotherapy, The Christie Hospital NHS
Trust, Manchester,
UK
| | - Rachael Bailey
- Department of Radiotherapy, The Christie Hospital NHS
Trust, Manchester,
UK
| | - John McMahon
- Department of Radiotherapy, The Christie Hospital NHS
Trust, Manchester,
UK
| | - Hope Kolbe
- Department of Radiotherapy, The Christie Hospital NHS
Trust, Manchester,
UK
| | - Anthea Cree
- Department of Clinical Oncology, The Clatterbridge Cancer
Centre, Liverpool,
UK
| | - Michael Dubec
- Department of Medical Physics and Engineering, The Christie NHS
Foundation Trust, Manchester,
UK
| | - Marcel Van Herk
- Department of Clinical Oncology, The Christie NHS Foundation
Trust, Manchester,
UK
- Division of Cancer Sciences, School of Medical Sciences,
Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre,
Manchester, UK
| | - Ananya Choudhury
- Department of Clinical Oncology, The Christie NHS Foundation
Trust, Manchester,
UK
- Division of Cancer Sciences, School of Medical Sciences,
Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre,
Manchester, UK
| | - Peter Hoskin
- Department of Clinical Oncology, The Christie NHS Foundation
Trust, Manchester,
UK
- Division of Cancer Sciences, School of Medical Sciences,
Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre,
Manchester, UK
| | - Cynthia Eccles
- Department of Radiotherapy, The Christie Hospital NHS
Trust, Manchester,
UK
- Division of Cancer Sciences, School of Medical Sciences,
Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre,
Manchester, UK
| |
Collapse
|
10
|
MRI-guided Radiotherapy (MRgRT) for treatment of Oligometastases: Review of clinical applications and challenges. Int J Radiat Oncol Biol Phys 2022; 114:950-967. [PMID: 35901978 DOI: 10.1016/j.ijrobp.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Early clinical results on the application of magnetic resonance imaging (MRI) coupled with a linear accelerator to deliver MR-guided radiation therapy (MRgRT) have demonstrated feasibility for safe delivery of stereotactic body radiotherapy (SBRT) in treatment of oligometastatic disease. Here we set out to review the clinical evidence and challenges associated with MRgRT in this setting. METHODS AND MATERIALS We performed a systematic review of the literature pertaining to clinical experiences and trials on the use of MRgRT primarily for the treatment of oligometastatic cancers. We reviewed the opportunities and challenges associated with the use of MRgRT. RESULTS Benefits of MRgRT pertaining to superior soft-tissue contrast, real-time imaging and gating, and online adaptive radiotherapy facilitate safe and effective dose escalation to oligometastatic tumors while simultaneously sparing surrounding healthy tissues. Challenges concerning further need for clinical evidence and technical considerations related to planning, delivery, quality assurance (QA) of hypofractionated doses, and safety in the MRI environment must be considered. CONCLUSIONS The promising early indications of safety and effectiveness of MRgRT for SBRT-based treatment of oligometastatic disease in multiple treatment locations should lead to further clinical evidence to demonstrate the benefit of this technology.
Collapse
|
11
|
FELICI F, BENKREIRA M, LAMBAUDIE É, FAU P, MAILLEUX H, FERRE M, TALLET A, GONZAGUE-CASABIANCA L. ADAPTIVE MAGNETIC RESONANCE-GUIDED EXTERNAL BEAM RADIATION THERAPY FOR CONSOLIDATION IN RECURRENT CERVICAL CANCER. Adv Radiat Oncol 2022; 7:100999. [PMID: 36060635 PMCID: PMC9429515 DOI: 10.1016/j.adro.2022.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/22/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose Adaptive magnetic resonance (MR)-guided brachytherapy takes an important place as consolidation within the care of cervical malignancies, but may be impracticable in some unusual cases. This work aimed to present the case of adaptive MR-guided external beam radiation therapy (aMRgRT) used as a boost in a recurrence of cervical cancer. Methods and Materials We report on a case of a parametrial recurrence in a 31-year-old patient who already underwent a trachelectomy as treatment for her primary growth. After concomitant radio-chemotherapy, a brachytherapy boost was performed. Because of its position in relation to the left uterine artery after trachelectomy, impeding interstitial catheters set up, the relapse was insufficiently covered. With the aim to refine the coverage of target volumes, aMRgRT treatment was undertaken to allow for achievement of the dosimetric goals. Results In clinical circumstances where the brachytherapy step was hindered, aMRgRT presents many advantages. First, daily native MR-imaging outperforms usual x-ray imaging in the pelvis, refining repositioning. Second, its specific workflow allows for the performance of adaptive treatment, with consideration of both the inter- and intrafraction motions of organs at risk and target volumes. Conclusion In nonfeasible brachytherapy situations, aMRgRT could be a satisfying substitute. Nevertheless, brachytherapy remains the standard of care as a boost in locally advanced cervical cancer.
