1
|
Ria F, Delogu G, Ingrosso L, Sali M, Di Sante G. Secrets and lies of host-microbial interactions: MHC restriction and trans-regulation of T cell trafficking conceal the role of microbial agents on the edge between health and multifactorial/complex diseases. Cell Mol Life Sci 2024; 81:40. [PMID: 38216734 PMCID: PMC11071949 DOI: 10.1007/s00018-023-05040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 01/14/2024]
Abstract
Here we critically discuss data supporting the view that microbial agents (pathogens, pathobionts or commensals alike) play a relevant role in the pathogenesis of multifactorial diseases, but their role is concealed by the rules presiding over T cell antigen recognition and trafficking. These rules make it difficult to associate univocally infectious agents to diseases' pathogenesis using the paradigm developed for canonical infectious diseases. (Cross-)recognition of a variable repertoire of epitopes leads to the possibility that distinct infectious agents can determine the same disease(s). There can be the need for sequential infection/colonization by two or more microorganisms to develop a given disease. Altered spreading of infectious agents can determine an unwanted activation of T cells towards a pro-inflammatory and trafficking phenotype, due to differences in the local microenvironment. Finally, trans-regulation of T cell trafficking allows infectious agents unrelated to the specificity of T cell to modify their homing to target organs, thereby driving flares of disease. The relevant role of microbial agents in largely prevalent diseases provides a conceptual basis for the evaluation of more specific therapeutic approaches, targeted to prevent (vaccine) or cure (antibiotics and/or Biologic Response Modifiers) multifactorial diseases.
Collapse
Affiliation(s)
- F Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - G Delogu
- Mater Olbia Hospital, 07026, Olbia, Italy
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
| | - L Ingrosso
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - M Sali
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
- Department of Laboratory and Infectivology Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - G Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132, Perugia, Italy.
| |
Collapse
|
2
|
Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2022; 12:662218. [PMID: 35222350 PMCID: PMC8866702 DOI: 10.3389/fimmu.2021.662218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional vaccine development against infectious diseases has been guided by the overarching aim to generate efficacious vaccines normally indicated by an antibody and/or cellular response that correlates with protection. However, this approach has been shown to be only a partially effective measure, since vaccine- and pathogen-specific immunity may not perfectly overlap. Thus, some vaccine development strategies, normally focused on targeted generation of both antigen specific antibody and T cell responses, resulting in a long-lived heterogenous and stable pool of memory lymphocytes, may benefit from better mimicking the immune response of a natural infection. However, challenges to achieving this goal remain unattended, due to gaps in our understanding of human immunity and full elucidation of infectious pathogenesis. In this review, we describe recent advances in the development of effective vaccines, focusing on how understanding the differences in the immunizing and non-immunizing immune responses to natural infections and corresponding shifts in immune ontogeny are crucial to inform the next generation of infectious disease vaccines.
Collapse
Affiliation(s)
- Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Naninck T, Contreras V, Coutte L, Langlois S, Hébert-Ribon A, Pelletier M, Reveneau N, Locht C, Chapon C, Le Grand R. Intranasal inoculation with Bordetella pertussis confers protection without inducing classical whooping cough in baboons. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100072. [PMID: 34841362 PMCID: PMC8610340 DOI: 10.1016/j.crmicr.2021.100072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
In this manuscript, we describe the impact of Bordetella pertussis exposure route on whooping cough pathogenesis in baboons. We demonstrate in this paper that intranasal exposure of animals with a clinical isolate (or its fluorescent derivative) of B. pertussis induced classical nasopharyngeal and tracheal colonization but without inducing pertussis symptoms (cough and leukocytosis) compared to animals exposed to the classical combined intranasal and intra-tracheal routes with the same bacterial strains. Moreover, this intranasal exposure induces good B. pertussis specific seroconversion and provides protection from further infection.
