1
|
Wu P, Vandemeulebroucke L, Claeys M, Bert W, Braeckman BP. The Effect of Axenic Dietary Restriction on the Age-Related Changes in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2024; 79:glae205. [PMID: 39171522 DOI: 10.1093/gerona/glae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 08/23/2024] Open
Abstract
Axenic dietary restriction (ADR) is highly effective in extending lifespan of Caenorhabditis elegans, but its effects on healthspan improvement are less well characterized. Using transmission electron microscopy, morphometric analyses, and functional assays, we found ADR can preserve tissue ultrastructure, including the cuticle, epidermis, and intestinal lumen, and reduce age-associated pathologies like gonad degeneration, uterine tumor clusters, pharyngeal deterioration, and intestinal atrophy. However, there was no notable improvement in behavioral and functional metrics. Our results underscore that lifespan extension through ADR does not inherently translate to broad healthspan improvements.
Collapse
Affiliation(s)
- Ping Wu
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Lieselot Vandemeulebroucke
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Myriam Claeys
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Anjaneyulu J, Godbole A. Small organism models for mode of action research on anti-ageing and nootropic herbs, foods, and formulations. Nutr Neurosci 2024:1-19. [PMID: 39432435 DOI: 10.1080/1028415x.2024.2409128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
With global increase in ageing population along with increasing age-related neurodegenerative diseases (NDs), development of sustainable, safe and effective solutions for promoting healthy ageing and preventing diseases has become a priority. Traditional healthcare systems/medicines prescribe several herbs, foods and formulations to promote healthy ageing and prevent and/or treat age-related diseases. However, the scientific data elucidating their mechanism of action is very limited and deeper research using different models is warranted for timely and wider use. The clinical studies and research with higher model organisms, although useful, have several practical, technical, and financial limitations. Conversely, small organism models like Yeast, Roundworm, Fruit fly, and Zebrafish, which have genetic similarities to humans, can replicate the disease features and provide behavioural, cellular and molecular insights. The common features of ageing and NDs, like amyloid protein aggregations, oxidative stress, energy dysregulation, inflammation and neurodegeneration can be mimicked in the small organism models for Alzheimer's, Parkinson's, Huntington's diseases, and Amyotrophic Lateral Sclerosis. This review focuses on small organism model- based research unveiling interesting modes of action and synergistic effects of herbal extracts, foods, and formulations, which are indicated especially for healthy ageing and management of NDs. This will provide leads for the quick and sustainable development of scientifically evaluated solutions for clinically relevant, age-related conditions.
Collapse
Affiliation(s)
- Jalagam Anjaneyulu
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| | - Ashwini Godbole
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| |
Collapse
|
3
|
Slade L, Etheridge T, Szewczyk NJ. Consolidating multiple evolutionary theories of ageing suggests a need for new approaches to study genetic contributions to ageing decline. Ageing Res Rev 2024; 100:102456. [PMID: 39153601 DOI: 10.1016/j.arr.2024.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Understanding mechanisms of ageing remains a complex challenge for biogerontologists, but recent adaptations of evolutionary ageing theories offer a compelling lens in which to view both age-related molecular and physiological deterioration. Ageing is commonly associated with progressive declines in biochemical and molecular processes resulting from damage accumulation, yet the role of continued developmental gene activation is less appreciated. Natural selection pressures are at their highest in youthful periods to modify gene expression towards maximising reproductive capacity. After sexual maturation, selective pressure diminishes, subjecting individuals to maladaptive pleiotropic gene functions that were once beneficial for developmental growth but become pathogenic later in life. Due to this selective 'shadowing' in ageing, mechanisms to counter such hyper/hypofunctional genes are unlikely to evolve. Interventions aimed at targeting gene hyper/hypofunction during ageing might, therefore, represent an attractive therapeutic strategy. The nematode Caenorhabditis elegans offers a strong model for post-reproductive mechanistic and therapeutic investigations, yet studies examining the mechanisms of, and countermeasures against, ageing decline largely intervene from larval stages onwards. Importantly, however, lifespan extending conditions frequently impair early-life fitness and fail to correspondingly increase healthspan. Here, we consolidate multiple evolutionary theories of ageing and discuss data supporting hyper/hypofunctional changes at a global molecular and functional level in C. elegans, and how classical lifespan-extension mutations alter these dynamics. The relevance of such mutant models for exploring mechanisms of ageing are discussed, highlighting that post-reproductive gene optimisation represents a more translatable approach for C. elegans research that is not constrained by evolutionary trade-offs. Where some genetic mutations in C. elegans that promote late-life health map accordingly with healthy ageing in humans, other widely used genetic mutations that extend worm lifespan are associated with life-limiting pathologies in people. Lifespan has also become the gold standard for quantifying 'ageing', but we argue that gerospan compression (i.e., 'healthier' ageing) is an appropriate goal for anti-ageing research, the mechanisms of which appear distinct from those regulating lifespan alone. There is, therefore, an evident need to re-evaluate experimental approaches to study the role of hyper/hypofunctional genes in ageing in C. elegans.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, Exeter, UK.
| | - Timothy Etheridge
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Athens, OH 45701, United States.
| |
Collapse
|
4
|
Jongsma E, Grigolon G, Baumann J, Weinkove D, Ewald CY, Wandrey F, Grothe T. Timut Pepper Extract Slows Age-Dependent Decline of Mobility and Collagen Loss and Promotes Longevity. Nutrients 2024; 16:2122. [PMID: 38999870 PMCID: PMC11243454 DOI: 10.3390/nu16132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Investigations into human longevity are increasingly focusing on healthspan enhancement, not just lifespan extension. Lifestyle modifications and nutritional choices, including food supplements, can significantly affect aging and general health. Phytochemicals in centenarians' diets, such as those found in Timut pepper, a Nepalese spice with various medicinal properties, may contribute to their longevity. Similarly, Sichuan pepper, a related species, has demonstrated anti-inflammatory and neuroprotective activities. With the broader purpose of uncovering a novel treatment to address aging and its comorbidities, this study aims to investigate the potential lifespan- and healthspan-promoting effects of Timut pepper using the model organism Caenorhabditis elegans. We show that Timut pepper extract extends C. elegans' lifespan at different maintenance temperatures and increases the proportion of active nematodes in their early adulthood. In addition, we show that Timut pepper extract enhances speed and distance moved as the nematodes age. Finally, Timut pepper extract assures extracellular matrix homeostasis by slowing the age-dependent decline of collagen expression.
Collapse
Affiliation(s)
- Elisabeth Jongsma
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, 8603 Schwerzenbach, Switzerland
| | | | - Julia Baumann
- Mibelle Group Biochemistry, Mibelle AG, 5033 Buchs, Switzerland
| | - David Weinkove
- Magnitude Biosciences Ltd., NETPark Plexus, Thomas Wright Way, Sedgefield TS21 3FD, UK
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, 8603 Schwerzenbach, Switzerland
| | | | - Torsten Grothe
- Mibelle Group Biochemistry, Mibelle AG, 5033 Buchs, Switzerland
| |
Collapse
|
5
|
Weng Y, Zhou S, Morillo K, Kaletsky R, Lin S, Murphy CT. The neuron-specific IIS/FOXO transcriptome in aged animals reveals regulatory mechanisms of cognitive aging. eLife 2024; 13:RP95621. [PMID: 38922671 PMCID: PMC11208049 DOI: 10.7554/elife.95621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Cognitive decline is a significant health concern in our aging society. Here, we used the model organism C. elegans to investigate the impact of the IIS/FOXO pathway on age-related cognitive decline. The daf-2 Insulin/IGF-1 receptor mutant exhibits a significant extension of learning and memory span with age compared to wild-type worms, an effect that is dependent on the DAF-16 transcription factor. To identify possible mechanisms by which aging daf-2 mutants maintain learning and memory with age while wild-type worms lose neuronal function, we carried out neuron-specific transcriptomic analysis in aged animals. We observed downregulation of neuronal genes and upregulation of transcriptional regulation genes in aging wild-type neurons. By contrast, IIS/FOXO pathway mutants exhibit distinct neuronal transcriptomic alterations in response to cognitive aging, including upregulation of stress response genes and downregulation of specific insulin signaling genes. We tested the roles of significantly transcriptionally-changed genes in regulating cognitive functions, identifying novel regulators of learning and memory. In addition to other mechanistic insights, a comparison of the aged vs young daf-2 neuronal transcriptome revealed that a new set of potentially neuroprotective genes is upregulated; instead of simply mimicking a young state, daf-2 may enhance neuronal resilience to accumulation of harm and take a more active approach to combat aging. These findings suggest a potential mechanism for regulating cognitive function with age and offer insights into novel therapeutic targets for age-related cognitive decline.
Collapse
Affiliation(s)
- Yifei Weng
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Shiyi Zhou
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Katherine Morillo
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Rachel Kaletsky
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- Princeton UniversityPrincetonUnited States
| | - Sarah Lin
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- Princeton UniversityPrincetonUnited States
| |
Collapse
|
6
|
Banerjee S, Vernon S, Ruchti E, Limoni G, Jiao W, Asadzadeh J, Van Campenhoudt M, McCabe BD. Trio preserves motor synapses and prolongs motor ability during aging. Cell Rep 2024; 43:114256. [PMID: 38795343 DOI: 10.1016/j.celrep.2024.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/24/2024] [Accepted: 05/05/2024] [Indexed: 05/27/2024] Open
Abstract
The decline of motor ability is a hallmark feature of aging and is accompanied by degeneration of motor synaptic terminals. Consistent with this, Drosophila motor synapses undergo characteristic age-dependent structural fragmentation co-incident with diminishing motor ability. Here, we show that motor synapse levels of Trio, an evolutionarily conserved guanine nucleotide exchange factor (GEF), decline with age. We demonstrate that increasing Trio expression in adult Drosophila can abrogate age-dependent synaptic structural fragmentation, postpone the decline of motor ability, and maintain the capacity of motor synapses to sustain high-intensity neurotransmitter release. This preservative activity is conserved in transgenic human Trio, requires Trio Rac GEF function, and can also ameliorate synapse degeneration induced by depletion of miniature neurotransmission. Our results support a paradigm where the structural dissolution of motor synapses precedes and promotes motor behavioral diminishment and where intervening in this process can postpone the decline of motor function during aging.
Collapse
Affiliation(s)
- Soumya Banerjee
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Samuel Vernon
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Evelyne Ruchti
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Greta Limoni
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Wei Jiao
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Jamshid Asadzadeh
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Marine Van Campenhoudt
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Brian D McCabe
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Wan J, Ding JL, Lu H. Microfluidic approach to correlate C. elegans neuronal functional aging and underlying changes of gene expression in mechanosensation. LAB ON A CHIP 2024; 24:2811-2824. [PMID: 38700452 PMCID: PMC11091955 DOI: 10.1039/d3lc01080e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The aging process has broad physiological impacts, including a significant decline in sensory function, which threatens both physical health and quality of life. One ideal model to study aging, neuronal function, and gene expression is the nematode Caenorhabditis elegans, which has a short lifespan and relatively simple, thoroughly mapped nervous system and genome. Previous works have identified that mechanosensory neuronal structure changes with age, but importantly, the actual age-related changes in the function and health of neurons, as well as the underlying genetic mechanisms responsible for these declines, are not fully understood. While advanced techniques such as single-cell RNA-sequencing have been developed to quantify gene expression, it is difficult to relate this information to functional changes in aging due to a lack of tools available. To address these limitations, we present a platform capable of measuring both physiological function and its associated gene expression throughout the aging process in individuals. Using our pipeline, we investigate the age-related changes in function of the mechanosensing ALM neuron in C. elegans, as well as some relevant gene expression patterns (mec-4 and mec-10). Using a series of devices for animals of different ages, we examined subtle changes in neuronal function and found that while the magnitude of neuronal response to a large stimulus declines with age, sensory capability does not significantly decline with age; further, gene expression is well maintained throughout aging. Additionally, we examine PVD, a harsh-touch mechanosensory neuron, and find that it exhibits a similar age-related decline in magnitude of neuronal response. Together, our data demonstrate that our strategy is useful for identifying genetic factors involved in the decline in neuronal health. We envision that this framework could be applied to other systems as a useful tool for discovering new biology.