Collapse
|
12
|
Shelley CE, Barraclough LH, Nelder CL, Otter SJ, Stewart AJ. Adaptive Radiotherapy in the Management of Cervical Cancer: Review of Strategies and Clinical Implementation. Clin Oncol (R Coll Radiol) 2021; 33:579-590. [PMID: 34247890 DOI: 10.1016/j.clon.2021.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/19/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
The complex and varied motion of the cervix-uterus target during external beam radiotherapy (EBRT) underscores the clinical benefits afforded by adaptive radiotherapy (ART) techniques. These gains have already been realised in the implementation of image-guided adaptive brachytherapy, where adapting to anatomy at each fraction has seen improvements in clinical outcomes and a reduction in treatment toxicity. With regards to EBRT, multiple adaptive strategies have been implemented, including a personalised internal target volume, offline replanning and a plan of the day approach. With technological advances, there is now the ability for real-time online ART using both magnetic resonance imaging and computed tomography-guided imaging. However, multiple challenges remain in the widespread dissemination of ART. This review investigates the ART strategies and their clinical implementation in EBRT delivery for cervical cancer.
Collapse
Affiliation(s)
- C E Shelley
- Department of Clinical Oncology, St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK.
| | - L H Barraclough
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - C L Nelder
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK
| | - S J Otter
- Department of Clinical Oncology, St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK
| | - A J Stewart
- Department of Clinical Oncology, St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK; University of Surrey, Guildford, UK
| |
Collapse
|
13
|
Møller PK, Pappot H, Bernchou U, Schytte T, Dieperink KB. Development of patient-reported outcomes item set to evaluate acute treatment toxicity to pelvic online magnetic resonance-guided radiotherapy. J Patient Rep Outcomes 2021; 5:47. [PMID: 34160732 PMCID: PMC8220120 DOI: 10.1186/s41687-021-00326-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/10/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A new technology in cancer treatment, the MR-linac, provides online magnetic resonance-guided radiotherapy (MRgRT) that combines real-time visualization of the tumor and surrounding tissue with radiation therapy to deliver treatment more accurately. Online MRgRT makes it possible to minimize treatment volume, potentially reducing acute treatment toxicity. Patient-reported outcomes (PRO) add the patient perspective to evaluating treatment toxicity related to new technology. The objective of this mixed-methods study was to develop and explore the content validity of a set of PRO items to evaluate acute pelvic toxicity to radiotherapy including online MRgRT. METHODS A literature review and chart audit were conducted to identify symptomatic adverse events (AEs) to be selected from the Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) library and European Organisation for Research and Treatment of Cancer (EORTC) item library. To validate the content, the item set was applied in a prospective pilot cohort of patients referred for primary pelvic RT with curative intent. Patients reported symptoms weekly during RT (4-8 weeks) and the subsequent 4 weeks. Follow-up reports were collected at 8, 12, and 24 weeks after RT. To ensure symptom coverage clinician-reported toxicity and individual patient interviews were conducted. The symptomatic AEs were included in the final item set if ≥20% of patients reported them. RESULTS Eighteen acute symptomatic AEs were selected for the initial item set. Forty patients (32 prostate cancer, 8 cervical cancer) were included in the pilot study. Patients with prostate cancer and those with cervical cancer both reported all 18 acute AEs. However, vomiting was not reported by > 20% of patients thus excluded from the item set. Adding a few diagnosis-specific AEs to the final item set was required for both prostate and cervical cancer patients. CONCLUSIONS A PRO item set for patients with pelvic cancer treated with radiotherapy with a curative intent was developed and content validity explored. In the pilot study, the item set captured the most common acute symptomatic AEs for patients with prostate and cervical cancer related to pelvic RT including online MRgRT. Further validation of the content in broader disease sites would be needed in future studies.