Background The resurgence of whooping cough in many countries highlights the crucial need for a better understanding of the pathogenesis of respiratory infection by Bordetella pertussis. Exposure of baboons to B. pertussis by the intranasal and intra-tracheal routes is a recently described preclinical model that reproduces both B. pertussis infection of humans and whooping cough disease. Here, we tested both intranasal and intranasal+intra-tracheal exposure routes and assessed their impact on disease development and immunity. Methods Young baboons were intranasally exposed to the B1917 clinical isolate, representative of circulating strains in Europe, or its green-fluorescent protein expressing derivative. Animals were followed for pertussis symptoms and bacterial colonization and by in vivo probe-based confocal laser endomicroscopy (pCLE) imaging. Sero-conversion and protection against subsequent infection were then evaluated. Results Seroconversion and bacterial colonization of both the nasopharynx and trachea was observed in baboons exposed to B. pertussis by the intranasal route only, and also in those animals challenged by both the intranasal and intra-tracheal routes together. However, baboons exposed solely by the intranasal route developed only mild clinical symptoms, with no paroxysmal cough. These animals were protected against re-infection by B. pertussis. Conclusions Intranasal exposure of baboons to B. pertussis does not induce disease but elicits immune mechanisms that protect them from subsequent exposure to the bacteria. These findings suggest that the intranasal route of inoculation in this non-human primate model could be used in the pre-clinical evaluation of nasal candidate vaccines against pertussis.
Collapse
Affiliation(s)
- Thibaut Naninck
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Loïc Coutte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | | | | | | | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Catherine Chapon
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
4
|
Saso A, Kampmann B, Roetynck S. Vaccine-Induced Cellular Immunity against Bordetella pertussis: Harnessing Lessons from Animal and Human Studies to Improve Design and Testing of Novel Pertussis Vaccines. Vaccines (Basel) 2021; 9:877. [PMID: 34452002 PMCID: PMC8402596 DOI: 10.3390/vaccines9080877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pertussis ('whooping cough') is a severe respiratory tract infection that primarily affects young children and unimmunised infants. Despite widespread vaccine coverage, it remains one of the least well-controlled vaccine-preventable diseases, with a recent resurgence even in highly vaccinated populations. Although the exact underlying reasons are still not clear, emerging evidence suggests that a key factor is the replacement of the whole-cell (wP) by the acellular pertussis (aP) vaccine, which is less reactogenic but may induce suboptimal and waning immunity. Differences between vaccines are hypothesised to be cell-mediated, with polarisation of Th1/Th2/Th17 responses determined by the composition of the pertussis vaccine given in infancy. Moreover, aP vaccines elicit strong antibody responses but fail to protect against nasal colonisation and/or transmission, in animal models, thereby potentially leading to inadequate herd immunity. Our review summarises current knowledge on vaccine-induced cellular immune responses, based on mucosal and systemic data collected within experimental animal and human vaccine studies. In addition, we describe key factors that may influence cell-mediated immunity and how antigen-specific responses are measured quantitatively and qualitatively, at both cellular and molecular levels. Finally, we discuss how we can harness this emerging knowledge and novel tools to inform the design and testing of the next generation of improved infant pertussis vaccines.
Collapse
Affiliation(s)
- Anja Saso
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Beate Kampmann
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Sophie Roetynck
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| |
Collapse
|
5
|
Gestal MC, Johnson HM, Harvill ET. Immunomodulation as a Novel Strategy for Prevention and Treatment of Bordetella spp. Infections. Front Immunol 2019; 10:2869. [PMID: 31921136 PMCID: PMC6923730 DOI: 10.3389/fimmu.2019.02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Well-adapted pathogens have evolved to survive the many challenges of a robust immune response. Defending against all host antimicrobials simultaneously would be exceedingly difficult, if not impossible, so many co-evolved organisms utilize immunomodulatory tools to subvert, distract, and/or evade the host immune response. Bordetella spp. present many examples of the diversity of immunomodulators and an exceptional experimental system in which to study them. Recent advances in this experimental system suggest strategies for interventions that tweak immunity to disrupt bacterial immunomodulation, engaging more effective host immunity to better prevent and treat infections. Here we review advances in the understanding of respiratory pathogens, with special focus on Bordetella spp., and prospects for the use of immune-stimulatory interventions in the prevention and treatment of infection.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Hannah M Johnson