Collapse
Affiliation(s)
- Jason Wan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jimmy L Ding
- Petit Institute for Bioengineering and Bioscience, Interdisciplinary BioEngineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Hang Lu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Petit Institute for Bioengineering and Bioscience, Interdisciplinary BioEngineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA.
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Cheng H, Chen D, Li X, Al-Sheikh U, Duan D, Fan Y, Zhu L, Zeng W, Hu Z, Tong X, Zhao G, Zhang Y, Zou W, Duan S, Kang L. Phasic/tonic glial GABA differentially transduce for olfactory adaptation and neuronal aging. Neuron 2024; 112:1473-1486.e6. [PMID: 38447577 DOI: 10.1016/j.neuron.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/11/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
Phasic (fast) and tonic (sustained) inhibition of γ-aminobutyric acid (GABA) are fundamental for regulating day-to-day activities, neuronal excitability, and plasticity. However, the mechanisms and physiological functions of glial GABA transductions remain poorly understood. Here, we report that the AMsh glia in Caenorhabditis elegans exhibit both phasic and tonic GABAergic signaling, which distinctively regulate olfactory adaptation and neuronal aging. Through genetic screening, we find that GABA permeates through bestrophin-9/-13/-14 anion channels from AMsh glia, which primarily activate the metabolic GABAB receptor GBB-1 in the neighboring ASH sensory neurons. This tonic action of glial GABA regulates the age-associated changes of ASH neurons and olfactory responses via a conserved signaling pathway, inducing neuroprotection. In addition, the calcium-evoked, vesicular glial GABA release acts upon the ionotropic GABAA receptor LGC-38 in ASH neurons to regulate olfactory adaptation. These findings underscore the fundamental significance of glial GABA in maintaining healthy aging and neuronal stability.
Collapse
Affiliation(s)
- Hankui Cheng
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Du Chen
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Xiao Li
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Umar Al-Sheikh
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Duo Duan
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Yuedan Fan
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Linhui Zhu
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Wanxin Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhitao Hu
- Department of Neuroscience, City University of Hong Kong, Kowloon, China
| | - Xiajing Tong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guohua Zhao
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Yongming Zhang
- Department of Ophthalmology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Wenjuan Zou
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Shumin Duan
- MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Lijun Kang
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Yiwu 322000, China; MOE Frontier Science Center for Brain Science and Brain machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
9
|
Zang X, Wang Q, Zhang H, Zhang Y, Wang Z, Wu Z, Chen D. Knockdown of neuronal DAF-15/Raptor promotes healthy aging in C. elegans. J Genet Genomics 2024; 51:507-516. [PMID: 37951302 DOI: 10.1016/j.jgg.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
The highly conserved target of rapamycin (TOR) pathway plays an important role in aging across species. Previous studies have established that inhibition of the TOR complex 1 (TORC1) significantly extends lifespan in Caenorhabditiselegans. However, it has not been clear whether TORC1 perturbation affects aging in a spatiotemporal manner. Here, we apply the auxin-inducible degradation tool to knock down endogenous DAF-15, the C. elegans ortholog of regulatory associated protein of TOR (Raptor), to characterize its roles in aging. Global or tissue-specific inhibition of DAF-15 during development results in various growth defects, whereas neuron-specific knockdown of DAF-15 during adulthood significantly extends lifespan and healthspan. The neuronal DAF-15 deficiency-induced longevity requires the intestinal activities of DAF-16/FOXO and PHA-4/FOXA transcription factors, as well as the AAK-2/AMP-activated protein kinase α catalytic subunit. Transcriptome profiling reveals that the neuronal DAF-15 knockdown promotes the expression of genes involved in protection. These findings define the tissue-specific roles of TORC1 in healthy aging and highlight the importance of neuronal modulation of aging.
Collapse
Affiliation(s)
- Xiao Zang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Qi Wang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Hanxin Zhang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Yiyan Zhang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zi Wang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Zixing Wu
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Di Chen
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; Department of Colorectal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
10
|
Ange JS, Weng Y, Stevenson ME, Kaletsky R, Moore RS, Zhou S, Murphy CT. Adult Single-nucleus Neuronal Transcriptomes of Insulin Signaling Mutants Reveal Regulators of Behavior and Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579364. [PMID: 38370779 PMCID: PMC10871314 DOI: 10.1101/2024.02.07.579364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The insulin/insulin-like signaling (IIS) pathway regulates many of C. elegans' adult functions, including learning and memory 1 . While whole-worm and tissue-specific transcriptomic analyses have identified IIS targets 2,3 , a higher-resolution single-cell approach is required to identify changes that confer neuron-specific improvements in the long-lived insulin receptor mutant, daf-2 . To understand how behaviors that are controlled by a small number of neurons change in daf-2 mutants, we used the deep resolution of single-nucleus RNA sequencing to define each neuron type's transcriptome in adult wild-type and daf-2 mutants. First, we found surprising differences between wild-type L4 larval neurons and young adult neurons in chemoreceptor expression, synaptic genes, and learning and memory genes. These Day 1 adult neuron transcriptomes allowed us to identify adult AWC-specific regulators of chemosensory function and to predict neuron-to-neuron peptide/receptor pairs. We then identified gene expression changes that correlate with daf-2's improved cognitive functions, particularly in the AWC sensory neuron that controls learning and associative memory 4 , and used behavioral assays to test their roles in cognitive function. Combining deep single-neuron transcriptomics, genetic manipulation, and behavioral analyses enabled us to identify genes that may function in a single adult neuron to control behavior, including conserved genes that function in learning and memory. One-Sentence Summary Single-nucleus sequencing of adult wild-type and daf-2 C. elegans neurons reveals functionally relevant transcriptional changes, including regulators of chemosensation, learning, and memory.
Collapse
|
11
|
Fabrizio P, Alcolei A, Solari F. Considering Caenorhabditis elegans Aging on a Temporal and Tissue Scale: The Case of Insulin/IGF-1 Signaling. Cells 2024; 13:288. [PMID: 38334680 PMCID: PMC10854721 DOI: 10.3390/cells13030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
The aging process is inherently complex, involving multiple mechanisms that interact at different biological scales. The nematode Caenorhabditis elegans is a simple model organism that has played a pivotal role in aging research following the discovery of mutations extending lifespan. Longevity pathways identified in C. elegans were subsequently found to be conserved and regulate lifespan in multiple species. These pathways intersect with fundamental hallmarks of aging that include nutrient sensing, epigenetic alterations, proteostasis loss, and mitochondrial dysfunction. Here we summarize recent data obtained in C. elegans highlighting the importance of studying aging at both the tissue and temporal scale. We then focus on the neuromuscular system to illustrate the kinetics of changes that take place with age. We describe recently developed tools that enabled the dissection of the contribution of the insulin/IGF-1 receptor ortholog DAF-2 to the regulation of worm mobility in specific tissues and at different ages. We also discuss guidelines and potential pitfalls in the use of these new tools. We further highlight the opportunities that they present, especially when combined with recent transcriptomic data, to address and resolve the inherent complexity of aging. Understanding how different aging processes interact within and between tissues at different life stages could ultimately suggest potential intervention points for age-related diseases.
Collapse
Affiliation(s)
- Paola Fabrizio
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM 1210, University Claude Bernard Lyon 1, 69364 Lyon, France;
| | - Allan Alcolei
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Florence Solari
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| |
Collapse
|
12
|
Stringer RN, Weiss N. Pathophysiology of ion channels in amyotrophic lateral sclerosis. Mol Brain 2023; 16:82. [PMID: 38102715 PMCID: PMC10722804 DOI: 10.1186/s13041-023-01070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) stands as the most prevalent and severe form of motor neuron disease, affecting an estimated 2 in 100,000 individuals worldwide. It is characterized by the progressive loss of cortical, brainstem, and spinal motor neurons, ultimately resulting in muscle weakness and death. Although the etiology of ALS remains poorly understood in most cases, the remodelling of ion channels and alteration in neuronal excitability represent a hallmark of the disease, manifesting not only during the symptomatic period but also in the early pre-symptomatic stages. In this review, we delve into these alterations observed in ALS patients and preclinical disease models, and explore their consequences on neuronal activities. Furthermore, we discuss the potential of ion channels as therapeutic targets in the context of ALS.
Collapse
Affiliation(s)
- Robin N Stringer
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
13
|
Pang Y, Li M, Li F, Lei J, Zhang T. Preliminary study on the E-liquid and aerosol on the neurobehavior of C. elegans. ENVIRONMENT INTERNATIONAL 2023; 179:108180. [PMID: 37690220 DOI: 10.1016/j.envint.2023.108180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
E-cigarettes, also known as electronic nicotine delivery systems (ENDS), are mainly used among adolescents and young adults. Similar to traditional cigarettes, different concentrations of nicotine are also added to E-cigarette's liquid (E-liquid), but due to the supplementation of chemicals such as propylene glycol (PG), vegetable glycerin (VG) and flavors, it is difficult to determine the risk after using E-cigarettes. And given to the specificity of the aerosol particle composition and atomization process of E-cigarettes, it is necessary to assess the neurotoxic effects of long-term E-cigarettes use. In this study, two commercial nicotine-containing (5%) and nicotine-free E-liquids were diluted to investigate the neurobehavioral changes and addictive tendencies of developing C. elegans after sub-chronic exposure to E-liquid. The results showed that sub-chronic exposure of E-liquid could lead to impaired growth and development of nematodes, abnormal general neuromotor behavior and advanced learning and memory behavior, and nicotine-containing E-liquid could also lead to increased addiction tendency of nematodes. Although the damage effect of nicotine free E-liquid is smaller than that of the nicotine-containing group, its toxic effect cannot be ignored. Further analysis of the neurotoxicity mechanism found that redox imbalance-mediated mitochondrial stress and aging may be important causes of E-liquid-induced biological damage. The biosafety of e-cigarette aerosols was also included in the assessment. The study found that the heated atomization process did not alter the E-liquid components, and E-cigarette aerosols still have the effect of interfering with the growth and development of nematodes and neurobehavior, and its addictive nature is also of concern. This study can provide new ideas for future studies on the neurotoxic effects and safety assessment of the E-cigarettes, and provide theoretical reference for the study on the injury mechanism of E-cigarettes.