Collapse
Affiliation(s)
- P K Møller
- Department of Oncology, Odense University Hospital, AgeCare, Academy of Geriatric Cancer Research, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - H Pappot
- Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - U Bernchou
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark
| | - T Schytte
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - K B Dieperink
- Department of Oncology, Odense University Hospital, AgeCare, Academy of Geriatric Cancer Research, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Shortall J, Vasquez Osorio E, Cree A, Song Y, Dubec M, Chuter R, Price G, McWilliam A, Kirkby K, Mackay R, van Herk M. Inter- and intra-fractional stability of rectal gas in pelvic cancer patients during MRIgRT. Med Phys 2021; 48:414-426. [PMID: 33164217 DOI: 10.1002/mp.14586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/08/2020] [Accepted: 10/31/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Due to the electron return effect (ERE) during magnetic resonance imaging guided radiotherapy (MRIgRT), rectal gas during pelvic treatments can result in hot spots of over-dosage in the rectal wall. Determining the clinical impact of this effect on rectal toxicity requires estimation of the amount and mobility (and stability) of rectal gas during treatment. We therefore investigated the amount of rectal gas and local inter- and intra-fractional changes of rectal gas in pelvic cancer patients. METHODS To estimate the volume of gas present at treatment planning, the rectal gas contents in the planning computed tomography (CT) scans of 124 bladder, 70 cervical and 2180 prostate cancer patients were calculated. To estimate inter- and intra-fractional variations in rectal gas, 174 and 131 T2-w MRIs for six cervical and eleven bladder cancer patients were used. These scans were acquired during four scan-sessions (~20-25 min each) at various time-points. Additionally, 258 T2-w MRIs of the first five prostate cancer patients treated using MRIgRT at our center, acquired during each fraction, were analyzed. Rectums were delineated on all scans. The area of gas within the rectum delineations was identified on each MRI slice using thresholding techniques. The area of gas on each slice of the rectum was used to calculate the inter- and intra-fractional group mean, systematic and random variations along the length of the rectum. The cumulative dose perturbation as a result of the gas was estimated. Two approaches were explored: accounting or not accounting for the gas at the start of the scan-session. RESULTS Intra-fractional variations in rectal gas are small compared to the absolute volume of rectal gas detected for all patient groups. That is, rectal gas is likely to remain stable for periods of 20-25 min. Larger volumes of gas and larger variations in gas volume were observed in bladder cancer patients compared with cervical and prostate cancer patients. For all patients, local cumulative dose perturbations per beam over an entire treatment in the order of 60 % were estimated when gas had not been accounted for in the daily adaption. The calculated dose perturbation over the whole treatment was dramatically reduced in all patients when accounting for the gas in the daily set-up image. CONCLUSION Rectal gas in pelvic cancer patients is likely to remain stable over the course of an MRIgRT fraction, and also likely to reappear in the same location in multiple fractions, and can therefore result in clinically relevant over-dosage in the rectal wall. The over-dosage is reduced when accounting for gas in the daily adaption.
