1
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Arfaoui A, Rojo-Bezares B, Fethi M, López M, Toledano P, Sayem N, Ben Khelifa Melki S, Ouzari HI, Klibi N, Sáenz Y. Molecular characterization of Pseudomonas aeruginosa from diabetic foot infections in Tunisia. J Med Microbiol 2024; 73. [PMID: 38963417 DOI: 10.1099/jmm.0.001851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Background. Pseudomonas aeruginosa is an invasive organism that frequently causes severe tissue damage in diabetic foot ulcers.Gap statement. The characterisation of P. aeruginosa strains isolated from diabetic foot infections has not been carried out in Tunisia.Purpose. The aim was to determine the prevalence of P. aeruginosa isolated from patients with diabetic foot infections (DFIs) in Tunisia and to characterize their resistance, virulence and molecular typing.Methods. Patients with DFIs admitted to the diabetes department of the International Hospital Centre of Tunisia, from September 2019 to April 2021, were included in this prospective study. P. aeruginosa were obtained from the wound swabs, aspiration and soft tissue biopsies during routine clinical care and were confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing, serotyping, integron and OprD characterization, virulence, biofilm production, pigment quantification, elastase activity and molecular typing were analysed in all recovered P. aeruginosa isolates by phenotypic tests, specific PCRs, sequencing, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing.Results. Sixteen P. aeruginosa isolates (16.3 %) were recovered from 98 samples of 78 diabetic patients and were classified into 6 serotypes (O:11 the most frequent), 11 different PFGE patterns and 10 sequence types (three of them new ones). The high-risk clone ST235 was found in two isolates. The highest resistance percentages were observed to netilmicin (69 %) and cefepime (43.8 %). Four multidrug-resistant (MDR) isolates (25 %) were detected, three of them being carbapenem-resistant. The ST235-MDR strain harboured the In51 class 1 integron (intI1 +aadA6+orfD+qacED1-sul1). According to the detection of 14 genes involved in virulence or quorum sensing, 5 virulotypes were observed, including 5 exoU-positive, 9 exoS-positive and 2 exoU/exoS-positive strains. The lasR gene was truncated by ISPpu21 insertion sequence in one isolate, and a deletion of 64 bp in the rhlR gene was detected in the ST235-MDR strain. Low biofilm, pyoverdine and elastase production were detected in all P. aeruginosa; however, the lasR-truncated strain showed a chronic infection phenotype characterized by loss of serotype-specific antigenicity, high production of phenazines and high biofilm formation.Conclusions. Our study demonstrated for the first time the prevalence and the molecular characterization of P. aeruginosa strains from DFIs in Tunisia, showing a high genetic diversity, moderate antimicrobial resistance, but a high number of virulence-related traits, highlighting their pathological importance.
Collapse
Affiliation(s)
- Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Meha Fethi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maria López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Paula Toledano
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Noureddine Sayem
- Service of Biology, Carthagene International Hospital of Tunisia, Tunis, Tunisia
| | | | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
3
|
Papa-Ezdra R, Outeda M, Cordeiro NF, Araújo L, Gadea P, Garcia-Fulgueiras V, Seija V, Bado I, Vignoli R. Outbreak of Pseudomonas aeruginosa High-Risk Clone ST309 Serotype O11 Featuring blaPER-1 and qnrVC6. Antibiotics (Basel) 2024; 13:159. [PMID: 38391545 PMCID: PMC10885872 DOI: 10.3390/antibiotics13020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/24/2024] Open
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections worldwide. Biofilm production, antibiotic resistance, and a wide range of virulence factors contribute to their persistence in nosocomial environments. We describe an outbreak caused by a multidrug-resistant P. aeruginosa strain in an ICU. Antibiotic susceptibility was determined and blaPER-1 and qnrVC were amplified via PCR. Clonality was determined using PFGE and biofilm formation was studied with a static model. A combination of antibiotics was assessed on both planktonic cells and biofilms. WGS was performed on five isolates. All isolates were clonally related, resistant to ceftazidime, cefepime, amikacin, and ceftolozane-tazobactam, and harbored blaPER-1; 11/19 possessed qnrVC. Meropenem and ciprofloxacin reduced the biofilm biomass; however, the response to antibiotic combinations with rifampicin was different between planktonic cells and biofilms. WGS revealed that the isolates belonged to ST309 and serotype O11. blaPER-1 and qnrVC6 were associated with a tandem of ISCR1 as part of a complex class one integron, with aac(6')-Il and ltrA as gene cassettes. The structure was associated upstream and downstream with Tn4662 and flanked by direct repeats, suggesting its horizontal mobilization capability as a composite transposon. ST309 is considered an emerging high-risk clone that should be monitored in the Americas.