Collapse
Affiliation(s)
- Yanting Pang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Menghan Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Fuxian Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jialin Lei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
14
|
Hu Z, Luo Y, Liu Y, Luo Y, Wang L, Gou S, Peng Y, Wei R, Jia D, Wang Y, Gao S, Zhang Y. Partial inhibition of class III PI3K VPS-34 ameliorates motor aging and prolongs health span. PLoS Biol 2023; 21:e3002165. [PMID: 37432924 DOI: 10.1371/journal.pbio.3002165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/13/2023] [Indexed: 07/13/2023] Open
Abstract
Global increase of life expectancy is rarely accompanied by increased health span, calling for a greater understanding of age-associated behavioral decline. Motor independence is strongly associated with the quality of life of elderly people, yet the regulators for motor aging have not been systematically explored. Here, we designed a fast and efficient genome-wide screening assay in Caenorhabditis elegans and identified 34 consistent genes as potential regulators of motor aging. Among the top hits, we found VPS-34, the class III phosphatidylinositol 3-kinase that phosphorylates phosphatidylinositol (PI) to phosphatidylinositol 3-phosphate (PI(3)P), regulates motor function in aged but not young worms. It primarily functions in aged motor neurons by inhibiting PI(3)P-PI-PI(4)P conversion to reduce neurotransmission at the neuromuscular junction (NMJ). Genetic and pharmacological inhibition of VPS-34 improve neurotransmission and muscle integrity, ameliorating motor aging in both worms and mice. Thus, our genome-wide screening revealed an evolutionarily conserved, actionable target to delay motor aging and prolong health span.
Collapse
Affiliation(s)
- Zhongliang Hu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yamei Luo
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuting Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yaru Luo
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liangce Wang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shengsong Gou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuling Peng
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Wei
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Spanoudakis E, Tavernarakis N. Age-associated anatomical and physiological alterations in Caenorhabditis elegans. Mech Ageing Dev 2023; 213:111827. [PMID: 37268279 DOI: 10.1016/j.mad.2023.111827] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
Since its introduction by Sydney Brenner, Caenorhabditis elegans has become a widely studied organism. Given its highly significant properties, including transparency, short lifespan, self-fertilization, high reproductive yield and ease in manipulation and genetic modifications, the nematode has contributed to the elucidation of several fundamental aspects of biology, such as development and ageing. Moreover, it has been extensively used as a platform for the modelling of ageing-associated human disorders, especially those related to neurodegeneration. The use of C. elegans for such purposes requires, and at the same time promotes the investigation of its normal ageing process. In this review we aim to summarize the major organismal alterations during normal worm ageing, in terms of morphology and functionality.
Collapse
Affiliation(s)
- Emmanuel Spanoudakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece; Department of Biology, University of Crete, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 70013, Crete, Greece.
| |
Collapse
|
16
|
Cheng X, Yan Z, Su Z, Liu J. The transforming growth factor beta ligand TIG-2 modulates the function of neuromuscular junction and muscle energy metabolism in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:962974. [PMID: 36385772 PMCID: PMC9650414 DOI: 10.3389/fnmol.2022.962974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Deciphering the physiological function of TGF-β (the transforming growth factor beta) family ligands is import for understanding the role of TGF-β in animals' development and aging. Here, we investigate the function of TIG-2, one of the ligands in Caenorhabditis elegans TGF-β family, in animals' behavioral modulation. Our results show that a loss-of-function mutation in tig-2 gene result in slower locomotion speed in the early adulthood and an increased density of cholinergic synapses, but a decreased neurotransmitter release at neuromuscular junctions (NMJs). Further tissue-specific rescue results reveal that neuronal and intestinal TIG-2 are essential for the formation of cholinergic synapses at NMJs. Interestingly, tig-2(ok3416) mutant is characterized with reduced muscle mitochondria content and adenosine triphosphate (ATP) production, although the function of muscle acetylcholine receptors and the morphology muscle fibers in the mutant are comparable to that in wild-type animals. Our result suggests that TIG-2 from different neuron and intestine regulates worm locomotion by modulating synaptogenesis and neurotransmission at NMJs, as well as energy metabolism in postsynaptic muscle cells.
Collapse
Affiliation(s)
- Xinran Cheng
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Zhenzhen Yan
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Zexiong Su
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jie Liu
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Identification of a Hydroxygallic Acid Derivative, Zingibroside R1 and a Sterol Lipid as Potential Active Ingredients of Cuscuta chinensis Extract That Has Neuroprotective and Antioxidant Effects in Aged Caenorhabditis elegans. Nutrients 2022; 14:nu14194199. [PMID: 36235851 PMCID: PMC9570774 DOI: 10.3390/nu14194199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
We examined the effects of the extracts from two traditional Chinese medicine plants, Cuscuta chinensis and Eucommia ulmoides, on the healthspan of the model organism Caenorhabditis elegans. C. chinensis increased the short-term memory and the mechanosensory response of aged C. elegans. Furthermore, both extracts improved the resistance towards oxidative stress, and decreased the intracellular level of reactive oxygen species. Chemical analyses of the extracts revealed the presence of several bioactive compounds such as chlorogenic acid, cinnamic acid, and quercetin. A fraction from the C. chinensis extract enriched in zingibroside R1 improved the lifespan, the survival after heat stress, and the locomotion in a manner similar to the full C. chinensis extract. Thus, zingibroside R1 could be (partly) responsible for the observed health benefits of C. chinensis. Furthermore, a hydroxygallic acid derivative and the sterol lipid 4-alpha-formyl-stigmasta-7,24(241)-dien-3-beta-ol are abundantly present in the C. chinensis extract and its most bioactive fraction, but hardly in E. ulmoides, making them good candidates to explain the overall healthspan benefits of C. chinensis compared to the specific positive effects on stress resistance by E. ulmoides. Our findings highlight the overall anti-aging effects of C. chinensis in C. elegans and provide first hints about the components responsible for these effects.
Collapse
|
18
|
Lin TA, Huang CW, Wei CC. Early-life perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) exposure cause obesity by disrupting fatty acids metabolism and enhancing triglyceride synthesis in Caenorhabditis elegans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106274. [PMID: 36037606 DOI: 10.1016/j.aquatox.2022.106274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are widely used and considered as emerging persistent pollutants, posing a potential threat to the aquatic ecosystem due to their metabolic toxicity. However, the effects of early-life PFOA and PFOS exposure on metabolic disruption and underlying mechanisms are not fully understood. Therefore, we investigated the effects of early-life PFOA or PFOS exposure on lipid accumulation, feeding behaviors, fatty acids composition, and possible genetic regulation using the nematode Caenorhabditis elegans as an in vivo model. Our results showed that low concentrations of PFOA and PFOS (0.1 and 1 μM) induced obesity in C. elegans, which was not due to the increased feeding rate. The altered fatty acid composition illustrated the decrease of saturated fatty acids and the increase of polyunsaturated fatty acids. Furthermore, the mutant assay and mRNA levels revealed that fatty acid desaturation related genes mdt-15, nhr-49, fat-6 as well as fatty acid (fasn-1) and triglyceride (TG) (dgat-2) synthesis related genes, were associated with the increased body fat, TG, and lipid droplet (LD) contents in C. elegans exposed to PFOA and PFOS. Hence, this present study provides the genetic regulatory information of PFOA and PFOS induced metabolic disruption of lipid metabolism and obesity.
Collapse
Affiliation(s)
- Ting-An Lin
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Chi-Wei Huang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, No. 142, Haizhuan Rd., Kaohsiung 811, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan.
| |
Collapse
|
19
|
Wu KC, Chu PC, Cheng YJ, Li CI, Tian J, Wu HY, Wu SH, Lai YC, Kao HH, Hsu AL, Lin HW, Lin CH. Development of a traditional Chinese medicine-based agent for the treatment of cancer cachexia. J Cachexia Sarcopenia Muscle 2022; 13:2073-2087. [PMID: 35718751 PMCID: PMC9397559 DOI: 10.1002/jcsm.13028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Despite recent advances in understanding the pathophysiology of cancer cachexia, prevention/treatment of this debilitating disease remains an unmet medical need. METHODS We developed an integrated, multi-tiered strategy involving both in vitro and in vivo muscle atrophy platforms to identify traditional Chinese medicine (TCM)-based anti-cachectic agents. In the initial screening, we used inflammatory cytokine-induced atrophy of C2C12 myotubes as a phenotypic screening platform to assess the protective effects of TCMs. The selected TCMs were then evaluated for their abilities to protect Caenorhabditis elegans from age-related reduction of mobility and contractility, followed by the C-26 colon adenocarcinoma mouse model of cachexia to confirm the anti-muscle atrophy effects (body/skeletal muscle weights, fibre size distribution, grip strengths, and serum IL-6). Transcriptome analysis, quantitative real-time polymerase chain reaction, and immunoblotting were performed to gain understanding of the potential mechanism(s) by which effective TCM protected against C26 tumour-induced muscle atrophy. RESULTS Of 29 widely used TCMs, Dioscorea radix (DR) and Mu Dan Pi (MDP) showed a complete protection (all P values, 0.0002) vis-à-vis C26 conditioned medium control in the myotube atrophy platform. MDP exhibited a unique ability to ameliorate age-associated decreases in worm mobility, accompanied by improved total body contractions, relative to control (P < 0.0001 and <0.01, respectively), which, however, was not noted with DR. This differential in vivo protective effect between MDP and DR was also confirmed in the C-26 mouse model. MDP at 1000 mg/kg (MDP-H) was effective in protecting body weight loss (P < 0.05) in C-26 tumour-bearing mice without changing food or water intake, accompanied by the restoration of the fibre size distribution of hindleg skeletal muscles (P < 0.0001) and the forelimb grip strength (P < 0.05). MDP-treated C-26-tumour-bearing mice were alert, showed normal posture and better body conditions, and exhibited lower serum IL-6 levels (P = 0.06) relative to vehicle control. This decreased serum IL-6 was associated with the in vitro suppressive effect of MDP (25 and 50 μg/mL) on IL-6 secretion into culture medium by C26 cells. RNA-seq analysis, followed by quantitative real-time polymerase chain reaction and/or immunoblotting, shows that MDP's anti-cachectic effect was attributable to its ability to reverse the C-26 tumour-induced re-programming of muscle homoeostasis-associated gene expression, including that of two cachexia drivers (MuRF1 and Atrogin-1), in skeletal muscles. CONCLUSIONS All these findings suggest the translational potential of MDP to foster new strategies for the prevention and/or treatment of cachexia. The protective effect of MDP on other types of muscle atrophy such as sarcopenia might warrant investigations.