Collapse
Affiliation(s)
- J Shortall
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
| | - E Vasquez Osorio
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
| | - A Cree
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Y Song
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - M Dubec
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - R Chuter
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - G Price
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - A McWilliam
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - K Kirkby
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - R Mackay
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - M van Herk
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
15
|
Ingle M, Lalondrelle S. Current Status of Anatomical Magnetic Resonance Imaging in Brachytherapy and External Beam Radiotherapy Planning and Delivery. Clin Oncol (R Coll Radiol) 2020; 32:817-827. [PMID: 33169690 DOI: 10.1016/j.clon.2020.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Radiotherapy planning and delivery have dramatically improved in recent times. Imaging is key to a successful three-dimensional and increasingly four-dimensional based pathway with computed tomography embedded as the backbone modality. Computed tomography has significant limitations for many tumour sites where soft-tissue discrimination is suboptimal, and where magnetic resonance imaging (MRI) has largely superseded in the diagnostic arena. MRI is increasingly used together with computed tomography in the radiotherapy planning pathway and is now established as a prerequisite for several tumours. With the advent of combined MRI and linear accelerator (MR-linac) systems, a transition to MRI-based radiotherapy planning is becoming reality, with increasing experience and research involving these new platforms. In this overview, we aim to highlight how magnetic resonance-guided imaging has improved radiotherapy, using gynaecological malignancies to illustrate, in both external beam radiotherapy and image-guided brachytherapy, and will assess the early evidence for magnetic resonance-guided radiotherapy using combined MR-linac systems.
Collapse
Affiliation(s)
- M Ingle
- Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK; Institute of Cancer Research, London, UK
| | - S Lalondrelle
- Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK; Institute of Cancer Research, London, UK.
| |
Collapse
|
16
|
Incorporating Magnetic Resonance Imaging (MRI) Based Radiation Therapy Response Prediction into Clinical Practice for Locally Advanced Cervical Cancer Patients. Semin Radiat Oncol 2020; 30:291-299. [DOI: 10.1016/j.semradonc.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Thureau S, Briens A, Decazes P, Castelli J, Barateau A, Garcia R, Thariat J, de Crevoisier R. PET and MRI guided adaptive radiotherapy: Rational, feasibility and benefit. Cancer Radiother 2020; 24:635-644. [PMID: 32859466 DOI: 10.1016/j.canrad.2020.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Adaptive radiotherapy (ART) corresponds to various replanning strategies aiming to correct for anatomical variations occurring during the course of radiotherapy. The goal of the article was to report the rational, feasibility and benefit of using PET and/or MRI to guide this ART strategy in various tumor localizations. The anatomical modifications defined by scanner taking into account tumour mobility and volume variation are not always sufficient to optimise treatment. The contribution of functional imaging by PET or the precision of soft tissue by MRI makes it possible to consider optimized ART. Today, the most important data for both PET and MRI are for lung, head and neck, cervical and prostate cancers. PET and MRI guided ART appears feasible and safe, however in a very limited clinical experience. Phase I/II studies should be therefore performed, before proposing cost-effectiveness comparisons in randomized trials and before using the approach in routine practice.
Collapse
Affiliation(s)
- S Thureau
- Département de radiothérapie et de physique médicale, centre Henri-Becquerel, QuantIF EA 4108, université de Rouen, 76000 Rouen, France.