Collapse
Affiliation(s)
- Romina Papa-Ezdra
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP 11600 Montevideo, Uruguay
| | - Matilde Outeda
- Departamento de Laboratorio Clínico, Área Microbiología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Av. Italia s/n, CP 11600 Montevideo, Uruguay
| | - Nicolás F Cordeiro
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP 11600 Montevideo, Uruguay
| | - Lucía Araújo
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP 11600 Montevideo, Uruguay
| | - Pilar Gadea
- Departamento de Laboratorio Clínico, Área Microbiología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Av. Italia s/n, CP 11600 Montevideo, Uruguay
| | - Virginia Garcia-Fulgueiras
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP 11600 Montevideo, Uruguay
| | - Verónica Seija
- Departamento de Laboratorio Clínico, Área Microbiología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Av. Italia s/n, CP 11600 Montevideo, Uruguay
| | - Inés Bado
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP 11600 Montevideo, Uruguay
| | - Rafael Vignoli
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP 11600 Montevideo, Uruguay
| |
Collapse
|
4
|
Wu X, Yang L, Wu Y, Li H, Shao B. Spread of multidrug-resistant Pseudomonas aeruginosa in animal-derived foods in Beijing, China. Int J Food Microbiol 2023; 403:110296. [PMID: 37392610 DOI: 10.1016/j.ijfoodmicro.2023.110296] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/04/2023] [Accepted: 06/16/2023] [Indexed: 07/03/2023]
Abstract
Pseudomonas aeruginosa is the most common bacterium occurred in nosocomial infections and is also an important indicator of food spoilage. The worldwide spread of multidrug resistant (MDR) P. aeruginosa is threatening public health. However, the prevalence and spread of MDR P. aeruginosa through the food chain is little referred under the One Health perspective. Here, we collected a total of 259 animal-derived foods (168 chicken and 91 pork) from 16 supermarkets and farmer's markets in six regions of Beijing, China. The prevalence of P. aeruginosa in chicken and pork was 42.1 %. The phenotypic antimicrobial susceptibility testing showed that 69.7 % of isolates were MDR, and isolates from Chaoyang district exhibited a higher resistance rate compared to that from Xicheng district (p < 0.05). P. aeruginosa isolates exhibited high levels of resistance against β-lactams (91.7 %), cephalosporins (29.4 %), and carbapenems (22.9 %). Interestingly, none of strains showed resistance to amikacin. Whole-genome sequencing showed that all isolates carried various kinds of antimicrobial resistance genes (ARGs) and virulence genes (VGs), especially for blaOXA genes and phz genes. Multilocus sequence typing (MLST) analysis indicated that ST111 (12.8 %) was the most predominant ST. Notably, the emergence of ST697 clones in food-borne P. aeruginosa was firstly reported. In addition, the toxin pyocyanin was detected in 79.8 % of P. aeruginosa strains. These findings help to decipher the prevalence and the strong toxigenic ability of MDR P. aeruginosa from animal-derived foods and highlight the effective supervision of animal-derived food hygiene should be strengthened to prevent the spread of ARGs in a One Health strategy.