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Cherry JD. The 112-Year Odyssey of Pertussis and Pertussis Vaccines-Mistakes Made and Implications for the Future. J Pediatric Infect Dis Soc 2019; 8:334-341. [PMID: 30793754 DOI: 10.1093/jpids/piz005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/07/2019] [Accepted: 01/22/2019] [Indexed: 12/30/2022]
Abstract
Effective diphtheria, tetanus toxoids, whole-cell pertussis (DTwP) vaccines became available in the 1930s, and they were put into routine use in the United States in the 1940s. Their use reduced the average rate of reported pertussis cases from 157 in 100 000 in the prevaccine era to <1 in 100 000 in the 1970s. Because of alleged reactions (encephalopathy and death), several countries discontinued (Sweden) or markedly decreased (United Kingdom, Germany, Japan) use of the vaccine. During the 20th century, Bordetella pertussis was studied extensively in animal model systems, and many "toxins" and protective antigens were described. A leader in B pertussis research was Margaret Pittman of the National Institutes of Health/US Food and Drug Administration. She published 2 articles suggesting that pertussis was a pertussis toxin (PT)-mediated disease. Dr Pittman's views led to the idea that less-reactogenic acellular vaccines could be produced. The first diphtheria, tetanus, pertussis (DTaP) vaccines were developed in Japan and put into routine use there. Afterward, DTaP vaccines were developed in the Western world, and definitive efficacy trials were carried out in the 1990s. These vaccines were all less reactogenic than DTwP vaccines, and despite the fact that their efficacy was less than that of DTwP vaccines, they were approved in the United States and many other countries. DTaP vaccines replaced DTwP vaccines in the United States in 1997. In the last 13 years, major pertussis epidemics have occurred in the United States, and numerous studies have shown the deficiencies of DTaP vaccines, including the small number of antigens that the vaccines contain and the type of cellular immune response that they elicit. The type of cellular response a predominantly, T2 response results in less efficacy and shorter duration of protection. Because of the small number of antigens (3-5 in DTaP vaccines vs >3000 in DTwP vaccines), linked-epitope suppression occurs. Because of linked-epitope suppression, all children who were primed by DTaP vaccines will be more susceptible to pertussis throughout their lifetimes, and there is no easy way to decrease this increased lifetime susceptibility.
Collapse
Affiliation(s)
- James D Cherry
- Department of Pediatrics, David Geffen School of Medicine at UCLA
| |
Collapse
|
7
|
Markey K, Douglas-Bardsley A, Asokanathan C, Fry NK, Barkoff AM, Bacci S, Ködmön C, He Q. Improvement in serological diagnosis of pertussis by external quality assessment. J Med Microbiol 2019; 68:741-747. [PMID: 30990403 DOI: 10.1099/jmm.0.000926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Serological analysis is an essential tool for the diagnosis of pertussis or whooping cough, disease surveillance and the evaluation of vaccine effectiveness against Bordetella pertussis. Accurate measurement of anti-pertussis toxin (anti-PT) IgG antibody levels in sera is essential. These measurements are usually performed using immunological methods such as ELISA and multiplex immunoassays. However, there are a large number of different assay systems available, and therefore standardization and harmonization between the methods are needed to obtain comparable data. METHODOLOGY In collaboration with ECDC, the EUPert-LabNet network has organized three External Quality Assessment (EQA) schemes (2010, 2012 and 2016), which initially identified the diverse range of techniques and reagents being used throughout Europe. This manuscript discusses the findings of each of the EQA rounds and their impact on the participating laboratories. RESULTS The studies have shown an increasing number of laboratories (from 65% to 92%) using only the recommended coating antigen, purified PT, in immunoassays, as this allows exact quantification of serum anti-PT IgG and since PT is only produced by Bordetella pertussis this prevents cross-reactivity with other species. There has also been an increase in the numbers of laboratories (from 59% to 92%), including a WHO reference serum in their assays, which allows anti-PT IgG concentrations to be measured in International Units, thus enabling the comparison of results from different methods and laboratories. In addition, manufacturers have also considered these recommendations when they produce commercial ELISA kits. CONCLUSION The three EQA rounds have resulted in greater harmonization in methods among different laboratories, showing a significant improvement of the ELISA methods used for serodiagnosis of pertussis.