| | - A Briens
- Département de radiothérapie, centre Eugène-Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex, France
| | - P Decazes
- Département de médecine nucléaire, center Henri-Becquerel, QuantIF EA 4108, université de Rouen, Rouen, France
| | - J Castelli
- Département de radiothérapie, centre Eugène Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex, France; CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, université de Rennes, 35000 Rennes, France
| | - A Barateau
- Département de radiothérapie, centre Eugène Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex, France; CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, université de Rennes, 35000 Rennes, France
| | - R Garcia
- Service de physique médicale, institut Sainte-Catherine, 84918 Avignon, France
| | - J Thariat
- Department of radiation oncology, centre François-Baclesse, 14000 Caen, France; Laboratoire de physique corpusculaire IN2P3/ENSICAEN-UMR6534-Unicaen-Normandie université, 14000 Caen, France; ARCHADE Research Community, 14000 Caen, France
| | - R de Crevoisier
- Département de radiothérapie, centre Eugène-Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex, France; CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, université de Rennes, 35000 Rennes, France
| |
Collapse
|
18
|
Rodgers J, Hales R, Whiteside L, Parker J, McHugh L, Cree A, van Herk M, Choudhury A, Hoskin P, McWilliam A, Eccles CL. Comparison of radiographer interobserver image registration variability using cone beam CT and MR for cervix radiotherapy. Br J Radiol 2020; 93:20200169. [PMID: 32543946 PMCID: PMC7446016 DOI: 10.1259/bjr.20200169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES The aim of this study was to assess the consistency of therapy radiographers performing image registration using cone beam computed tomography (CBCT)-CT, magnetic resonance (MR)-CT, and MR-MR image guidance for cervix cancer radiotherapy and to assess that MR-based image guidance is not inferior to CBCT standard practice. METHODS 10 patients receiving cervix radiation therapy underwent daily CBCT guidance and magnetic resonance (MR) imaging weekly during treatment. Offline registration of each MR image, and corresponding CBCT, to planning CT was performed by five radiographers. MR images were also registered to the earliest MR interobserver variation was assessed using modified Bland-Altman analysis with clinically acceptable 95% limits of agreement (LoA) defined as ±5.0 mm. RESULTS 30 CBCT-CT, 30 MR-CT and 20 MR-MR registrations were performed by each observer. Registration variations between CBCT-CT and MR-CT were minor and both strategies resulted in 95% LoA over the clinical threshold in the anteroposterior direction (CBCT-CT ±5.8 mm, MR-CT ±5.4 mm). MR-MR registrations achieved a significantly improved 95% LoA in the anteroposterior direction (±4.3 mm). All strategies demonstrated similar results in lateral and longitudinal directions. CONCLUSION The magnitude of interobserver variations between CBCT-CT and MR-CT were similar, confirming that MR-CT radiotherapy workflows are comparable to CBCT-CT image-guided radiotherapy. Our results suggest MR-MR radiotherapy workflows may be a superior registration strategy. ADVANCES IN KNOWLEDGE This is the first publication quantifying interobserver registration of multimodality image registration strategies for cervix radical radiotherapy patients.
Collapse
Affiliation(s)
- John Rodgers
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK,
| | - Rosie Hales
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK,
| | - Lee Whiteside
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK,
| | - Jacqui Parker
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK,
| | - Louise McHugh
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK,
| | | | | | | | | | | | | |
Collapse
|
19
|
Shortall J, Vasquez Osorio E, Aitkenhead A, Berresford J, Agnew J, Budgell G, Chuter R, McWilliam A, Kirkby K, Mackay R, van Herk M. Experimental verification the electron return effect around spherical air cavities for the MR-Linac using Monte Carlo calculation. Med Phys 2020; 47:2506-2515. [PMID: 32145087 DOI: 10.1002/mp.14123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Dose deposition around unplanned air cavities during magnetic resonance-guided radiotherapy (MRgRT) is influenced by the electron return effect (ERE). This is clinically relevant for gas forming close to or inside organs at risk (OARs) that lie in the path of a single beam, for example, intestinal track during pelvic treatment. This work aims to verify Monte Carlo calculations that predict the dosimetric effects of ERE around air cavities. For this, we use GafChromic EBT3 film inside poly-methyl methacrylate (PMMA) -air phantoms. METHOD Four PMMA phantoms were produced. Three of the phantoms contained centrally located spherical air cavities (0.5, 3.5, 7.5 cm diameter), and one phantom contained no air. The phantoms were split to sandwich GafChromic EBT3 film in the center. The phantoms were irradiated on an Elekta Unity system using a single 10 × 10 cm2 7-MV photon beam under the influence of a 1.5-T transverse magnetic field. The measurements were replicated using the Elekta Monaco treatment planning system (TPS). Gamma analysis with pass criteria 3%/3 mm was used to compare the measured and calculated dose distributions. We also consider 3%/2 mm, 2%/3 mm, and 2%/2 mm pass criteria for interest. RESULTS The gamma analysis showed that >95% of the points agreed between the TPS-calculated and measured dose distributions, using 3%/3 mm criteria. The phantom containing the largest air cavity had the lowest agreement, with most of the disagreeing points lying inside the air cavity (dose to air region). CONCLUSIONS The dose effects due to ERE around spherical air cavities are being calculated in the TPS with sufficient accuracy for clinical use.