Collapse
Affiliation(s)
- Xuan Wu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Lu Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yige Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| |
Collapse
|
5
|
Zhang B, Xu X, Song X, Wen Y, Zhu Z, Lv J, Xie X, Chen L, Tang YW, Du H. Emerging and re-emerging KPC-producing hypervirulent Pseudomonas aeruginosa ST697 and ST463 between 2010 and 2021. Emerg Microbes Infect 2022; 11:2735-2745. [DOI: 10.1080/22221751.2022.2140609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Biying Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstr.55, 14513 Teltow, Germany
| | - Xiaomei Song
- Department of Nursing, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Yicheng Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Zhichen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Jingnan Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Yi-Wei Tang
- Department of Medical Affairs, Danaher Diagnostic Platform/Cepheid (China), New York, NY, USA
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| |
Collapse
|
6
|
Bogiel T, Depka D, Rzepka M, Mikucka A. Decoding Genetic Features and Antimicrobial Susceptibility of Pseudomonas aeruginosa Strains Isolated from Bloodstream Infections. Int J Mol Sci 2022; 23:ijms23169208. [PMID: 36012468 PMCID: PMC9409454 DOI: 10.3390/ijms23169208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative rod and an etiological factor of opportunistic infections. The infections of this etiology appear mostly among hospitalized patients and are relatively hard to treat due to widespread antimicrobial resistance. Many virulence factors are involved in the pathogenesis of P. aeruginosa infection, the coexistence of which have a significant impact on the course of an infection with a particular localization. The aim of this study was to assess the antimicrobial susceptibility profiles and the frequency of genes encoding selected virulence factors in clinical P. aeruginosa strains isolated from bloodstream infections (BSIs). The following genes encoding virulence factors of enzymatic activity were assessed: lasB, plC H, plC N, nan1, nan2, aprA and phzM. The frequency of the genes encoding the type III secretion system effector proteins (exoU and exoS) and the genes encoding pilin structural subunits (pilA and pilB) were also investigated. The occurrence of virulence-factor genes was assessed using polymerase chain reactions, each in a separate reaction. Seventy-one P. aeruginosa strains, isolated from blood samples of patients with confirmed bacteremia hospitalized at the University Hospital No. 1 of Dr. Antoni Jurasz in Bydgoszcz, Poland, were included in the study. All the investigated strains were susceptible to colistin, while the majority of the strains presented resistance to ticarcillin/clavulanate (71.8%), piperacillin (60.6 %), imipenem (57.7%) and piperacillin/tazobactam (52.1%). The presence of the lasB and plC H genes was noted in all the tested strains, while the plC N, nan2, aprA, phzM and nan1 genes were identified in 68 (95.8%), 66 (93.0%), 63 (88.7%), 55 (77.5%) and 34 (47.9%) isolates, respectively. In 44 (62.0%) and 41 (57.7%) strains, the presence of the exoU and exoS genes was confirmed, while the pilA and pilB genes were noted only in 14 (19.7%) and 3 (4.2%) isolates, respectively. This may be due to the diverse roles of these proteins in the development and maintenance of BSIs. Statistically significant correlations were observed between particular gene pairs’ coexistence (e.g., alkaline protease and neuraminidase 2). Altogether, twenty-seven distinctive genotypes were observed among the studied strains, indicating the vast variety of genetic compositions of P. aeruginosa strains causing BSIs.
Collapse
|
7
|
Derivation of a score to predict infection due to multi-drug resistant Pseudomonas aeruginosa: A tool for guiding empirical antibiotic treatment. J Glob Antimicrob Resist 2022; 29:215-221. [PMID: 35339736 DOI: 10.1016/j.jgar.2022.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Multidrug-resistant Pseudomonas aeruginosa (MDR-PSA) constitutes an emerging health problem. A predictive score of MDR-PSA infection would let early adaptation of empirical antibiotic therapy. METHODS We performed a single-center case-control (1:2) retrospective study including 100 patients with MDR-PSA and 200 with non-MDR-PSA infection. Cases and controls were matched by site of infection, clinical characteristics and immunosuppression. A point risk score for prediction of MDR-PSA infection was derived from a logistic regression model. Secondary outcomes (clinical improvement, complications and discharge) were also compared. RESULTS Cases with MDR-PSA infection were younger than controls (67.5 vs. 73.0 years; P=0.031) and have more frequently cirrhosis (9% vs. 2%; P=0.005). Independent risk factors for MDR-PSA infection were prior antibiotic treatment (80% vs. 50.5%; P<0.001), prior colonization with MDR bacteria (41% vs. 13.5%; P<0.001), hospital-acquired infection (63% vs. 47%; P=0.009), and septic shock at diagnosis (33% vs. 14%; P<0.001). Adequate therapy was less frequent in MDR-PSA infections (31% vs. 66.5% for empirical therapy; P<0.001). The risk score included: previous MDR-PSA isolation (11 points), prior antibiotic use (3 points), hospital-acquired infection (2 points), and septic shock at diagnosis (2 points). It showed an area under the curve of 0.755 (95% CI: 0.70-0.81) and allowed to classify individual risk into various categories: 0-2 points (<20%), 3-5 points (25-45%), 7-11 points (55-60%), 13-16 points (75-87%) and a maximum of 18 points (93%). CONCLUSIONS Infections due to MDR-PSA have a poorer prognosis than those produced by non-MDR-PSA. Our score could guide empirical therapy for MDR-PSA when P. aeruginosa is isolated.