Collapse
Affiliation(s)
- Kevin Markey
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Alex Douglas-Bardsley
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Cathy Asokanathan
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Norman K Fry
- Immunisation and Countermeasures Division, Public Health England - National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Alex-Mikael Barkoff
- University of Turku, Institute of Biomedicine, Department of Microbiology, Virology and Immunology, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Sabrina Bacci
- European Centre for Disease Prevention and Control (ECDC), Gustav III:s boulevard 40, 16973 Solna, Sweden
| | - Csaba Ködmön
- European Centre for Disease Prevention and Control (ECDC), Gustav III:s boulevard 40, 16973 Solna, Sweden
| | - Qiushui He
- University of Turku, Institute of Biomedicine, Department of Microbiology, Virology and Immunology, Kiinamyllynkatu 10, 20520 Turku, Finland.,Department of Medical Microbiology, Capital Medical University, No.10 Xi Tou Tiao, You'an Men Wai, Feng Tai District, 100069 Beijing, PR China
| |
Collapse
|
8
|
Abstract
Pertussis or whooping cough, mainly caused by Bordetella pertussis, is a severe respiratory disease that can affect all age groups but is most severe and can be life-threatening in young children. Vaccines against this disease are widely available since the 1950s. Despite high global vaccination coverage, the disease is not under control in any country, and its incidence is even increasing in several parts of the world. Epidemiological and experimental evidence has shown that the vaccines fail to prevent B. pertussis infection and transmission, although they are very effective in preventing disease. Given the high infection rate of B. pertussis, effective control of the disease likely requires prevention of infection and transmission in addition to protection against disease. With rare exceptions B. pertussis infections are restricted to the airways and do not usually disseminate beyond the respiratory epithelium. Therefore, protection at the level of the respiratory mucosa may be helpful for an improved control of pertussis. Yet, compared to systemic responses, mucosal immune responses have attracted relatively little attention in the context of pertussis vaccine development. In this review we summarize the available literature on the role of mucosal immunity in the prevention of B. pertussis infection. In contrast to vaccination, natural infection in humans and experimental infections in animals induce strong secretory IgA responses in the naso-pharynx and in the lungs. Several studies have shown that secretory IgA may be instrumental in the control of B. pertussis infection. Furthermore, studies in mouse models have revealed that B. pertussis infection, but not immunization with current acellular pertussis vaccines induces resident memory T cells, which may also contribute to protection against colonization by B. pertussis. As these resident memory T cells are long lived, vaccines that are able to induce them should provide long-lasting immunity. As of today, only one vaccine designed to induce potent mucosal immunity is in clinical development. This vaccine is a live attenuated B. pertussis strain delivered nasally in order to mimic the natural route of infection. Due to its ability to induce mucosal immunity it is expected that this approach will contribute to improved control of pertussis.
Collapse
Affiliation(s)
- Luis Solans
- Center of Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Inserm U1019, Lille, France
- CNRS UMR8204, Lille, France
- Center for Infection and Immunity of Lille, Univ. Lille, Lille, France
| | - Camille Locht
- Center of Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Inserm U1019, Lille, France
- CNRS UMR8204, Lille, France
- Center for Infection and Immunity of Lille, Univ. Lille, Lille, France
| |
Collapse
|
9
|
Hozbor D. New Pertussis Vaccines: A Need and a Challenge. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:115-126. [PMID: 31432399 DOI: 10.1007/5584_2019_407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Effective diphtheria, tetanus toxoids, whole-cell pertussis (wP) vaccines were used for massive immunization in the 1950s. The broad use of these vaccines significantly reduced the morbidity and mortality associated with pertussis. Because of reports on the induction of adverse reactions, less-reactogenic acellular vaccines (aP) were later developed and in many countries, especially the industrialized ones, the use of wP was changed to aP. For many years, the situation of pertussis seemed to be controlled with the use of these vaccines, however in the last decades the number of pertussis cases increased in several countries. The loss of the immunity conferred by the vaccines, which is faster in the individuals vaccinated with the acellular vaccines, and the evolution of the pathogen towards geno/phenotypes that escape more easily the immunity conferred by the vaccines were proposed as the main causes of the disease resurgence. According to their composition of few immunogens, the aP vaccines seem to be exerting a greater selection pressure on the circulating bacterial population causing the prevalence of bacterial isolates defective in the expression of vaccine antigens. Under this context, it is clear that new vaccines against pertussis should be developed. Several vaccine candidates are in preclinical development and few others have recently completed phaseI/phaseII trials. Vaccine candidate based on OMVs is a promising candidate since appeared overcoming the major weaknesses of current aP-vaccines. The most advanced development is the live attenuated-vaccine BPZE1 which has successfully completed a first-in-man clinical trial.