Collapse
Affiliation(s)
- Kun-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan.,Research Center for Healthy Aging, China Medical University, Taichung, Taiwan
| | - Po-Chen Chu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Yu-Jung Cheng
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.,Department of Rehabilitation, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Ing Li
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jingkui Tian
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Hsing-Yu Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Szu-Hsien Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Yi-Chun Lai
- Research Center for Healthy Aging, China Medical University, Taichung, Taiwan
| | - Hsiang-Han Kao
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ao-Lin Hsu
- Research Center for Healthy Aging, China Medical University, Taichung, Taiwan.,PhD Program for Aging, China Medical University, Taichung, Taiwan.,Department of Internal Medicine, Division of Geriatrics & Palliative Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hsiang-Wen Lin
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan.,Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan.,Department of Pharmacy System, Outcomes and Policy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Chih-Hsueh Lin
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Geriatric Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
20
|
Roy C, Molin L, Alcolei A, Solyga M, Bonneau B, Vachon C, Bessereau JL, Solari F. DAF-2/insulin IGF-1 receptor regulates motility during aging by integrating opposite signaling from muscle and neuronal tissues. Aging Cell 2022; 21:e13660. [PMID: 35808897 PMCID: PMC9381905 DOI: 10.1111/acel.13660] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 12/11/2022] Open
Abstract
During aging, preservation of locomotion is generally considered an indicator of sustained good health, in elderlies and in animal models. In Caenorhabditis elegans, mutants of the insulin‐IGF‐1 receptor DAF2/IIRc represent a paradigm of healthy aging, as their increased lifespan is accompanied by a delay in age‐related loss of motility. Here, we investigated the DAF‐2/IIRc‐dependent relationship between longevity and motility using an auxin‐inducible degron to trigger tissue‐specific degradation of endogenous DAF‐2/IIRc. As previously reported, inactivation of DAF‐2/IIRc in neurons or intestine was sufficient to extend the lifespan of worms, whereas depletion in epidermis, germline, or muscle was not. However, neither intestinal nor neuronal depletion of DAF‐2/IIRc prevented the age‐related loss of motility. In 1‐day‐old adults, DAF‐2/IIRc depletion in neurons reduced motility in a DAF‐16/FOXO dependent manner, while muscle depletion had no effect. By contrast, DAF‐2 depletion in the muscle of middle‐age animals improved their motility independently of DAF‐16/FOXO but required UNC‐120/SRF. Yet, neuronal or muscle DAF‐2/IIRc depletion both preserved the mitochondria network in aging muscle. Overall, these results show that the motility pattern of daf‐2 mutants is determined by the sequential and opposing impact of neurons and muscle tissues and can be dissociated from the regulation of the lifespan. This work also provides the characterization of a versatile tool to analyze the tissue‐specific contribution of insulin‐like signaling in integrated phenotypes at the whole organism level.
Collapse
Affiliation(s)
- Charline Roy
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Laurent Molin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Allan Alcolei
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Mathilde Solyga
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Benjamin Bonneau
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Camille Vachon
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Jean-Louis Bessereau
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Florence Solari
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| |
Collapse
|
21
|
Wirak GS, Florman J, Alkema MJ, Connor CW, Gabel CV. Age-associated changes to neuronal dynamics involve a disruption of excitatory/inhibitory balance in C. elegans. eLife 2022; 11:72135. [PMID: 35703498 PMCID: PMC9273219 DOI: 10.7554/elife.72135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
In the aging brain, many of the alterations underlying cognitive and behavioral decline remain opaque. C. elegans offers a powerful model for aging research, with a simple, well-studied nervous system to further our understanding of the cellular modifications and functional alterations accompanying senescence. We perform multi-neuronal functional imaging across the aged C. elegans nervous system, measuring an age-associated breakdown in system-wide functional organization. At single-cell resolution, we detect shifts in activity dynamics toward higher frequencies. In addition, we measure a specific loss of inhibitory signaling that occurs early in the aging process and alters the systems critical excitatory/inhibitory balance. These effects are recapitulated with mutation of the calcium channel subunit UNC-2/CaV2a. We find that manipulation of inhibitory GABA signaling can partially ameliorate or accelerate the effects of aging. The effects of aging are also partially mitigated by disruption of the insulin signaling pathway, known to increase longevity, or by a reduction of caspase activation. Data from mammals are consistent with our findings, suggesting a conserved shift in the balance of excitatory/inhibitory signaling with age that leads to breakdown in global neuronal dynamics and functional decline.
Collapse
Affiliation(s)
- Gregory S Wirak
- Department of Physiology and Biophysics, Boston University, Boston, United States
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Christopher W Connor
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, United States
| | - Christopher V Gabel
- Department of Physiology and Biophysics, Boston University, Boston, United States
| |
Collapse
|
22
|
Dridi H, Forrester F, Umanskaya A, Xie W, Reiken S, Lacampagne A, Marks A. Role of oxidation of excitation-contraction coupling machinery in age-dependent loss of muscle function in C. elegans. eLife 2022; 11:75529. [PMID: 35506650 PMCID: PMC9113742 DOI: 10.7554/elife.75529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Age-dependent loss of body wall muscle function and impaired locomotion occur within 2 weeks in C. elegans; however, the underlying mechanism has not been fully elucidated. In humans, age-dependent loss of muscle function occurs at about 80 years of age and has been linked to dysfunction of ryanodine receptor (RyR)/intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum (SR). Mammalian skeletal muscle RyR1 channels undergo age-related remodeling due to oxidative overload, leading to loss of the stabilizing subunit calstabin1 (FKBP12) from the channel macromolecular complex. This destabilizes the closed state of the channel resulting in intracellular Ca2+ leak, reduced muscle function, and impaired exercise capacity. We now show that the C. elegans RyR homolog, UNC-68, exhibits a remarkable degree of evolutionary conservation with mammalian RyR channels and similar age-dependent dysfunction. Like RyR1 in mammals UNC-68 encodes a protein that comprises a macromolecular complex which includes the calstabin1 homolog FKB-2 and is immunoreactive with antibodies raised against the RyR1 complex. Further, as in aged mammals, UNC-68 is oxidized and depleted of FKB-2 in an age-dependent manner, resulting in 'leaky' channels, depleted SR Ca2+ stores, reduced body wall muscle Ca2+ transients, and age-dependent muscle weakness. FKB-2 (ok3007)-deficient worms exhibit reduced exercise capacity. Pharmacologically induced oxidization of UNC-68 and depletion of FKB-2 from the channel independently caused reduced body wall muscle Ca2+ transients. Preventing FKB-2 depletion from the UNC-68 macromolecular complex using the Rycal drug S107 improved muscle Ca2+ transients and function. Taken together, these data suggest that UNC-68 oxidation plays a role in age-dependent loss of muscle function. Remarkably, this age-dependent loss of muscle function induced by oxidative overload, which takes ~2 years in mice and ~80 years in humans, occurs in less than 2-3 weeks in C. elegans, suggesting that reduced antioxidant capacity may contribute to the differences in life span amongst species.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Frances Forrester
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Alisa Umanskaya
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Wenjun Xie
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Alain Lacampagne
- U1046, Montpellier University, INSERM, CNRS, Montpellier, France
| | - Andrew Marks
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| |
Collapse
|
23
|
Sinha DB, Pincus ZS. High temporal resolution measurements of movement reveal novel early-life physiological decline in C. elegans. PLoS One 2022; 17:e0257591. [PMID: 35108272 PMCID: PMC8809618 DOI: 10.1371/journal.pone.0257591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/16/2022] [Indexed: 11/19/2022] Open
Abstract
Age-related physiological changes are most notable and best-studied late in life, while the nature of aging in early- or middle-aged individuals has not been explored as thoroughly. In C. elegans, many studies of movement vs. age generally focus on three distinct phases: sustained, youthful movement; onset of rapidly progressing impairment; and gross immobility. We investigated whether this first period of early-life adult movement is a sustained “healthy” level of high function followed by a discrete “movement catastrophe”—or whether there are early-life changes in movement that precede future physiological declines. To determine how movement varies during early adult life, we followed isolated individuals throughout life with a previously unachieved combination of duration and temporal resolution. By tracking individuals across the first six days of adulthood, we observed declines in movement starting as early as the first two days of adult life, as well as high interindividual variability in total daily movement. These findings suggest that movement is a highly dynamic behavior early in life, and that factors driving movement decline may begin acting as early as the first day of adulthood. Using simulation studies based on acquired data, we suggest that too-infrequent sampling in common movement assays limits observation of early-adult changes in motility, and we propose feasible strategies and a framework for designing assays with increased sensitivity for early movement declines.
Collapse
Affiliation(s)
- Drew Benjamin Sinha
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Departments from Genetics and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zachary Scott Pincus
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Departments from Genetics and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: ,
| |
Collapse
|
24
|
Yan Z, Cheng X, Li Y, Su Z, Zhou Y, Liu J. Sexually Dimorphic Neurotransmitter Release at the Neuromuscular Junction in Adult Caenorhabditis elegans. Front Mol Neurosci 2022; 14:780396. [PMID: 35173578 PMCID: PMC8841764 DOI: 10.3389/fnmol.2021.780396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Sexually dimorphic differentiation of sex-shared behaviors is observed across the animal world, but the underlying neurobiological mechanisms are not fully understood. Here we report sexual dimorphism in neurotransmitter release at the neuromuscular junctions (NMJs) of adult Caenorhabditis elegans. Studying worm locomotion confirms sex differences in spontaneous locomotion of adult animals, and quantitative fluorescence analysis shows that excitatory cholinergic synapses, but not inhibitory GABAergic synapses exhibit the adult-specific difference in synaptic vesicles between males and hermaphrodites. Electrophysiological recording from the NMJ of C. elegans not only reveals an enhanced neurotransmitter release but also demonstrates increased sensitivity of synaptic exocytosis to extracellular calcium concentration in adult males. Furthermore, the cholinergic synapses in adult males are characterized with weaker synaptic depression but faster vesicle replenishment than that in hermaphrodites. Interestingly, T-type calcium channels/CCA-1 play a male-specific role in acetylcholine release at the NMJs in adult animals. Taken together, our results demonstrate sexually dimorphic differentiation of synaptic mechanisms at the C. elegans NMJs, and thus provide a new mechanistic insight into how biological sex shapes animal behaviors through sex-shared neurons and circuits.
Collapse
|
25
|
Vallejos MJ, Eadaim A, Hahm ET, Tsunoda S. Age-related changes in Kv4/Shal and Kv1/Shaker expression in Drosophila and a role for reactive oxygen species. PLoS One 2021; 16:e0261087. [PMID: 34932577 PMCID: PMC8691634 DOI: 10.1371/journal.pone.0261087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Age-related changes in ion channel expression are likely to affect neuronal signaling. Here, we examine how age affects Kv4/Shal and Kv1/Shaker K+ channel protein levels in Drosophila. We show that Kv4/Shal protein levels decline sharply from 3 days to 10 days, then more gradually from 10 to 40 days after eclosion. In contrast, Kv1/Shaker protein exhibits a transient increase at 10 days that then stabilizes and eventually declines at 40 days. We present data that begin to show a relationship between reactive oxygen species (ROS), Kv4/Shal, and locomotor performance. We show that Kv4/Shal levels are negatively affected by ROS, and that over-expression of Catalase or RNAi knock-down of the ROS-generating enzyme, Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase (NOX), can attenuate the loss of Kv4/Shal protein. Finally, we compare levels of Kv4.2 and Kv4.3 in the hippocampus, olfactory bulb, cerebellum, and motor cortex of mice aged 6 weeks and 1 year. While there was no global decline in Kv4.2/4.3 that parallels what we report in Drosophila, we did find that Kv4.2/4.3 are differentially affected in various brain regions; this survey of changes may help inform mammalian studies that examine neuronal function with age.
Collapse
Affiliation(s)
- Maximiliano J. Vallejos
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Abdunaser Eadaim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eu-Teum Hahm
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
26
|
Kallergi E, Nikoletopoulou V. Macroautophagy and normal aging of the nervous system: Lessons from animal models. Cell Stress 2021; 5:146-166. [PMID: 34708187 PMCID: PMC8490955 DOI: 10.15698/cst2021.10.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Aging represents a cumulative form of cellular stress, which is thought to challenge many aspects of proteostasis. The non-dividing, long-lived neurons are particularly vulnerable to stress, and, not surprisingly, even normal aging is highly associated with a decline in brain function in humans, as well as in other animals. Macroautophagy is a fundamental arm of the proteostasis network, safeguarding proper protein turnover during different cellular states and against diverse cellular stressors. An intricate interplay between macroautophagy and aging is beginning to unravel, with the emergence of new tools, including those for monitoring autophagy in cultured neurons and in the nervous system of different organisms in vivo. Here, we review recent findings on the impact of aging on neuronal integrity and on neuronal macroautophagy, as they emerge from studies in invertebrate and mammalian models.