Collapse
|
8
|
Li N, Li X, Li J, Yang M, Ren L, Li C. Preparation of Silver Ion Antimicrobial Dressings and Prevention and Treatment of Central Venous Catheter-Related Infection on Burn Wounds of Critically Burned Patients. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To further understand the characteristics of Ag+ antimicrobial dressings and its application value in the prevention and treatment of infections in burn patients, in the study, the Ag+ gel dressings were prepared and their physical and chemical characteristics
were analyzed, and relationship between the gel dressing and central venous catheter (CVC)-related infections was further explored. The results showed that silver nitrate was made into nano silver particles, and its structure was clearly visible under microscope, and nano silver was further
applied to preparation of Ag+ antibacterial dressings. Fibrocytes were clearly visible in Ag+ gel dressing and arranged uniformly, which indicated that Ag+ gel dressing had good compatibility with biological materials and had no obvious toxicity. Further clinical
trials showed that Ag+ gel dressing can effectively reduce CVC-related infections. From 1 to 4 weeks of the experiment, the bacterial infection rate in burn wounds and blood of the treatment group (TG), which applied Ag+ gel dressing, was lower than the control group
(P < 0.05). During the treatment, the burn healing rate of the TG was also greatly higher than the control group (P < 0.05). In addition, the burn wound exudate in the TG was greatly less than the control group (P < 0.05). In summary, the Ag+ gel dressing
prepared has good biological and physical and chemical properties, which have bright prospects in the prevention and treatment of burn wounds and CVC-related infections. This study provides an experimental basis for clinical application of Ag+ gel dressing.
Collapse
Affiliation(s)
- Na Li
- Department of Burns and Plastic Surgery, The First Hospital of Hebei Medical University, Shijiazhaung City, 050031, China
| | - Xi Li
- Department of Burns and Plastic Surgery, The First Hospital of Hebei Medical University, Shijiazhaung City, 050031, China
| | - Juan Li
- Department of Burns and Plastic Surgery, The First Hospital of Hebei Medical University, Shijiazhaung City, 050031, China
| | - Meng Yang
- Department of Burns and Plastic Surgery, The First Hospital of Hebei Medical University, Shijiazhaung City, 050031, China
| | - Liqing Ren
- Department of Burns and Plastic Surgery, The First Hospital of Hebei Medical University, Shijiazhaung City, 050031, China
| | - Cuikun Li
- Department of Burns and Plastic Surgery, The First Hospital of Hebei Medical University, Shijiazhaung City, 050031, China
| |
Collapse
|
9
|
Recio R, Viedma E, González-Bodí S, Villa J, Orellana MÁ, Mancheño-Losa M, Lora-Tamayo J, Chaves F. Clinical and bacterial characteristics of Pseudomonas aeruginosa affecting the outcome of patients with bacteraemic pneumonia. Int J Antimicrob Agents 2021; 58:106450. [PMID: 34644604 DOI: 10.1016/j.ijantimicag.2021.106450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 12/29/2022]
Abstract
Few studies have assessed the clinical and bacterial characteristics of Pseudomonas aeruginosa (PA) bacteraemic pneumonia (BP) episodes. This study analysed all non-duplicate PA-BP episodes from a tertiary hospital in 2013-2017. Epidemiology, clinical data, antimicrobial therapy and outcomes were recorded. Whole-genome sequencing was performed on PA blood isolates. The impact on early and late overall mortality of host, antimicrobial treatment and pathogen factors was assessed by multivariate logistic regression analysis. Of 55 PA-BP episodes, 32 (58.2%) were caused by extensively drug-resistant (XDR) PA. ST175 (32.7%) and ST235 (25.5%) were the most frequent high-risk