Collapse
Affiliation(s)
- J Shortall
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
| | - E Vasquez Osorio
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
| | - A Aitkenhead
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - J Berresford
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - J Agnew
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - G Budgell
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - R Chuter
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - A McWilliam
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - K Kirkby
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - R Mackay
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - M van Herk
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
20
|
Shortall J, Vasquez Osorio E, Chuter R, Green A, McWilliam A, Kirkby K, Mackay R, van Herk M. Characterizing local dose perturbations due to gas cavities in magnetic resonance-guided radiotherapy. Med Phys 2020; 47:2484-2494. [PMID: 32144781 DOI: 10.1002/mp.14120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Due to differences in attenuation and the electron return effect (ERE), the presence of gas can increase the risk of toxicity in organs at risk (OAR) during magnetic resonance-guided radiotherapy (MRgRT). Current adaptive MRgRT workflows using density overrides negate gas from the dose calculation, meaning that the effects of ERE around gas are not taken into account. In order to achieve an accurate adaptive MRgRT treatment, we should be able to quickly evaluate whether gas present during treatment causes dose constraint violation during an MRgRT fraction. We propose an analytic method for predicting dose perturbations caused by air cavities in OARs during MRgRT. METHOD Ten virtual water phantoms were created: nine containing a centrally located spherical air cavity and a reference phantom without an air cavity. Monte Carlo dose calculations were produced to irradiate the phantoms with a single 7 MV photon beam under the influence of a 1.5 T transverse magnetic field (Monaco 5.19.02 Treatment Panning System (TPS) (Elekta AB, Stockholm, Sweden)). Dose distributions of the phantoms with and without air cavities were compared. We used a spherical coordinate system originating in the center of the cavity to sample the dose distributions and calculate the dose perturbation as a result of the presence of each air cavity, ∆D%(θ,Φ)calc . . Dose effects due to ERE and differences in attenuation due to density changes were considered separately. Least squared analysis was used to fit the calculated dose perturbations to mathematical functions. Effects due to ERE were fit to a modulated sinusoidal function and those due to attenuation differences were fit to a 2D Gaussian function. We used the fits to derive a single equation describing dose perturbations around spherical air cavities as a function of angles, θ, Φ, distance from cavity surface, d, and cavity radius, r. We measured the fitting error by calculating the residual error (RE); the difference between the calculated and fitted dose perturbation. RESULTS Both ERE and differences in attenuation contribute toward the total dose effects of air cavities in MRgRT. Whereas ERE dominates close to the surface of the cavities, attenuation effects dominate at distances >0.5 cm from the cavities. We showed that dose effects around a spherical air cavity (≤1 cm from the surface) due to ERE fit a modulated sinusoidal function with mean (RE) ≤-1.4E-5% and root mean square error (rms) (RE) ≤4.1%. Effects due to attenuation differences fit a Gaussian function with mean (RE) ≤0.7% and rms (RE) ≤1.8%. Our general equation, which we verified using multiple sizes of spherical and cylindrical air cavity, fits Monte Carlo simulated data with mean (RE) ≤±0.9% and rms (RE) ≤6.9%. CONCLUSION We show that local dose perturbations around unplanned spherical air cavities during MRgRT can be well characterized analytically. We present an equation that can be incorporated into the clinical workflow to allow for fast evaluation of dose effects of unplanned gas. We also envision this method contributing to the clinical implementation of real time adaptive radiotherapy (ART) for MRgRT using MRI planning.