Collapse
Affiliation(s)
- Emmanouela Kallergi
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | | |
Collapse
|
27
|
Zhang M, Chen S, Dai Y, Duan T, Xu Y, Li X, Yang J, Zhu X. Aspartame and sucralose extend the lifespan and improve the health status of C. elegans. Food Funct 2021; 12:9912-9921. [PMID: 34486601 DOI: 10.1039/d1fo01579f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aspartame (ASP) and sucralose (SUC) are non-nutritive sweeteners which are widely consumed worldwide. They are considered safe for human consumption, but their effects on certain physiological aspects, such as the lifespan or health status, of the organism have not yet been studied in depth and only limited data are available in the literature. The objectives of this study were to evaluate the effects of ASP and SUC on the lifespan and health indexes using Caenorhabditis elegans (C. elegans) as a model system. Interestingly, it was shown that at the concentrations tested, ASP (0.03-3 mg mL-1) showed an increasing trend of the mean lifespan of C. elegans, with a significant increase of 27.6% compared to the control at 3 mg mL-1. Similarly, SUC (ranging from 0.03 to 10 mg mL-1) also significantly increased the mean lifespan by 20.3% and 22.3% at 0.03 and 0.3 mg mL-1, respectively. However, 10 mg mL-1 SUC had a negative effect on the lifespan, though it did not reach a statistically significant level. In addition, ASP and SUC decreased lipofuscin accumulation and transiently improved motility, indicating improved health status. Nonetheless, they had different effects on food intake and intestinal fat deposition (IFD) at different intervals of time. Taken together, our findings revealed that ASP and SUC can prolong the lifespan and improve the health status of C. elegans.
Collapse
Affiliation(s)
- Mohan Zhang
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang 325000, China.,Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Shuai Chen
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang 325000, China
| | - Yuhua Dai
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China.
| | - Ting Duan
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Yuying Xu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Xiaolin Li
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs district, Shanghai 200135, China
| | - Jun Yang
- Department of Toxicology, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 311121, China. .,Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research, The Affiliated Women's Hospital, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Xinqiang Zhu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China. .,Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
28
|
Zhang Y, Zhao C, Zhang H, Liu R, Wang S, Pu Y, Yin L. Integrating transcriptomics and behavior tests reveals how the C. elegans responds to copper induced aging. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112494. [PMID: 34265532 DOI: 10.1016/j.ecoenv.2021.112494] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Copper (Cu) pollution in water and agricultural soil has always been a worldwide concern. This research aims to investigate the health effects of copper exposure on Caenorhabditis elegans (C. elegans) under the existing environmental quality standards (1 mg/L and 2 mg/L) via lifespan, reproduction, biological markers and transcriptome analysis. The results showed that copper of these two environmental standards shorten the lifespan of nematodes, reduced the brood size, reduced the frequency of pharyngeal pumps and prolonged defecation time as aging-related behaviors, and increased the levels of aging-related markers ROS, MDA and H2O2. There was a certain effect trend for the two exposure concentrations. Further, the possible molecular mechanism of copper-induced aging and reproductive effects on C. elegans was explored. Differential gene expression analysis was performed, and 2332 genes (567 up- and 1765 down-regulated genes) in the 1 mg/L group, 2449 DEGs (724 up- and 1725 down-regulated genes) in the 2 mg/L group in response to copper treatment. The top 20 regulated genes were vit (vit-1, vit-3, vit-4) genes, col genes (col-35, col-72, col-114, col-123, col-164, col-183, col-185), eea-1, him-18 and grl-20, which suggested that cuticle collagen synthesis and yolk expression were disrupted by copper. Analysis of KEGG pathway showed copper exposure widely affects longevity regulation pathways, thereby promoting aging. In summary, the sequencing results extensively and deeply reveal the health hazards of environmentally relevant doses of copper exposure to C. elegans, and behavioral testing verified that copper promoted aging of C. elegans.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
29
|
Koopman M, Janssen L, Nollen EAA. An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans. BMC Biol 2021; 19:170. [PMID: 34429103 PMCID: PMC8386059 DOI: 10.1186/s12915-021-01085-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Optogenetics allows the experimental manipulation of excitable cells by a light stimulus without the need for technically challenging and invasive procedures. The high degree of spatial, temporal, and intensity control that can be achieved with a light stimulus, combined with cell type-specific expression of light-sensitive ion channels, enables highly specific and precise stimulation of excitable cells. Optogenetic tools have therefore revolutionized the study of neuronal circuits in a number of models, including Caenorhabditis elegans. Despite the existence of several optogenetic systems that allow spatial and temporal photoactivation of light-sensitive actuators in C. elegans, their high costs and low flexibility have limited wide access to optogenetics. Here, we developed an inexpensive, easy-to-build, modular, and adjustable optogenetics device for use on different microscopes and worm trackers, which we called the OptoArm. Results The OptoArm allows for single- and multiple-worm illumination and is adaptable in terms of light intensity, lighting profiles, and light color. We demonstrate OptoArm’s power in a population-based multi-parameter study on the contributions of motor circuit cells to age-related motility decline. We found that individual components of the neuromuscular system display different rates of age-dependent deterioration. The functional decline of cholinergic neurons mirrors motor decline, while GABAergic neurons and muscle cells are relatively age-resilient, suggesting that rate-limiting cells exist and determine neuronal circuit ageing. Conclusion We have assembled an economical, reliable, and highly adaptable optogenetics system which can be deployed to address diverse biological questions. We provide a detailed description of the construction as well as technical and biological validation of our set-up. Importantly, use of the OptoArm is not limited to C. elegans and may benefit studies in multiple model organisms, making optogenetics more accessible to the broader research community. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01085-2.
Collapse
Affiliation(s)
- M Koopman
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - L Janssen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - E A A Nollen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
30
|
Banerjee S, Vernon S, Jiao W, Choi BJ, Ruchti E, Asadzadeh J, Burri O, Stowers RS, McCabe BD. Miniature neurotransmission is required to maintain Drosophila synaptic structures during ageing. Nat Commun 2021; 12:4399. [PMID: 34285221 PMCID: PMC8292383 DOI: 10.1038/s41467-021-24490-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 06/22/2021] [Indexed: 11/27/2022] Open
Abstract
The decline of neuronal synapses is an established feature of ageing accompanied by the diminishment of neuronal function, and in the motor system at least, a reduction of behavioural capacity. Here, we have investigated Drosophila motor neuron synaptic terminals during ageing. We observed cumulative fragmentation of presynaptic structures accompanied by diminishment of both evoked and miniature neurotransmission occurring in tandem with reduced motor ability. Through discrete manipulation of each neurotransmission modality, we find that miniature but not evoked neurotransmission is required to maintain presynaptic architecture and that increasing miniature events can both preserve synaptic structures and prolong motor ability during ageing. Our results establish that miniature neurotransmission, formerly viewed as an epiphenomenon, is necessary for the long-term stability of synaptic connections. Synaptic structures disintegrate and fragment as ageing progresses. Here the authors find that miniature neurotransmission is required to maintain adult motor synapse structures in Drosophila and that increasing miniature events can preserve motor ability during ageing.
Collapse
Affiliation(s)
- Soumya Banerjee
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Samuel Vernon
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Wei Jiao
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Ben Jiwon Choi
- Department of Biology, New York University, New York, USA
| | - Evelyne Ruchti
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Jamshid Asadzadeh
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Olivier Burri
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - R Steven Stowers
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, USA
| | - Brian D McCabe
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland.
| |
Collapse
|
31
|
Wu Y, Zhu J, Liu H, Liu H. Licochalcone A improves the cognitive ability of mice by regulating T- and B-cell proliferation. Aging (Albany NY) 2021; 13:8895-8915. [PMID: 33714945 PMCID: PMC8034954 DOI: 10.18632/aging.202704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
Licochalcone A (LA), a flavonoid found in licorice, has anticancer, antioxidant, anti-inflammatory, and neuroprotective properties. Here, we explored the effect of injecting LA into the tail vein of middle-aged C57BL/6 mice on their cognitive ability as measured by the Morris water maze (MWM) test and cerebral blood flow (CBF). The related mechanisms were assessed via RNA-seq, and T (CD3e+) and B (CD45R/B220+) cells in the spleen and whole blood were quantified via flow cytometry. LA improved the cognitive ability, according to the MWM test results, and upregulated the CBF level of treated mice. The RNA-seq results indicate that LA affected the interleukin (IL)-17 signaling pathway, which is related to T- and B-cell proliferation, and the flow cytometry data suggest that LA promoted T- and B-cell proliferation in the spleen and whole blood. We also performed immune reconstruction via a tail vein injection of lymphocytes into B-NDG (NOD-PrkdcscidIl2rgtm1/Bcge) mice before treating them with LA. We tested cognitive ability by subjecting these animals to new object recognition tests and quantified the splenic and whole blood T and B cells. Cognitive ability improved after immune reconstruction and LA treatment, and LA promoted T- and B-cell proliferation in the spleen and whole blood. This study demonstrates that LA, by activating the IL-17 signaling pathway, promotes T- and B-cell proliferation in the spleen and whole blood of mice and improves cognitive ability. Thus, LA may have immune-modulating therapeutic potential for improving cognition.
Collapse
Affiliation(s)
- Yating Wu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jianbo Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Haifeng Liu
- China Colored-Cotton (Group) Co., Ltd., Urumqi 830016, Xinjiang, China
| | - Hailiang Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.,Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| |
Collapse
|
32
|
Koch SC, Nelson A, Hartenstein V. Structural aspects of the aging invertebrate brain. Cell Tissue Res 2021; 383:931-947. [PMID: 33409654 PMCID: PMC7965346 DOI: 10.1007/s00441-020-03314-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/28/2020] [Indexed: 11/26/2022]
Abstract
Aging is characterized by a decline in neuronal function in all animal species investigated so far. Functional changes are accompanied by and may be in part caused by, structurally visible degenerative changes in neurons. In the mammalian brain, normal aging shows abnormalities in dendrites and axons, as well as ultrastructural changes in synapses, rather than global neuron loss. The analysis of the structural features of aging neurons, as well as their causal link to molecular mechanisms on the one hand, and the functional decline on the other hand is crucial in order to understand the aging process in the brain. Invertebrate model organisms like Drosophila and C. elegans offer the opportunity to apply a forward genetic approach to the analysis of aging. In the present review, we aim to summarize findings concerning abnormalities in morphology and ultrastructure in invertebrate brains during normal aging and compare them to what is known for the mammalian brain. It becomes clear that despite of their considerably shorter life span, invertebrates display several age-related changes very similar to the mammalian condition, including the retraction of dendritic and axonal branches at specific locations, changes in synaptic density and increased accumulation of presynaptic protein complexes. We anticipate that continued research efforts in invertebrate systems will significantly contribute to reveal (and possibly manipulate) the molecular/cellular pathways leading to neuronal aging in the mammalian brain.
