1
|
Zheng Y, Shi D, Chen L, Yang Y, Yao M. UCHL1-PKM2 axis dysregulation is associated with promoted proliferation and invasiveness of urothelial bladder cancer cells. Aging (Albany NY) 2023; 15:10593-10606. [PMID: 37815895 PMCID: PMC10599732 DOI: 10.18632/aging.205097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/09/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Bladder cancer is one of the most common type of cancers globally, and the majority of cases belong to urothelial bladder carcinoma (UBC) type. Current researches have demonstrated that multiple genomic abnormalities are related to the sensitivity of cisplatin-based chemotherapy in bladder cancer patients. Previous findings have indicated a controversial role of Ubiquitin Carboxy-Terminal Hydrolase L1 (UCHL1) in malignancy, so we aimed to further explore the role of UCHL1 in UBC. METHODS UBC cell lines and The Cancer Genome Atlas (TCGA) in-silico datasets were utilized to investigate UCHL1 expression pattern and functional as well as prognostic impacts in UBC cancer cell line models and patients. UCHL1 overexpression and silencing vectors and subsequent immunoprecipitation/ubiquitination experiments in combination of cellular functional assays were conducted to explore UCHL1-PKM2 interaction axis and its significance in UBC malignancy. RESULTS UCHL1 was significantly up-regulated in UBC cancer cells and UCHL1 high-expression was associated with higher pathology/clinical grade and significantly inferior overall prognosis of UBC patients. UCHL1 interacted with PKM2 and enhanced PKM2 protein level through inhibition of PKM2 protein degradation via ubiquitination process. UCHL1-PKM2 interaction significantly promoted UBC cellular proliferation, metastasis and invasion activities. CONCLUSION UCHL1-PKM2 interaction played an interesting role in UBC tumor cell proliferation, migration and metastasis. Our study suggests PKM2-targeted treatment might have a potential value in metastatic malignancy therapy development in the future.
Collapse
Affiliation(s)
- Yuhui Zheng
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Dongliang Shi
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Linlin Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Yinghong Yang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Meihong Yao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| |
Collapse
|
2
|
Bhatti GK, Gupta A, Pahwa P, Khullar N, Singh S, Navik U, Kumar S, Mastana SS, Reddy AP, Reddy PH, Bhatti JS. Targeting Mitochondrial bioenergetics as a promising therapeutic strategy in metabolic and neurodegenerative diseases. Biomed J 2022; 45:733-748. [PMID: 35568318 PMCID: PMC9661512 DOI: 10.1016/j.bj.2022.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are the organelles that generate energy for the cells and act as biosynthetic and bioenergetic factories, vital for normal cell functioning and human health. Mitochondrial bioenergetics is considered an important measure to assess the pathogenesis of various diseases. Dysfunctional mitochondria affect or cause several conditions involving the most energy-intensive organs, including the brain, muscles, heart, and liver. This dysfunction may be attributed to an alteration in mitochondrial enzymes, increased oxidative stress, impairment of electron transport chain and oxidative phosphorylation, or mutations in mitochondrial DNA that leads to the pathophysiology of various pathological conditions, including neurological and metabolic disorders. The drugs or compounds targeting mitochondria are considered more effective and safer for treating these diseases. In this review, we make an effort to concise the available literature on mitochondrial bioenergetics in various conditions and the therapeutic potential of various drugs/compounds targeting mitochondrial bioenergetics in metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali Punjab, India.
| | - Anshika Gupta
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India.
| | - Paras Pahwa
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India.
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Shashank Kumar
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India.
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - Arubala P Reddy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
3
|
Li C, Wan Y, Zhang Y, Fu LH, Blum NT, Cui R, Wu B, Zheng R, Lin J, Li Z, Huang P. In Situ Sprayed Starvation/Chemodynamic Therapeutic Gel for Post-Surgical Treatment of IDH1 (R132H) Glioma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103980. [PMID: 34775641 DOI: 10.1002/adma.202103980] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Complete resection of isocitrate dehydrogenase 1 (IDH1) (R132H) glioma is unfeasible and the classic post-surgical chemo/radiotherapy suffers from high recurrence and low survival rate. IDH1 (R132H) cells are sensitive to low concentrations of glucose and high concentrations of reactive oxygen species (ROS) due to inherent metabolism reprograming. Hence, a starvation/chemodynamic therapeutic gel is developed to combat residual IDH1 (R132H) tumor cells after surgery. Briefly, glucose oxidase (GOx) is mineralized with manganese-doped calcium phosphate to form GOx@MnCaP nanoparticles, which are encapsulated into the fibrin gel (GOx@MnCaP@fibrin). After spraying gel in the surgical cavity, GOx catalyzes the oxidation of glucose in residual IDH1 (R132H) cells and produces H2 O2 . The generated H2 O2 is further converted into highly lethal hydroxyl radicals (•OH) by a Mn2+ -mediated Fenton-like reaction to further kill the residual IDH1 (R132H) cells. The as-prepared starvation/chemodynamic therapeutic gel shows much higher therapeutic efficacy toward IDH1 (R132H) cells than IDH1 (WT) cells, and achieves long-term survival.