Collapse
Affiliation(s)
- Jane Shortall
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Robert Chuter
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Andrew Green
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Alan McWilliam
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Karen Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Ranald Mackay
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Marcel van Herk
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
21
|
Boldrini L, Piras A, Chiloiro G, Autorino R, Cellini F, Cusumano D, Fionda B, D'Aviero A, Campitelli M, Marazzi F, Balducci M, Valentini V, Gambacorta MA. Low Tesla magnetic resonance guided radiotherapy for locally advanced cervical cancer: first clinical experience. TUMORI JOURNAL 2020; 106:497-505. [PMID: 32066345 DOI: 10.1177/0300891620901752] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Magnetic resonance-guided radiotherapy (MRgRT) represents an innovative approach for personalized radiotherapy treatments and its applications are being explored in various anatomical sites to fully understand its potential advantages. This study describes the first clinical experience of MRgRT application in patients with locally advanced cervical cancer (LACC) undergoing neoadjuvant chemoradiotherapy. The feasibility of the technique is evaluated and its toxicity profile and clinical outcomes are reported. METHODS Patients with LACC (International Federation of Gynecology and Obstetrics stage IIA-IVA) undergoing neoadjuvant chemoradiotherapy (CRT) on a 0.35T Tri-60-Co hybrid unit (ViewRay) were retrospectively compared with randomly selected patients treated with a standard linear accelerator. Total prescribed dose was 50.6 Gy (2.3 Gy/fraction) to planning target volume 1 (PTV1) and 39.6 Gy (1.8 Gy/fraction) to PTV2, delivered using a simultaneous integrated boost. Surgery was performed 8 weeks after the end of CRT. The effect of magnetic resonance guidance on replanning approaches, treatment-related toxicities, and pathologic response were assessed for each patient. Patient outcomes were noted and dosimetric comparisons performed between the 2 arms. RESULTS Nine patients with LACC treated from May 2018 to November 2018 were retrospectively enrolled and their records compared with the records of an equivalent cohort of randomly selected patients. Five replanning cases were performed in the MRgRT group and 0 in the linear accelerator group. Acute G1-G2 gastrointestinal toxicities were observed in 33.3% of MRgRT patients and in 55.5% of linear accelerator patients; acute G1-G2 genitourinary toxicities in 22.2% and 33.3%, respectively. No G3 toxicity was found except for neutropenia in 2 patients. No differences were observed in pathologic response between the 2 groups. CONCLUSIONS Despite the retrospective nature of the observations and the low number of enrolled patients, the application of MRgRT in LACC appears to be safe and feasible with a favorable toxicity profile and response rates comparable to gold standard, supporting the setup of larger prospective studies to investigate the potentialities of this new technology.
Collapse
Affiliation(s)
- Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - Antonio Piras
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuditta Chiloiro
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - Rosa Autorino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - Francesco Cellini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - Davide Cusumano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Fisica Sanitaria, Rome, Italy
| | - Bruno Fionda
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - Andrea D'Aviero
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maura Campitelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - Fabio Marazzi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - Mario Balducci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Rome, Italy.,Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Rome, Italy.,Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Antonietta Gambacorta
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC di Radioterapia Oncologica, Rome, Italy.,Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
22
|
Chin S, Eccles CL, McWilliam A, Chuter R, Walker E, Whitehurst P, Berresford J, Van Herk M, Hoskin PJ, Choudhury A. Magnetic resonance-guided radiation therapy: A review. J Med Imaging Radiat Oncol 2020; 64:163-177. [PMID: 31646742 DOI: 10.1111/1754-9485.12968] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
Magnetic resonance-guided radiation therapy (MRgRT) is a promising approach to improving clinical outcomes for patients treated with radiation therapy. The roles of image guidance, adaptive planning and magnetic resonance imaging in radiation therapy have been increasing over the last two decades. Technical advances have led to the feasible combination of magnetic resonance imaging and radiation therapy technologies, leading to improved soft-tissue visualisation, assessment of inter- and intrafraction motion, motion management, online adaptive radiation therapy and the incorporation of functional information into treatment. MRgRT can potentially transform radiation oncology by improving tumour control and quality of life after radiation therapy and increasing convenience of treatment by shortening treatment courses for patients. Multiple groups have developed clinical implementations of MRgRT predominantly in the abdomen and pelvis, with patients having been treated since 2014. While studies of MRgRT have primarily been dosimetric so far, an increasing number of trials are underway examining the potential clinical benefits of MRgRT, with coordinated efforts to rigorously evaluate the benefits of the promising technology. This review discusses the current implementations, studies, potential benefits and challenges of MRgRT.