Collapse
Affiliation(s)
- Daniela Hozbor
- Laboratorio VacSal. Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT-La Plata, CONICET, La Plata, Argentina.
| |
Collapse
|
10
|
Cauchi S, Locht C. Non-specific Effects of Live Attenuated Pertussis Vaccine Against Heterologous Infectious and Inflammatory Diseases. Front Immunol 2018; 9:2872. [PMID: 30581436 PMCID: PMC6292865 DOI: 10.3389/fimmu.2018.02872] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022] Open
Abstract
Bordetella pertussis is the agent of pertussis, also referred to as whooping cough, a disease that remains an important public health issue. Vaccine-induced immunity to pertussis wanes over time. In industrialized countries, high vaccine coverage has not prevented infection and transmission of B. pertussis, leading to periodic outbreaks in people of all ages. The consequence is the formation of a large source for transmission to children, who show the highest susceptibility of developing severe whooping cough and mortality. With the aim of providing protection against both disease and infection, a live attenuated pertussis vaccine, in which three toxins have been genetically inactivated or removed, is now in clinical development. This vaccine, named BPZE1, offers strong protection in mice and non-human primates. It has completed a phase I clinical trial in which safety, transient colonization of the human airway and immunogenicity could be demonstrated. In mice, BPZE1 was also found to protect against inflammation resulting from heterologous airway infections, including those caused by other Bordetella species, influenza virus and respiratory syncytial virus. Furthermore, the heterologous protection conferred by BPZE1 was also observed for non-infectious inflammatory diseases, such as allergic asthma, as well as for inflammatory disorders outside of the respiratory tract, such as contact dermatitis. Current studies focus on the mechanisms underlying the anti-inflammatory effects associated with nasal BPZE1 administration. Given the increasing importance of inflammatory disorders, novel preventive and therapeutic approaches are urgently needed. Therefore, live vaccines, such as BPZE1, may offer attractive solutions. It is now essential to understand the cellular and molecular mechanisms of action before translating these biological findings into new healthcare solutions.
Collapse
Affiliation(s)
- Stéphane Cauchi
- Univ. Lille, U1019, UMR 8204, CIIL-Centre for Infection and Immunity of Lille, Lille, France.,CNRS UMR8204, Lille, France.,Inserm U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Camille Locht
- Univ. Lille, U1019, UMR 8204, CIIL-Centre for Infection and Immunity of Lille, Lille, France.,CNRS UMR8204, Lille, France.,Inserm U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
11
|
IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. Mucosal Immunol 2018; 11:1753-1762. [PMID: 30115992 DOI: 10.1038/s41385-018-0073-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 07/05/2018] [Accepted: 07/23/2018] [Indexed: 02/04/2023]
Abstract
BPZE1 is a live attenuated Bordetella pertussis vaccine for nasal administration to mimic the natural route of infection. Here, we studied the mechanism of BPZE1-induced immunity in the murine nasal cavity in contrast to acellular vaccine (aPV), although both vaccines protected against lung colonization. Transfer of splenocytes or serum from BPZE1-vaccinated or aPV-vaccinated mice protected naïve mice against lung colonization but not against nasal colonization. However, transfer of nasal washes from BPZE1-vaccinated mice resulted in protection against nasal colonization, which was lost in IgA-deficient or poly-Ig receptor-deficient mice, indicating that it depends on secretory IgA (SIgA) induction induced in the nose. BPZE1-induced protection against nasal colonization was long-lived despite the relatively rapid decay of SIgA, indicating a potent BPZE1-induced local memory response, likely due to CD4+ tissue-resident memory T cells induced in the nose by BPZE1. These cells produced interleukin-17 (IL-17), known to be important for SIgA secretion. Furthermore, BPZE1 failed to protect Il17-/- mice against nasal colonization by B. pertussis and induced only background levels of nasal SIgA. Thus, our results show important differences in the protective mechanism between the upper and the lower murine respiratory tract and demonstrate an IL-17-dependent SIgA-mediated mechanism of BPZE1-induced protection against B. pertussis nasopharyngeal colonization.
Collapse
|
12
|
In vivo imaging of bacterial colonization of the lower respiratory tract in a baboon model of Bordetella pertussis infection and transmission. Sci Rep 2018; 8:12297. [PMID: 30115990 PMCID: PMC6095854 DOI: 10.1038/s41598-018-30896-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/31/2018] [Indexed: 01/10/2023] Open
Abstract
Recent whooping cough (pertussis) outbreaks in many countries highlight the crucial need for a better understanding of the pathogenesis of Bordetella pertussis infection of the respiratory tract. The baboon is a recently described preclinical model for the study of B. pertussis infection and may be ideal for the evaluation of new pertussis vaccines. However, many pathophysiological aspects, including bacterial localization and interactions, have yet to be described in this model. Here, we used a baboon model of infection with a fluorescent GFP-expressing B. pertussis strain, derived from European clinical isolate B1917. Juvenile baboons were used to evaluate susceptibility to infection and transmission. Non-invasive in vivo imaging procedures, using probe-based confocal endomicroscopy coupled with bronchoscopy, were developed to track fluorescent bacterial localization and cellular interactions with host cells in the lower respiratory tract of infected animals. All B1917-GFP-challenged animals developed classical pertussis symptoms, including paroxysmal cough, nasopharyngeal colonization, and leukocytosis. In vivo co-localization with antigen presenting cells and progressive bacterial colonization of the lower airways were also assessed by imaging during the first weeks of infection. Our results demonstrate that in vivo imaging can be used to assess bacterial colonization and to point out interactions in a baboon model of pertussis.