Collapse
Affiliation(s)
- Sandra C Koch
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Annie Nelson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, California, USA.
| |
Collapse
|
33
|
Birnbaum A, Sodders M, Bouska M, Chang K, Kang P, McNeill E, Bai H. FOXO Regulates Neuromuscular Junction Homeostasis During Drosophila Aging. Front Aging Neurosci 2021; 12:567861. [PMID: 33584240 PMCID: PMC7874159 DOI: 10.3389/fnagi.2020.567861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
The transcription factor foxo is a known regulator of lifespan extension and tissue homeostasis. It has been linked to the maintenance of neuronal processes across many species and has been shown to promote youthful characteristics by regulating cytoskeletal flexibility and synaptic plasticity at the neuromuscular junction (NMJ). However, the role of foxo in aging neuromuscular junction function has yet to be determined. We profiled adult Drosophila foxo- null mutant abdominal ventral longitudinal muscles and found that young mutants exhibited morphological profiles similar to those of aged wild-type flies, such as larger bouton areas and shorter terminal branches. We also observed changes to the axonal cytoskeleton and an accumulation of late endosomes in foxo null mutants and motor neuron-specific foxo knockdown flies, similar to those of aged wild-types. Motor neuron-specific overexpression of foxo can delay age-dependent changes to NMJ morphology, suggesting foxo is responsible for maintaining NMJ integrity during aging. Through genetic screening, we identify several downstream factors mediated through foxo-regulated NMJ homeostasis, including genes involved in the MAPK pathway. Interestingly, the phosphorylation of p38 was increased in the motor neuron-specific foxo knockdown flies, suggesting foxo acts as a suppressor of p38/MAPK activation. Our work reveals that foxo is a key regulator for NMJ homeostasis, and it may maintain NMJ integrity by repressing MAPK signaling.
Collapse
Affiliation(s)
- Allison Birnbaum
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States.,Department of Cell, Developmental and Integrative Biology, University of Alabama Birmingham, Birmingham, AL, United States
| | - Maggie Sodders
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Mark Bouska
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Kai Chang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Ping Kang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Elizabeth McNeill
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
34
|
Mohankumar A, Kalaiselvi D, Thiruppathi G, Muthusaravanan S, Nivitha S, Levenson C, Tawata S, Sundararaj P. α- and β-Santalols Delay Aging in Caenorhabditis elegans via Preventing Oxidative Stress and Protein Aggregation. ACS OMEGA 2020; 5:32641-32654. [PMID: 33376901 PMCID: PMC7758982 DOI: 10.1021/acsomega.0c05006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/25/2020] [Indexed: 05/08/2023]
Abstract
α- and β-Santalol (santalol isomers) are the most abundant sesquiterpenoids found in sandalwood, contributing to its pleasant fragrance and wide-spectrum bioactivity. This study aimed at identifying the antiaging and antiaggregation mechanism of α- and β-santalol using the genetic tractability of an in vivo model Caenorhabditis elegans. The results showed that santalol isomers retard aging, improved health span, and inhibited the aggregation of toxic amyloid-β (Aβ1-42) and polyglutamine repeats (Q35, Q40, and HtnQ150) in C. elegans models for Alzheimer's and Huntington's disease, respectively. The genetic study, reporter gene expression, RNA-based reverse genetic approach (RNA interferences/RNAi), and gene expression analysis revealed that santalol isomers selectively regulate SKN-1/Nrf2 and EOR-1/PLZF transcription factors through the RTK/Ras/MAPK-dependent signaling axis that could trigger the expression of several antioxidants and protein aggregation inhibitory genes, viz., gst-4, gcs-1, gst-10, gsr-1, hsp-4, and skr-5, which extend longevity and help minimize age-induced protein oxidation and aggregation. We believe that these findings will further promote α- and β-santalol to become next-generation prolongevity and antiaggregation molecules for longer and healthier life.
Collapse
Affiliation(s)
| | - Duraisamy Kalaiselvi
- Department
of Zoology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
- Department
of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture,
College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | | | - Sundararaj Nivitha
- College
of Science, Northeastern University, Boston, Massachusetts 02115, United States
| | - Corey Levenson
- Santalis
Pharmaceuticals, Inc., 18618 Tuscany Stone, Suite 100, San Antonio, Texas 78258, United States
| | - Shinkichi Tawata
- Department
of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara-cho, Okinawa 903-0213, Japan
| | | |
Collapse
|
35
|
Anton SD, Cruz-Almeida Y, Singh A, Alpert J, Bensadon B, Cabrera M, Clark DJ, Ebner NC, Esser KA, Fillingim RB, Goicolea SM, Han SM, Kallas H, Johnson A, Leeuwenburgh C, Liu AC, Manini TM, Marsiske M, Moore F, Qiu P, Mankowski RT, Mardini M, McLaren C, Ranka S, Rashidi P, Saini S, Sibille KT, Someya S, Wohlgemuth S, Tucker C, Xiao R, Pahor M. Innovations in Geroscience to enhance mobility in older adults. Exp Gerontol 2020; 142:111123. [PMID: 33191210 PMCID: PMC7581361 DOI: 10.1016/j.exger.2020.111123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
Aging is the primary risk factor for functional decline; thus, understanding and preventing disability among older adults has emerged as an important public health challenge of the 21st century. The science of gerontology - or geroscience - has the practical purpose of "adding life to the years." The overall goal of geroscience is to increase healthspan, which refers to extending the portion of the lifespan in which the individual experiences enjoyment, satisfaction, and wellness. An important facet of this goal is preserving mobility, defined as the ability to move independently. Despite this clear purpose, this has proven to be a challenging endeavor as mobility and function in later life are influenced by a complex interaction of factors across multiple domains. Moreover, findings over the past decade have highlighted the complexity of walking and how targeting multiple systems, including the brain and sensory organs, as well as the environment in which a person lives, can have a dramatic effect on an older person's mobility and function. For these reasons, behavioral interventions that incorporate complex walking tasks and other activities of daily living appear to be especially helpful for improving mobility function. Other pharmaceutical interventions, such as oxytocin, and complementary and alternative interventions, such as massage therapy, may enhance physical function both through direct effects on biological mechanisms related to mobility, as well as indirectly through modulation of cognitive and socioemotional processes. Thus, the purpose of the present review is to describe evolving interventional approaches to enhance mobility and maintain healthspan in the growing population of older adults in the United States and countries throughout the world. Such interventions are likely to be greatly assisted by technological advances and the widespread adoption of virtual communications during and after the COVID-19 era.
Collapse
Affiliation(s)
- Stephen D Anton
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Yenisel Cruz-Almeida
- University of Florida, Department of Community Dentistry and Behavioral Science, 1329 SW Archer Road, Gainesville, FL 32610, United States.
| | - Arashdeep Singh
- University of Florida, Department of Pharmacodynamics, College of Pharmacy, 1345 Center Drive, Gainesville, FL 32610, United States.
| | - Jordan Alpert
- University of Florida, College of Journalism and Communications, Gainesville, FL 32610, United States.
| | - Benjamin Bensadon
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Melanie Cabrera
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - David J Clark
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Natalie C Ebner
- University of Florida, Department of Psychology, 945 Center Drive, Gainesville, FL 32611, United States.
| | - Karyn A Esser
- University of Florida, Department of Physiology and Functional Genomics, 1345 Center Drive, Gainesville, FL, United States.
| | - Roger B Fillingim
- University of Florida, Department of Community Dentistry and Behavioral Science, 1329 SW Archer Road, Gainesville, FL 32610, United States.
| | - Soamy Montesino Goicolea
- University of Florida, Department of Community Dentistry and Behavioral Science, 1329 SW Archer Road, Gainesville, FL 32610, United States.
| | - Sung Min Han
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Henrique Kallas
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Alisa Johnson
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Christiaan Leeuwenburgh
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Andrew C Liu
- University of Florida, Department of Physiology and Functional Genomics, 1345 Center Drive, Gainesville, FL, United States.
| | - Todd M Manini
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Michael Marsiske
- University of Florida, Department of Clinical & Health Psychology, 1225 Center Drive, Gainesville, FL 32610, United States.
| | - Frederick Moore
- University of Florida, Department of Surgery, Gainesville, FL 32610, United States.
| | - Peihua Qiu
- University of Florida, Department of Biostatistics, Gainesville, FL 32611, United States.
| | - Robert T Mankowski
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Mamoun Mardini
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Christian McLaren
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Sanjay Ranka
- University of Florida, Department of Computer & Information Science & Engineering, Gainesville, FL 32611, United States.
| | - Parisa Rashidi
- University of Florida, Department of Biomedical Engineering. P.O. Box 116131. Gainesville, FL 32610, United States.
| | - Sunil Saini
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Kimberly T Sibille
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Shinichi Someya
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Stephanie Wohlgemuth
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Carolyn Tucker
- University of Florida, Department of Psychology, 945 Center Drive, Gainesville, FL 32611, United States.
| | - Rui Xiao
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Marco Pahor
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| |
Collapse
|
36
|
Solyga M, Solari F. La voie de signalisation du récepteur DAF-2 (Insuline/IGF-1) : un acteur clé du vieillissement musculaire. Med Sci (Paris) 2020; 36:938-841. [DOI: 10.1051/medsci/2020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Rahman M, Edwards H, Birze N, Gabrilska R, Rumbaugh KP, Blawzdziewicz J, Szewczyk NJ, Driscoll M, Vanapalli SA. NemaLife chip: a micropillar-based microfluidic culture device optimized for aging studies in crawling C. elegans. Sci Rep 2020; 10:16190. [PMID: 33004810 PMCID: PMC7530743 DOI: 10.1038/s41598-020-73002-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/10/2020] [Indexed: 01/23/2023] Open
Abstract
In this study, we report a microfluidic device for the whole-life culture of the nematode Caenorhabditis elegans that allows the scoring of animal survival and health measures. This device referred to as the NemaLife chip features: (1) an optimized micropillar arena in which animals can crawl, (2) sieve channels that separate progeny and prevent the loss of adults from the arena during culture maintenance, and (3) ports that allow rapid accessibility for feeding the adult-only population and introducing reagents as needed. The pillar arena geometry was optimized to accommodate the growing body size during culture and emulate the body gait and locomotion of animals reared on agar. Likewise, feeding protocols were optimized to recapitulate longevity outcomes typical of standard plate growth. Key benefits of the NemaLife Chip include eliminating the need to perform repeated manual transfers of adults during survival assays, negating the need for progeny-blocking chemical interventions, and avoiding the swim-induced stress across lifespan in animals reared in liquid. We also show that the culture of animals in pillar-less microfluidic chambers reduces lifespan and introduces physiological stress by increasing the occurrence of age-related vulval integrity disorder. We validated our pillar-based device with longevity analyses of classical aging mutants (daf-2, age-1, eat-2, and daf-16) and animals subjected to RNAi knockdown of age-related genes (age-1 and daf-16). We also showed that healthspan measures such as pharyngeal pumping and tap-induced stimulated reversals can be scored across the lifespan in the NemaLife chip. Overall, the capacity to generate reliable lifespan and physiological data underscores the potential of the NemaLife chip to accelerate healthspan and lifespan investigations in C. elegans.