Collapse
Affiliation(s)
- Stephen Chin
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Cynthia L Eccles
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Alan McWilliam
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Robert Chuter
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Emma Walker
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Philip Whitehurst
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Joseph Berresford
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Marcel Van Herk
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Peter J Hoskin
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Ananya Choudhury
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Buckley JG, Rai R, Liney GP, Dowling JA, Holloway LC, Metcalfe PE, Keall PJ. Anatomical deformation due to horizontal rotation: towards gantry-free radiation therapy. ACTA ACUST UNITED AC 2019; 64:175014. [DOI: 10.1088/1361-6560/ab324c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Corradini S, Alongi F, Andratschke N, Belka C, Boldrini L, Cellini F, Debus J, Guckenberger M, Hörner-Rieber J, Lagerwaard FJ, Mazzola R, Palacios MA, Philippens MEP, Raaijmakers CPJ, Terhaard CHJ, Valentini V, Niyazi M. MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat Oncol 2019; 14:92. [PMID: 31167658 PMCID: PMC6551911 DOI: 10.1186/s13014-019-1308-y] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/24/2019] [Indexed: 11/23/2022] Open
Abstract
Magnetic Resonance-guided radiotherapy (MRgRT) marks the beginning of a new era. MR is a versatile and suitable imaging modality for radiotherapy, as it enables direct visualization of the tumor and the surrounding organs at risk. Moreover, MRgRT provides real-time imaging to characterize and eventually track anatomical motion. Nevertheless, the successful translation of new technologies into clinical practice remains challenging. To date, the initial availability of next-generation hybrid MR-linac (MRL) systems is still limited and therefore, the focus of the present preview was on the initial applicability in current clinical practice and on future perspectives of this new technology for different treatment sites.MRgRT can be considered a groundbreaking new technology that is capable of creating new perspectives towards an individualized, patient-oriented planning and treatment approach, especially due to the ability to use daily online adaptation strategies. Furthermore, MRL systems overcome the limitations of conventional image-guided radiotherapy, especially in soft tissue, where target and organs at risk need accurate definition. Nevertheless, some concerns remain regarding the additional time needed to re-optimize dose distributions online, the reliability of the gating and tracking procedures and the interpretation of functional MR imaging markers and their potential changes during the course of treatment. Due to its continuous technological improvement and rapid clinical large-scale application in several anatomical settings, further studies may confirm the potential disruptive role of MRgRT in the evolving oncological environment.
Collapse
Affiliation(s)
- S. Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - F. Alongi
- Department of Radiation Oncology, IRCSS Sacro Cuore don Calabria Hospital, Negrar-Verona, Italy
- University of Brescia, Brescia, Italy
| | - N. Andratschke
- Department of Radiation Oncology, University Hospital Zürich, University of Zurich, Zürich, Switzerland
| | - C. Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - L. Boldrini
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - F. Cellini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - J. Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M. Guckenberger
- Department of Radiation Oncology, University Hospital Zürich, University of Zurich, Zürich, Switzerland
| | - J. Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F. J. Lagerwaard
- Department of Radiation Oncology, VU medical center, Amsterdam, The Netherlands
| | - R. Mazzola
- Department of Radiation Oncology, IRCSS Sacro Cuore don Calabria Hospital, Negrar-Verona, Italy
- University of Brescia, Brescia, Italy
| | - M. A. Palacios
- Department of Radiation Oncology, VU medical center, Amsterdam, The Netherlands
| | - M. E. P. Philippens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C. P. J. Raaijmakers
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C. H. J. Terhaard
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - V. Valentini
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - M. Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| |
Collapse
|