Collapse
|
13
|
Brookes C, Freire-Martin I, Cavell B, Alexander F, Taylor S, Persaud R, Fry N, Preston A, Diavatopoulos D, Gorringe A. Bordetella pertussis isolates vary in their interactions with human complement components. Emerg Microbes Infect 2018; 7:81. [PMID: 29739922 PMCID: PMC5940884 DOI: 10.1038/s41426-018-0084-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022]
Abstract
Whooping cough is a re-emerging respiratory tract infection. It has become clear that there is a need for better understanding of protective immune responses and variation between Bordetella pertussis strains to aid the development of improved vaccines. In order to survive in the host, B. pertussis has evolved mechanisms to evade complement-mediated killing, including the ability to bind complement-regulatory proteins. Here we evaluate the variation in interactions with the complement system among recently isolated strains. Isolates whose genomes appear highly similar and cluster together on a SNP-based dendrogram were found to vary significantly in resistance to complement-mediated killing and in the deposition of C3b/iC3b, C5b-9 and C1 esterase inhibitor (C1-INH). The key role of Vag8 as a receptor for C1-INH was confirmed and its expression was shown to vary in a panel of isolates. A Vag8 knockout mutant showed increased sensitivity to complement-mediated killing. Antibodies in convalescent sera blocked C1-INH binding to B. pertussis and may play an important role in natural immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruby Persaud
- Public Health England, Porton Down, Salisbury, UK
| | - Norman Fry
- Public Health England, 61 Colindale Avenue, London, UK
| | - Andrew Preston
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Dimitri Diavatopoulos
- Laboratory of Medical immunology, Nijmegen Medical Centre, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
14
|
Shi W, Kou Y, Jiang H, Gao F, Kong W, Su W, Xu F, Jiang C. Novel intranasal pertussis vaccine based on bacterium-like particles as a mucosal adjuvant. Immunol Lett 2018; 198:26-32. [PMID: 29601940 DOI: 10.1016/j.imlet.2018.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/08/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022]
Abstract
Pertussis, or whooping cough, has recently reemerged as a major public health threat despite high levels of vaccination. The development of a novel pertussis vaccine, especially an intranasal (i.n.) vaccine is undoubtedly necessary, and mucosal adjuvants have been explored to enhance the immune response. In the present study, bacterium-like particles (BLPs) were adopted as a mucosal adjuvant for an i.n. pertussis vaccine and evaluated on the ability to induce serum and mucosal antibodies as well as potency against i.n. challenge in mice. Groups with or without aluminum adjuvant were also evaluated through both i.n. and intraperitoneal inoculations. Vaccination with BLPs via the i.n. route led to rapid IgG and IgA production and provided strong protection against inflammation induced by infection. The results support an i.n. pertussis vaccine with BLPs adjuvant as a promising candidate to elicit protective immunity against whooping cough.
Collapse
Affiliation(s)
- Wei Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Yiming Kou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Hao Jiang
- The Third Hospital of Jilin University, Jilin University, Changchun 130012, P.R. China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Fei Xu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P.R. China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China.