clones. β-Lactamases/carbapenemases were detected in 29 isolates, including blaVIM-2 (27.2%) and blaGES type (25.5%) [blaGES-5 (20.0%), blaGES-1 (3.6%) and blaGES-20 (1.8%)]. The most prevalent O-antigen serotypes were O4 (34.5%) and O11 (30.9%). Overall, an extensive virulome was identified in all isolates. Early mortality (56.4%) was independently associated with severe neutropenia (aOR = 4.64, 95% CI 1.11-19.33; P = 0.035) and inappropriate empirical antimicrobial therapy (aOR = 5.71, 95% CI 1.41-22.98; P = 0.014). Additionally, late mortality (67.3%) was influenced by septic shock (aOR = 8.85, 95% CI 2.00-39.16; P = 0.004) and XDR phenotype (aOR = 5.46, 95% CI 1.25-23.85; P = 0.024). Moreover, specific genetic backgrounds [ST235, blaGES, gyrA (T83I), parC (S87L), exoU and O11 serotype] showed significant differences in patient outcomes. Our results confirm the high mortality associated with PA-BP. Besides relevant clinical characteristics and inappropriate empirical therapy, bacteria-specific genetics factors, such as XDR phenotype, adversely affect the outcome of PA-BP.
Collapse
Affiliation(s)
- Raúl Recio
- Department of Clinical Microbiology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Esther Viedma
- Department of Clinical Microbiology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Sara González-Bodí
- Department of Clinical Microbiology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jennifer Villa
- Department of Clinical Microbiology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María Ángeles Orellana
- Department of Clinical Microbiology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Mikel Mancheño-Losa
- Department of Internal Medicine, Instituto de Investigación Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jaime Lora-Tamayo
- Department of Internal Medicine, Instituto de Investigación Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fernando Chaves
- Department of Clinical Microbiology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
10
|
Eladawy M, El-Mowafy M, El-Sokkary MMA, Barwa R. Antimicrobial resistance and virulence characteristics in ERIC-PCR typed biofilm forming isolates of P. aeruginosa. Microb Pathog 2021; 158:105042. [PMID: 34119625 DOI: 10.1016/j.micpath.2021.105042] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/22/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Pseudomonas aeruginosa is a serious pathogen particularly in immunocompromised patients. In this work, 103 clinical isolates of P. aeruginosa were collected and classified into weak, moderate, and strong biofilm producers according to their biofilm forming abilities via tissue culture plate method. The antimicrobial resistance and the presence of different virulence genes were investigated via disc diffusion method and polymerase chain reaction respectively. Moreover, ERIC-PCR typing was performed to investigate the genetic diversity among the clinical isolates. No significant correlation was observed between biofilm formation and resistance to each antimicrobial agent. Similar observation was detected concerning the multidrug resistance and biofilm formation. Regarding virulence genes, algD gene was harbored by all isolates (100%). Only pelA and phzM were significantly prevalent in strong biofilm producers. Additionally, the mean virulence score was higher in strong biofilm producers (9.33) than moderate (8.62) and weak (7) biofilm producers. Moreover, there was a significant correlation between the overall virulence score of the isolates and its ability to form biofilm. ERIC-PCR genotyping revealed the presence of 99 different ERIC patterns based on 70% similarity, and the different ERIC patterns were categorized into 8 clusters. 100% similarity indicates the possibility of cross-colonization in P. aeruginosa infections.