Collapse
Affiliation(s)
- Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Hunter Edwards
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nikolajs Birze
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Rebecca Gabrilska
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, 79409, USA
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, 79409, USA
| | - Jerzy Blawzdziewicz
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79430, USA
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute and Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
38
|
Saberi-Bosari S, Flores KB, San-Miguel A. Deep learning-enabled analysis reveals distinct neuronal phenotypes induced by aging and cold-shock. BMC Biol 2020; 18:130. [PMID: 32967665 PMCID: PMC7510121 DOI: 10.1186/s12915-020-00861-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Access to quantitative information is crucial to obtain a deeper understanding of biological systems. In addition to being low-throughput, traditional image-based analysis is mostly limited to error-prone qualitative or semi-quantitative assessment of phenotypes, particularly for complex subcellular morphologies. The PVD neuron in Caenorhabditis elegans, which is responsible for harsh touch and thermosensation, undergoes structural degeneration as nematodes age characterized by the appearance of dendritic protrusions. Analysis of these neurodegenerative patterns is labor-intensive and limited to qualitative assessment. RESULTS In this work, we apply deep learning to perform quantitative image-based analysis of complex neurodegeneration patterns exhibited by the PVD neuron in C. elegans. We apply a convolutional neural network algorithm (Mask R-CNN) to identify neurodegenerative subcellular protrusions that appear after cold-shock or as a result of aging. A multiparametric phenotypic profile captures the unique morphological changes induced by each perturbation. We identify that acute cold-shock-induced neurodegeneration is reversible and depends on rearing temperature and, importantly, that aging and cold-shock induce distinct neuronal beading patterns. CONCLUSION The results of this work indicate that implementing deep learning for challenging image segmentation of PVD neurodegeneration enables quantitatively tracking subtle morphological changes in an unbiased manner. This analysis revealed that distinct patterns of morphological alteration are induced by aging and cold-shock, suggesting different mechanisms at play. This approach can be used to identify the molecular components involved in orchestrating neurodegeneration and to characterize the effect of other stressors on PVD degeneration.
Collapse
Affiliation(s)
- Sahand Saberi-Bosari
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kevin B Flores
- Department of Mathematics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
39
|
Matsuyama S. Mechanisms of aging, age-associated diseases, and lifespan determination. Exp Biol Med (Maywood) 2020; 245:1529-1531. [PMID: 32903037 DOI: 10.1177/1535370220955146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Shigemi Matsuyama
- Division of Hematology and Oncology, Department of Medicine School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| |
Collapse
|
40
|
Ching TT, Chen YC, Li G, Liu J, Xu XZS, Hsu AL. Short-term enhancement of motor neuron synaptic exocytosis during early aging extends lifespan in Caenorhabditis elegans. Exp Biol Med (Maywood) 2020; 245:1552-1559. [PMID: 32854519 DOI: 10.1177/1535370220950639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
IMPACT STATEMENT The functional decline of motor activity is a common feature in almost all aging animals that leads to frailty, loss of independence, injury, and even death in the elderly population. Thus, understanding the molecular mechanism that drives the initial stage of this functional decline and developing strategies to increase human healthspan and even lifespan by targeting this process would be of great interests to the field. In this study, we found that by precisely targeting the motor neurons to potentiate its synaptic releases either genetically or pharmacologically, we can not only delay the functional aging at NMJs but also slow the rate of aging at the organismal level. Most importantly, we have demonstrated that a critical window of time, that is the early stage of NMJs functional decline, is required for the beneficial effects. A short-term treatment within this time period is sufficient to extend the animals' lifespan.
Collapse
Affiliation(s)
- Tsui-Ting Ching
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 112, Taiwan
| | - Yen-Chieh Chen
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 112, Taiwan
| | - Guang Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianfeng Liu
- International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ao-Lin Hsu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.,Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 112, Taiwan.,Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Research Center for Healthy Aging and Institute of New Drug Development, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
41
|
Gluconeogenesis and PEPCK are critical components of healthy aging and dietary restriction life extension. PLoS Genet 2020; 16:e1008982. [PMID: 32841230 PMCID: PMC7473531 DOI: 10.1371/journal.pgen.1008982] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 09/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
High glucose diets are unhealthy, although the mechanisms by which elevated glucose is harmful to whole animal physiology are not well understood. In Caenorhabditis elegans, high glucose shortens lifespan, while chemically inflicted glucose restriction promotes longevity. We investigated the impact of glucose metabolism on aging quality (maintained locomotory capacity and median lifespan) and found that, in addition to shortening lifespan, excess glucose negatively impacts locomotory healthspan. Conversely, disrupting glucose utilization by knockdown of glycolysis-specific genes results in large mid-age physical improvements via a mechanism that requires the FOXO transcription factor DAF-16. Adult locomotory capacity is extended by glycolysis disruption, but maximum lifespan is not, indicating that limiting glycolysis can increase the proportion of life spent in mobility health. We also considered the largely ignored role of glucose biosynthesis (gluconeogenesis) in adult health. Directed perturbations of gluconeogenic genes that specify single direction enzymatic reactions for glucose synthesis decrease locomotory healthspan, suggesting that gluconeogenesis is needed for healthy aging. Consistent with this idea, overexpression of the central gluconeogenic gene pck-2 (encoding PEPCK) increases health measures via a mechanism that requires DAF-16 to promote pck-2 expression in specific intestinal cells. Dietary restriction also features DAF-16-dependent pck-2 expression in the intestine, and the healthspan benefits conferred by dietary restriction require pck-2. Together, our results describe a new paradigm in which nutritional signals engage gluconeogenesis to influence aging quality via DAF-16. These data underscore the idea that promotion of gluconeogenesis might be an unappreciated goal for healthy aging and could constitute a novel target for pharmacological interventions that counter high glucose consequences, including diabetes. It is known that high levels of dietary sugar can negatively impact human health, but the mechanisms underlying this remain unclear. Here we use the facile Caenorhabditis elegans genetic model to extend understanding of the impact of glucose and glucose metabolism on health and aging. We show that the two opposing glucose metabolism pathways–glycolysis and gluconeogenesis–have dramatically opposite effects on health: glycolytic activity responsible for sugar catabolism is detrimental, but driving gluconeogenesis promotes healthy aging. The powerful longevity regulator DAF-16 is required for the healthspan effects of gluconeogenesis. Our data highlight the intriguing possibility that driving the biosynthetic gluconeogenesis pathway could be a novel strategy for healthspan promotion. Indeed, we find that increasing levels of the core gluconeogenic enzyme PEPCK (PCK-2) in just a few intestinal cells can increase overall health in a DAF-16-dependent manner. Dietary restriction, which can promote health and longevity across species, increases PCK-2 levels in the intestine via DAF-16, and PCK-2 is required for the health benefits seen when calories are limited. Our results define gluconeogenic metabolism as a key component of healthy aging, and suggest that interventions that promote gluconeogenesis may help combat the onset of age-related diseases, including diabetes.
Collapse
|
42
|
Martineau CN, Brown AEX, Laurent P. Multidimensional phenotyping predicts lifespan and quantifies health in Caenorhabditis elegans. PLoS Comput Biol 2020; 16:e1008002. [PMID: 32692770 PMCID: PMC7394451 DOI: 10.1371/journal.pcbi.1008002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/31/2020] [Accepted: 05/30/2020] [Indexed: 11/21/2022] Open
Abstract
Ageing affects a wide range of phenotypes at all scales, but an objective measure of ageing remains challenging, even in simple model organisms. To measure the ageing process, we characterized the sequence of alterations of multiple phenotypes at organismal scale. Hundreds of morphological, postural, and behavioral features were extracted from high-resolution videos. Out of the 1019 features extracted, 896 are ageing biomarkers, defined as those that show a significant correlation with relative age (age divided by lifespan). We used support vector regression to predict age, remaining life and lifespan of individual C. elegans. The quality of these predictions (age R2 = 0.79; remaining life R2 = 0.77; lifespan R2 = 0.72) increased with the number of features added to the model, supporting the use of multiple features to quantify ageing. We quantified the rate of ageing as how quickly animals moved through a phenotypic space; we quantified health decline as the slope of the declining predicted remaining life. In both ageing dimensions, we found that short lived-animals aged faster than long-lived animals. In our conditions, for isogenic wild-type worms, the health decline of the individuals was scaled to their lifespan without significant deviation from the average for short- or long-lived animals.
Collapse
Affiliation(s)
- Céline N. Martineau
- Laboratory of Neurophysiology, UNI, Université Libre de Bruxelles, Brussels, Belgium
| | - André E. X. Brown
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Patrick Laurent
- Laboratory of Neurophysiology, UNI, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
43
|
Wang H, Webster P, Chen L, Fisher AL. Cell-autonomous and non-autonomous roles of daf-16 in muscle function and mitochondrial capacity in aging C. elegans. Aging (Albany NY) 2020; 11:2295-2311. [PMID: 31017874 PMCID: PMC6520005 DOI: 10.18632/aging.101914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/10/2019] [Indexed: 12/24/2022]
Abstract
Sarcopenia, defined as the loss of skeletal muscle mass and strength, contributes to disability and health-related conditions with aging. In vitro studies indicate that age-related mitochondrial dysfunction could play a central role in the development and progression of sarcopenia, but because of limitations in the methods employed, how aging affects muscle mitochondrial function in vivo is not fully understood. We use muscle-targeted fluorescent proteins and the ratiometric ATP reporter, ATeam, to examine changes in muscle mitochondrial mass and morphology, and intracellular ATP levels in C. elegans. We find that the preserved muscle function in aging daf-2 mutants is associated with higher muscle mitochondrial mass, preserved mitochondrial morphology, and higher levels of intracellular ATP. These phenotypes require the daf-16/FOXO transcription factor. Via the tissue-specific rescue of daf-16, we find that daf-16 activity in either muscle or neurons is sufficient to enhance muscle mitochondrial mass, whereas daf-16 activity in the muscle is required for the enhanced muscle function and mobility of the daf-2 mutants. Finally, we show through the use of drugs known to enhance mitochondrial activity that augmenting mitochondrial function leads to improved mobility during aging. These results suggest an important role for mitochondrial function in muscle aging.
Collapse
Affiliation(s)
- Hongning Wang
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229, USA.,Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA
| | - Phillip Webster
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229, USA.,Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA
| | - Lizhen Chen
- Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA.,Department of Cell Systems and Anatomy, UTHSCSA, San Antonio, TX 78229, USA
| | - Alfred L Fisher
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229, USA.,Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA.,GRECC, South Texas VA Healthcare System, San Antonio, TX 78229, USA.,Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
44
|
Yan Z, Su Z, Cheng X, Liu J. Caenorhabditis elegans body wall muscles sense mechanical signals with an amiloride-sensitive cation channel. Biochem Biophys Res Commun 2020; 527:581-587. [PMID: 32423813 DOI: 10.1016/j.bbrc.2020.04.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/26/2020] [Indexed: 01/09/2023]
Abstract
C. elegans uses specialized mechanoreceptor neurons to sense various mechanical cues. However, whether other tissues and organs in C. elegans are able to perceive mechanical forces is not clear. In this study, with a whole-cell patch-clamp recording, we show that body wall muscles (BWMs) in C. elegans convert mechanical energy into ionic currents in a cell-autonomous manner. Mechano-gated ion channels in BWMs are blocked in amiloride or cation-free solutions. A further characterization of physiological properties of mechano-gate ion channels in BMWs and a genetic screening show that mechanosensation in BMWs is not dependent on UNC-105 and well-defined mechano-gated ion channels MEC-4 and TRP-4 in C. elegans. Taken together, our results demonstrate that BWMs in C. elegans function as mechanoreceptors to sense mechanical stimuli with an amiloride-sensitive, non-selective cation channel.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Zexiong Su
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Xinran Cheng
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Jie Liu
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
45
|
Huang T, Matsuyama HJ, Tsukada Y, Singhvi A, Syu R, Lu Y, Shaham S, Mori I, Pan C. Age-dependent changes in response property and morphology of a thermosensory neuron and thermotaxis behavior in Caenorhabditis elegans. Aging Cell 2020; 19:e13146. [PMID: 32307902 PMCID: PMC7253067 DOI: 10.1111/acel.13146] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 02/09/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Age‐dependent cognitive and behavioral deterioration may arise from defects in different components of the nervous system, including those of neurons, synapses, glial cells, or a combination of them. We find that AFD, the primary thermosensory neuron of Caenorhabditis elegans, in aged animals is characterized by loss of sensory ending integrity, including reduced actin‐based microvilli abundance and aggregation of thermosensory guanylyl cyclases. At the functional level, AFD neurons in aged animals are hypersensitive to high temperatures and show sustained sensory‐evoked calcium dynamics, resulting in a prolonged operating range. At the behavioral level, senescent animals display cryophilic behaviors that remain plastic to acute temperature changes. Excessive cyclase activity of the AFD‐specific guanylyl cyclase, GCY‐8, is associated with developmental defects in AFD sensory ending and cryophilic behavior. Surprisingly, loss of the GCY‐8 cyclase domain reduces these age‐dependent morphological and behavioral changes, while a prolonged AFD operating range still exists in gcy‐8 animals. The lack of apparent correlation between age‐dependent changes in the morphology or stimuli‐evoked response properties of primary sensory neurons and those in related behaviors highlights the importance of quantitative analyses of aging features when interpreting age‐related changes at structural and functional levels. Our work identifies aging hallmarks in AFD receptive ending, temperature‐evoked AFD responses, and experience‐based thermotaxis behavior, which serve as a foundation to further elucidate the neural basis of cognitive aging.