| |
Collapse
|
15
|
Gill C, Rohani P, Thea DM. The relationship between mucosal immunity, nasopharyngeal carriage, asymptomatic transmission and the resurgence of Bordetella pertussis. F1000Res 2017; 6:1568. [PMID: 28928960 PMCID: PMC5580413 DOI: 10.12688/f1000research.11654.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2017] [Indexed: 12/11/2022] Open
Abstract
The incidence of whooping cough in the US has been rising slowly since the 1970s, but the pace of this has accelerated sharply since acellular pertussis vaccines replaced the earlier whole cell vaccines in the late 1990s. A similar trend occurred in many other countries, including the UK, Canada, Australia, Ireland, and Spain, following the switch to acellular vaccines. The key question is why. Two leading theories (short duration of protective immunologic persistence and evolutionary shifts in the pathogen to evade the vaccine) explain some but not all of these shifts, suggesting that other factors may also be important. In this synthesis, we argue that sterilizing mucosal immunity that blocks or abbreviates the duration of nasopharyngeal carriage of
Bordetella pertussis and impedes person-to-person transmission (including between asymptomatically infected individuals) is a critical factor in this dynamic. Moreover, we argue that the ability to induce such mucosal immunity is fundamentally what distinguishes whole cell and acellular pertussis vaccines and may be pivotal to understanding much of the resurgence of this disease in many countries that adopted acellular vaccines. Additionally, we offer the hypothesis that observed herd effects generated by acellular vaccines may reflect a modification of disease presentation leading to reduced potential for transmission by those already infected, as opposed to inducing resistance to infection among those who have been exposed.
Collapse
Affiliation(s)
- Christopher Gill
- Centre for Global Health and Development , Boston University School of Public Health, Boston, Massachusetts, 02118, USA.,Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, 02118, USA
| | - Pejman Rohani
- Department of Infectious Diseases College of Veterinary Medicine, Odum School of Ecology , University of Georgia, Athens, Georgia, 30602, USA
| | - Donald M Thea
- Centre for Global Health and Development , Boston University School of Public Health, Boston, Massachusetts, 02118, USA.,Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, 02118, USA
| |
Collapse
|
16
|
Autran B, Combadière B, Launay O, Legrand R, Locht C, Tangy F, Verger P, Garçon N. Séance bi-académique de l’Académie nationale de médecine et de l’Académie des Sciences: « Confiance et défiance vis-à-vis des vaccins ». BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2017; 201:259-272. [PMID: 32226055 PMCID: PMC7095193 DOI: 10.1016/s0001-4079(19)30502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 06/10/2023]
Abstract
SUMMARYThe explosion of vaccines during the 20th century allowed the control of numerous infectious plagues but multiple challenges oppose conservation and extension of these successes. The hesitation of modern societies in front of vaccinations requires researches in life, human and social sciences in order to reach a better understanding of vaccines mechanism of action and to improve the tolerance and acceptability of vaccines and additives. The ageing of the populations and the increase of subjects at risk also require to improve the immunogenicity and the efficiency of existing vaccines. The constant emergence of new epidemics or the development of the antibio-resistance imposes innovation and development of new vaccines. The recent difficulties faced by the development of vaccines against malaria, tuberculosis or AIDS illustrate the necessity of moving beyond classical recipes and of elaborating new vectors and new adjuvants, of better understanding the heterogeneity of vaccine immunity and of developing alternative routes of immunization. Multidisciplinary researches using the most recent advances in molecular, structural and cellular biology, in microbiology, immunology and of genetic engineering to answer these worldwide challenges.
Collapse
Affiliation(s)
- Brigitte Autran
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, Centre, d'Immunologie et des Maladies Infectieuses (CIMI-, Paris, UMRS 1135), Paris, F-75013, France
- Département d'Immunologie, Hôpitaux Universitaires Pitié-Salpêtrière C. Foix, AP-HP, Paris, France
- Comité de Pilotage de CoRevac, Institut Thématique Immunité-Infection-Inflammation-Microbiologie, AVIESAN, Paris, France
| | - Béhazine Combadière
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, Centre, d'Immunologie et des Maladies Infectieuses (CIMI-, Paris, UMRS 1135), Paris, F-75013, France
- Comité de Pilotage de CoRevac, Institut Thématique Immunité-Infection-Inflammation-Microbiologie, AVIESAN, Paris, France
| | - Odile Launay
- Comité de Pilotage de CoRevac, Institut Thématique Immunité-Infection-Inflammation-Microbiologie, AVIESAN, Paris, France
- Centre d'investigation clinique Cochin Pasteur
- Fédération de maladies infectieuses et tropicales, Université Paris Descartes, AP-HP, Hôpital Cochin
| | - Roger Legrand
- CEA, Université Paris Sud, Inserm U1184, Infrastructure IDMIT, Fontenay-aux-Roses, France
| | - Camille Locht
- Centre d'Infection et Immunité de Lille, Institut Pasteur de Lille; Université de Lille; Inserm U1019; CNRS UMR-8204
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569
| | | | | |
Collapse
|