Collapse
Affiliation(s)
- Chunying Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yilin Wan
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yifan Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Lian-Hua Fu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Run Cui
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Boda Wu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Rui Zheng
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Peng Huang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| |
Collapse
|
4
|
Wei Q, Xu X, Chen L, Wang T, Xie L, Yu FC, Song SF, Sheng ZQ, Tong JY. Effects of chronic intermittent hypoxia on left cardiac function in young and aged mice. Am J Physiol Regul Integr Comp Physiol 2022; 322:R241-R252. [PMID: 35080993 DOI: 10.1152/ajpregu.00256.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Obstructive sleep apnea (OSA) is an independent risk factor for cardiovascular disease that is characterized by chronic intermittent hypoxia (CIH), and its impact is related to age. This study aims to assess the age-related impact of CIH on cardiac function and to further explore the mechanism. After 8 weeks of severe CIH exposure, the hearts of young mice showed slight physiological hypertrophy, decreased diastolic function, and collagen I accumulation but no obvious change in contractile function. However, the contractile function of the hearts of aged mice was severely decreased. CIH exposure promoted the fragmentation of mitochondria in the hearts of aged mice and decreased the mitochondrial membrane potential of cardiomyocytes, but these effects were not observed in young mice exposed to the same conditions. CIH induced significant decreases in basal respiration, maximum respiration and ATP production in cardiac mitochondria of aged mice compared to those of young mice. The assessment of mitochondrial-related proteins showed that young mouse hearts had upregulated adaptive nuclear respiratory factors (Nrf)1/2 sirtuin (SIRT)1/3 and transcription factor A (TFAM) expression that stabilized mitochondrial function in response to CIH exposure. Aged mouse hearts exhibited maladaptation to CIH exposure, and downregulation of SIRT1 and TFAM expression resulted in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qin Wei
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, China
| | - Xuan Xu
- Southeast University, Nanjing, Jiangsu, China
| | - Long Chen
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, China
| | - Tao Wang
- Southeast University, Nanjing, Jiangsu, China
| | - Liang Xie
- Southeast University, Nanjing, Jiangsu, China
| | - Fu-Chao Yu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, China
| | - Si-Fan Song
- Southeast University, Nanjing, Jiangsu, China
| | | | - Jia-Yi Tong
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Zhang J, He Z, Fedorova J, Logan C, Bates L, Davitt K, Le V, Murphy J, Li M, Wang M, Lakatta EG, Ren D, Li J. Alterations in mitochondrial dynamics with age-related Sirtuin1/Sirtuin3 deficiency impair cardiomyocyte contractility. Aging Cell 2021; 20:e13419. [PMID: 34216536 PMCID: PMC8282250 DOI: 10.1111/acel.13419] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/08/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Sirtuin1 (SIRT1) and Sirtuin3 (SIRT3) protects cardiac function against ischemia/reperfusion (I/R) injury. Mitochondria are critical in response to myocardial I/R injury as disturbance of mitochondrial dynamics contributes to cardiac dysfunction. It is hypothesized that SIRT1 and SIRT3 are critical components to maintaining mitochondria homeostasis especially mitochondrial dynamics to exert cardioprotective actions under I/R stress. The results demonstrated that deficiency of SIRT1 and SIRT3 in aged (24–26 months) mice hearts led to the exacerbated cardiac dysfunction in terms of cardiac systolic dysfunction, cardiomyocytes contractile defection, and abnormal cardiomyocyte calcium flux during I/R stress. Moreover, the deletion of SIRT1 or SIRT3 in young (4–6 months) mice hearts impair cardiomyocyte contractility and shows aging‐like cardiac dysfunction upon I/R stress, indicating the crucial role of SIRT1 and SIRT3 in protecting myocardial contractility from I/R injury. The biochemical and seahorse analysis showed that the deficiency of SIRT1/SIRT3 leads to the inactivation of AMPK and alterations in mitochondrial oxidative phosphorylation (OXPHOS) that causes impaired mitochondrial respiration in response to I/R stress. Furthermore, the remodeling of the mitochondria network goes together with hypoxic stress, and mitochondria undergo the processes of fusion with the increasing elongated branches during hypoxia. The transmission electron microscope data showed that cardiac SIRT1/SIRT3 deficiency in aging alters mitochondrial morphology characterized by the impairment of mitochondria fusion under I/R stress. Thus, the age‐related deficiency of SIRT1/SIRT3 in the heart affects mitochondrial dynamics and respiration function that resulting in the impaired contractile function of cardiomyocytes in response to I/R.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Life Sciences Shandong Normal University Jinan China