Collapse
Affiliation(s)
- Mohamed Eladawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mohamed M A El-Sokkary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Rasha Barwa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
11
|
de Kraker MEA, Lipsitch M. Burden of Antimicrobial Resistance: Compared to What? Epidemiol Rev 2021; 43:53-64. [PMID: 33710259 PMCID: PMC8763122 DOI: 10.1093/epirev/mxab001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The increased focus on the public health burden of antimicrobial resistance (AMR) raises conceptual challenges, such as determining how much harm multidrug-resistant organisms do compared to what, or how to establish the burden. Here, we present a counterfactual framework and provide guidance to harmonize methodologies and optimize study quality. In AMR-burden studies, 2 counterfactual approaches have been applied: the harm of drug-resistant infections relative to the harm of the same drug-susceptible infections (the susceptible-infection counterfactual); and the total harm of drug-resistant infections relative to a situation where such infections were prevented (the no-infection counterfactual). We propose to use an intervention-based causal approach to determine the most appropriate counterfactual. We show that intervention scenarios, species of interest, and types of infections influence the choice of counterfactual. We recommend using purpose-designed cohort studies to apply this counterfactual framework, whereby the selection of cohorts (patients with drug-resistant, drug-susceptible infections, and those with no infection) should be based on matching on time to infection through exposure density sampling to avoid biased estimates. Application of survival methods is preferred, considering competing events. We conclude by advocating estimation of the burden of AMR by using the no-infection and susceptible-infection counterfactuals. The resulting numbers will provide policy-relevant information about the upper and lower bound of future interventions designed to control AMR. The counterfactuals should be applied in cohort studies, whereby selection of the unexposed cohorts should be based on exposure density sampling, applying methods avoiding time-dependent bias and confounding.
Collapse
Affiliation(s)
- Marlieke E A de Kraker
- Correspondence to Dr. Marlieke E.A. de Kraker, Infection Control Program, Geneva University Hospitals and Faculty of Medicine, Rue Gabrielle Perret Gentil 4, CH-1205 Geneva, Switzerland (e-mail: )
| | | |
Collapse
|
12
|
Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int J Antimicrob Agents 2020; 56:106196. [DOI: 10.1016/j.ijantimicag.2020.106196] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/30/2020] [Accepted: 09/26/2020] [Indexed: 01/17/2023]
|
13
|
Risk Factors for Mortality among Patients with Pseudomonas aeruginosa Bloodstream Infections: What Is the Influence of XDR Phenotype on Outcomes? J Clin Med 2020; 9:jcm9020514. [PMID: 32074947 PMCID: PMC7074151 DOI: 10.3390/jcm9020514] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/14/2022] Open
Abstract
This study aimed to assess the impact of extensively drug-resistant (XDR) phenotype on mortality in Pseudomonas aeruginosa bacteremia. A retrospective cohort study was performed in a tertiary hospital from January 2000 to December 2018. All consecutive prospectively recorded P. aeruginosa bacteremia in adult patients were assessed. In this study, 382 patients were included, of which 122 (31.9%) due to XDR P. aeruginosa. Independent factors associated with 14-day mortality were as follows: high-risk source of bacteremia (hazard ratio (HR) 3.07, 95% confidence interval (CI), 1.73–5.46), septic shock (HR 1.75, 95% CI, 1.12–2.75), and higher Pitt scores (one-point increments; HR 1.25, 95% CI, 1.12–1.38). Otherwise, the appropriateness of definitive antibiotic therapy was a protective factor (HR 0.39, 95% CI, 0.24–0.62). The same variables were also associated with 30-day mortality. XDR phenotype was not associated with 14- or 30-day mortality. In a subanalysis considering only high-risk source cases, combined antimicrobial therapy was independently associated with 14-day favorable outcome (HR 0.56, 95% CI, 0.33–0.93). In conclusion, XDR phenotype was not associated with poor prognosis in patients with P. aeruginosa bacteremia in our cohort. However, source of infection, clinical severity, and inappropriate definitive antibiotic therapy were risk factors for mortality. Combined antimicrobial therapy should be considered for high-risk sources.
Collapse
|