Collapse
Affiliation(s)
- Tzu‐Ting Huang
- Neuroscience InstituteGraduate School of ScienceNagoya UniversityNagoyaJapan
- Group of Molecular NeurobiologyGraduate School of ScienceNagoya UniversityNagoyaJapan
- Institute of Molecular MedicineCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Hironori J. Matsuyama
- Neuroscience InstituteGraduate School of ScienceNagoya UniversityNagoyaJapan
- Group of Molecular NeurobiologyGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Yuki Tsukada
- Neuroscience InstituteGraduate School of ScienceNagoya UniversityNagoyaJapan
- Group of Molecular NeurobiologyGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Aakanksha Singhvi
- Laboratory of Developmental GeneticsThe Rockefeller UniversityNew YorkNYUSA
- Present address:
Fred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Ru‐Ting Syu
- Institute of Molecular MedicineCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
- Center of Precision MedicineCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yun Lu
- Laboratory of Developmental GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Shai Shaham
- Laboratory of Developmental GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Ikue Mori
- Neuroscience InstituteGraduate School of ScienceNagoya UniversityNagoyaJapan
- Group of Molecular NeurobiologyGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Chun‐Liang Pan
- Institute of Molecular MedicineCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
- Center of Precision MedicineCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
46
|
Soh MS, Cheng X, Vijayaraghavan T, Vernon A, Liu J, Neumann B. Disruption of genes associated with Charcot-Marie-Tooth type 2 lead to common behavioural, cellular and molecular defects in Caenorhabditis elegans. PLoS One 2020; 15:e0231600. [PMID: 32294113 PMCID: PMC7159224 DOI: 10.1371/journal.pone.0231600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is an inherited peripheral motor and sensory neuropathy. The disease is divided into demyelinating (CMT1) and axonal (CMT2) neuropathies, and although we have gained molecular information into the details of CMT1 pathology, much less is known about CMT2. Due to its clinical and genetic heterogeneity, coupled with a lack of animal models, common underlying mechanisms remain elusive. In order to gain an understanding of the normal function of genes associated with CMT2, and to draw direct comparisons between them, we have studied the behavioural, cellular and molecular consequences of mutating nine different genes in the nematode Caenorhabditis elegans (lin-41/TRIM2, dyn-1/DNM2, unc-116/KIF5A, fzo-1/MFN2, osm-9/TRPV4, cua-1/ATP7A, hsp-25/HSPB1, hint-1/HINT1, nep-2/MME). We show that C. elegans defective for these genes display debilitated movement in crawling and swimming assays. Severe morphological defects in cholinergic motors neurons are also evident in two of the mutants (dyn-1 and unc-116). Furthermore, we establish methods for quantifying muscle morphology and use these to demonstrate that loss of muscle structure occurs in the majority of mutants studied. Finally, using electrophysiological recordings of neuromuscular junction (NMJ) activity, we uncover reductions in spontaneous postsynaptic current frequency in lin-41, dyn-1, unc-116 and fzo-1 mutants. By comparing the consequences of mutating numerous CMT2-related genes, this study reveals common deficits in muscle structure and function, as well as NMJ signalling when these genes are disrupted.
Collapse
Affiliation(s)
- Ming S. Soh
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Xinran Cheng
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Tarika Vijayaraghavan
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Arwen Vernon
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jie Liu
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
47
|
Sakita M, Murakami S, Nonaka K, Sakamoto R, Saito T, Isobe W, Kumagai S. Different patterns in age-related morphometric alteration of myelinated fibers and capillaries of the tibial nerve: a longitudinal study in normal rats. J Anat 2020; 236:1101-1111. [PMID: 32052433 DOI: 10.1111/joa.13168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related regression of myelinated fibers in peripheral nerves of the lower limbs is strongly influenced by capillaries and results in balance dysfunction and falls. However, the temporal relationships between alteration patterns of myelinated fibers and capillaries have not yet been clarified. This study aimed to investigate age-related morphological and histological changes of both myelinated fibers and capillaries in peripheral nerves to clarify whether myelinated fibers or capillaries change earlier. Seven male Wistar rats each were randomly selected at 20 weeks (young group), 70 weeks (middle group), and 97 weeks (old group) for histological evaluations. The left and right tibial nerves were removed morphologically and histologically to examine myelinated fibers and capillaries. Axon diameter and myelin thickness were almost unaltered in the middle group compared with the young group but were significantly reduced in the old group when compared with the other two groups. However, the capillary diameter and number of microvascular branch points were substantially reduced in the middle group. The current study demonstrates that myelinated fibers of peripheral nerves show signs of regression in elderly rats, whereas capillaries start to reduce in middle-aged animals. In normal aging of the tibial nerve, capillaries may regress before myelinated fibers.
Collapse
Affiliation(s)
- Masahiro Sakita
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Shinichiro Murakami
- Department of Physical Therapy, Faculty of Health Care Sciences, Himeji-Dokkyo University, Hyogo, Japan
| | - Koji Nonaka
- Department of Rehabilitation, Faculty of Health Sciences, Naragakuen University, Nara, Japan
| | - Ryuji Sakamoto
- Department of Physical Therapy, Takarazuka University of Medical and Health Care, Hyogo, Japan
| | - Takafumi Saito
- Department of Physical Therapy, Aso Rehabilitation College, Fukuoka, Japan
| | - Wataru Isobe
- Department of Rehabilitation, Mitsubishi Kyoto Hospital, Kyoto, Japan
| | - Shuzo Kumagai
- Laboratory of Health and Exercise Epidemiology, Center for Health Science and Counseling, Kyushu University, Fukuoka, Japan
| |
Collapse
|
48
|
Zhang S, Li F, Zhou T, Wang G, Li Z. Caenorhabditis elegans as a Useful Model for Studying Aging Mutations. Front Endocrinol (Lausanne) 2020; 11:554994. [PMID: 33123086 PMCID: PMC7570440 DOI: 10.3389/fendo.2020.554994] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
The Caenorhabditis elegans genome possesses homologs of about two-thirds of all human disease genes. Based on its physiological aging characteristics and superiority, the use of C. elegans as a model system for studies on aging, age-related diseases, mechanisms of longevity, and drug screening has been widely acknowledged in recent decades. Lifespan increasing mutations in C. elegans were found to delay aging by impinging several signaling pathways and related epigenetic modifications, including the insulin/IGF-1 signaling (IIS), AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin (mTOR) pathways. Interestingly, dietary restriction (DR) has been shown to increase the lifespan of numerous metazoans and protect them from multiple age-related pathologies. However, the underlying molecular mechanisms are unclear. In recent decades, C. elegans has been used as a unique model system for high-throughput drug screening. Here, we review C. elegans mutants exhibiting increased in lifespan and age-dependent changes under DR, as well as the utility of C. elegans for drug screening. Thus, we provide evidence for the use of this model organism in research on the prevention of aging.
Collapse
|
49
|
Mulcahy B, Ibbett P, Holden-Dye L, O'Connor V. The Caenorhabditis elegans cysteine-string protein homologue DNJ-14 is dispensable for neuromuscular junction maintenance across ageing. ACTA ACUST UNITED AC 2019; 222:jeb.205450. [PMID: 31624097 DOI: 10.1242/jeb.205450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/09/2019] [Indexed: 01/16/2023]
Abstract
Maintenance of synaptic function across ageing is vital in sustaining cognitive function. Synaptic dysfunction is a key part of the pathophysiology of a number of neurodegenerative diseases. The synaptic co-chaperone, cysteine-string protein (CSP), is important for synaptic maintenance and function in Drosophila, mice and humans, and disruption of CSP results in synaptic degeneration. We sought to characterise synaptic ageing in Caenorhabditis elegans upon genetic disruption of CSP. To do this, we focused on the worms' neuromuscular junctions, which are the best characterised synapse. CSP mutant worms did not display reduced lifespan or any neuromuscular-dependent behavioural deficits across ageing. Pharmacological interrogation of the neuromuscular synapse of CSP mutant animals showed no sign of synaptic dysfunction even at advanced age. Lastly, patch clamp analysis of neuromuscular transmission across ageing in wild-type and CSP mutant animals revealed no obvious CSP-dependent deficits. Electrophysiological spontaneous postsynaptic current analysis reinforced pharmacological observations that the C. elegans neuromuscular synapse increases in strength during early ageing and remains relatively intact in old, immotile worms. Taken together, this study shows that surprisingly, despite disruption of CSP in other animals having severe synaptic phenotypes, CSP does not seem to be important for maintenance of the neuromuscular junction across ageing in C. elegans.
Collapse
Affiliation(s)
- Ben Mulcahy
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Paul Ibbett
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Lindy Holden-Dye
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Vincent O'Connor
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
50
|
Richardson CE, Yee C, Shen K. A hormone receptor pathway cell-autonomously delays neuron morphological aging by suppressing endocytosis. PLoS Biol 2019; 17:e3000452. [PMID: 31589601 PMCID: PMC6797217 DOI: 10.1371/journal.pbio.3000452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/17/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023] Open
Abstract
Neurons have a lifespan that parallels that of the organism and are largely irreplaceable. Their unusually long lifespan predisposes neurons to neurodegenerative disease. We sought to identify physiological mechanisms that delay neuron aging in Caenorhabditis elegans by asking how neuron morphological aging is arrested in the long-lived, alternate organismal state, the dauer diapause. We find that a hormone signaling pathway, the abnormal DAuer Formation (DAF) 12 nuclear hormone receptor (NHR) pathway, functions cell-intrinsically in the dauer diapause to arrest neuron morphological aging, and that same pathway can be cell-autonomously manipulated during normal organismal aging to delay neuron morphological aging. This delayed aging is mediated by suppressing constitutive endocytosis, which alters the subcellular localization of the actin regulator T cell lymphoma Invasion And Metastasis 1 (TIAM-1), thereby decreasing age-dependent neurite growth. Intriguingly, we show that suppressed endocytosis appears to be a general feature of cells in diapause, suggestive that this may be a mechanism to halt the growth and other age-related programs supported by most endosome recycling.
Collapse
Affiliation(s)
- Claire E. Richardson
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Callista Yee
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|