- Department of Surgery Morsani College of Medicine University of South Florida Tampa FL USA
| | - Zhibin He
- Department of Surgery Morsani College of Medicine University of South Florida Tampa FL USA
| | - Julia Fedorova
- Department of Surgery Morsani College of Medicine University of South Florida Tampa FL USA
| | - Cole Logan
- Department of Surgery Morsani College of Medicine University of South Florida Tampa FL USA
| | - Lauryn Bates
- Department of Surgery Morsani College of Medicine University of South Florida Tampa FL USA
| | - Kayla Davitt
- Department of Surgery Morsani College of Medicine University of South Florida Tampa FL USA
| | - Van Le
- Department of Surgery Morsani College of Medicine University of South Florida Tampa FL USA
| | - Jiayuan Murphy
- Department of Surgery Morsani College of Medicine University of South Florida Tampa FL USA
| | - Melissa Li
- Department of Surgery Morsani College of Medicine University of South Florida Tampa FL USA
| | - Mingyi Wang
- Laboratory of Cardiovascular Science Intramural Research Program National Institute on Aging National Institutes of Health Baltimore MD USA
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science Intramural Research Program National Institute on Aging National Institutes of Health Baltimore MD USA
| | - Di Ren
- Department of Surgery Morsani College of Medicine University of South Florida Tampa FL USA
| | - Ji Li
- Department of Surgery Morsani College of Medicine University of South Florida Tampa FL USA
| |
Collapse
|
6
|
Zahra K, Dey T, Ashish, Mishra SP, Pandey U. Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis. Front Oncol 2020; 10:159. [PMID: 32195169 PMCID: PMC7061896 DOI: 10.3389/fonc.2020.00159] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Pyruvate kinase plays a pivotal role in regulating cell metabolism. The final and rate-limiting step of glycolysis is the conversion of Phosphoenolpyruvate (PEP) to Pyruvate, which is catalyzed by Pyruvate Kinase. There are four isomeric, tissue-specific forms of Pyruvate Kinase found in mammals: PKL, PKR, PKM1, and PKM2. PKM1 and PKM2 are formed bya single mRNA transcript of the PKM gene by alternative splicing. The oligomers of PKM2 exist in high activity tetramer and low activity dimer forms. The dimer PKM2 regulates the rate-limiting step of glycolysis that shifts the glucose metabolism from the normal respiratory chain to lactate production in tumor cells. Besides its role as a metabolic regulator, it also acts as protein kinase, which contributes to tumorigenesis. This review is focused on the metabolic role of pyruvate kinase M2 in normal cells vs. cancerous cells and its regulation at the transcriptional level. The review also highlights the role of PKM2 as a potential diagnostic marker and as a therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Kulsoom Zahra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Tulika Dey
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Surendra Pratap Mishra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Uma Pandey
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Chinopoulos C, Seyfried TN. Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis. ASN Neuro 2019; 10:1759091418818261. [PMID: 30909720 PMCID: PMC6311572 DOI: 10.1177/1759091418818261] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant of the primary adult brain cancers. Ultrastructural and biochemical evidence shows that GBM cells exhibit mitochondrial abnormalities incompatible with energy production through oxidative phosphorylation (OxPhos). Under such conditions, the mitochondrial F0-F1 ATP synthase operates in reverse at the expense of ATP hydrolysis to maintain a moderate membrane potential. Moreover, expression of the dimeric M2 isoform of pyruvate kinase in GBM results in diminished ATP output, precluding a significant ATP production from glycolysis. If ATP synthesis through both glycolysis and OxPhos was impeded, then where would GBM cells obtain high-energy phosphates for growth and invasion? Literature is reviewed suggesting that the succinate-CoA ligase reaction in the tricarboxylic acid cycle can substantiate sufficient ATP through mitochondrial substrate-level phosphorylation (mSLP) to maintain GBM growth when OxPhos is impaired. Production of high-energy phosphates would be supported by glutaminolysis—a hallmark of GBM metabolism—through the sequential conversion of glutamine → glutamate → alpha-ketoglutarate → succinyl CoA → succinate. Equally important, provision of ATP through mSLP would maintain the adenine nucleotide translocase in forward mode, thus preventing the reverse-operating F0-F1 ATP synthase from depleting cytosolic ATP reserves. Because glucose and glutamine are the primary fuels driving the rapid growth of GBM and most tumors for that matter, simultaneous restriction of these two substrates or inhibition of mSLP should diminish cancer viability, growth, and invasion.
Collapse
|