1
|
Wang L, Zhu W, Wang R, Li W, Liang G, Ji Z, Dong X, Shi X. Suppressing interferences of EIT on synchronous recording EEG based on comb filter for seizure detection. Front Neurol 2022; 13:1070124. [DOI: 10.3389/fneur.2022.1070124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Background and objectiveThe purpose of this study was to eliminate the interferences of electrical impedance tomography (EIT) on synchronous recording electroencephalography (EEG) for seizure detection.MethodsThe simulated EIT signal generated by COMSOL Multiphysics was superimposed on the clinical EEG signal obtained from the CHB-MIT Scalp EEG Database, and then the spectrum features of superimposed mixed signals were analyzed. According to the spectrum analysis, in addition to high-frequency interference at 51.2 kHz related to the drive current, there was also low-frequency interference caused by switching of electrode pairs, which were used to inject drive current. A low pass filter and a comb filter were used to suppress the high-frequency interference and low-frequency interference, respectively. Simulation results suggested the low-pass filter and comb filter working together effectively filtered out the interference of EIT on EEG in the process of synchronous monitoring.ResultsAs a result, the normal EEG and epileptic EEG could be recognized effectively. Pearson correlation analysis further confirmed the interference of EIT on EEG was effectively suppressed.ConclusionsThis study provides a simple and effective interference suppression method for the synchronous monitoring of EIT and EEG, which could be served as a reference for the synchronous monitoring of EEG and other medical electromagnetic devices.
Collapse
|
2
|
Taha L, Abdel-Raheem E. A Null Space-Based Blind Source Separation for Fetal Electrocardiogram Signals. SENSORS 2020; 20:s20123536. [PMID: 32580397 PMCID: PMC7348901 DOI: 10.3390/s20123536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
Abstract
This paper presents a new non-invasive deterministic algorithm of extracting the fetal Electrocardiogram (FECG) signal based on a new null space idempotent transformation matrix (NSITM). The mixture matrix is used to compute the ITM. Then, the fetal ECG (FECG) and maternal ECG (MECG) signals are extracted from the null space of the ITM. Next, MECG and FECG peaks detection, control logic, and adaptive comb filter are used to remove the unwanted MECG component from the raw FECG signal, thus extracting a clean FECG signal. The visual results from Daisy and Physionet real databases indicate that the proposed algorithm is effective in extracting the FECG signal, which can be compared with principal component analysis (PCA), fast independent component analysis (FastICA), and parallel linear predictor (PLP) filter algorithms. Results from Physionet synthesized ECG data show considerable improvement in extraction performances over other algorithms used in this work, considering different additive signal-to-noise ratio (SNR) increasing from 0 dB to 12 dB, and considering different fetal-to-maternal SNR increasing from -30 dB to 0 dB. The FECG detection of the NSITM is evaluated using statistical measures and results show considerable improvement in the sensitivity (SE), the accuracy (ACC), and the positive predictive value (PPV), as compared with other algorithms. The study demonstrated that the NSITM is a feasible algorithm for FECG extraction.
Collapse
|
3
|
Bottrich M, Husar P. Signal Separation for Transabdominal Non-invasive Fetal Pulse Oximetry using Comb Filters. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:5870-5873. [PMID: 30441671 DOI: 10.1109/embc.2018.8513614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Non-invasive fetal pulse oximetry is the application of reflection pulse oximetry to the abdomen of a pregnant woman. Light sources and detectors areplaced on the belly. Emitted photons travel through maternal and fetal tissue and back to the detectors. The captured photoplethysmogram (PPG) is a complex mixture of the maternal and fetal pulse curve. A purely fetal PPG in time domain is needed to estimate the oxygen level of the unborn child. In this work we describe the application of comb filters to separate the fetalfrom the maternal signal. Finite element simulations and phantom measurements are utilized to generate and measure synthetic signals at different heart rates and noise levels. Comb filters with peak frequencies matched to the fetal heart rate are applied to the mixed PPGs. The filtered signals prove that the extraction of the fetal signal is sufficient even at a distance between the maternal and the fetal signal magnitudes of around 80 dB. The resulting signal quality is sufficient for beat to beat analysis and feature extraction in the time domain. We conclude that comb filtering is a suitable signal separation method for non-invasive fetal pulse oximetry.
Collapse
|
4
|
Kahankova R, Martinek R, Jaros R, Behbehani K, Matonia A, Jezewski M, Behar JA. A Review of Signal Processing Techniques for Non-Invasive Fetal Electrocardiography. IEEE Rev Biomed Eng 2019; 13:51-73. [PMID: 31478873 DOI: 10.1109/rbme.2019.2938061] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fetal electrocardiography (fECG) is a promising alternative to cardiotocography continuous fetal monitoring. Robust extraction of the fetal signal from the abdominal mixture of maternal and fetal electrocardiograms presents the greatest challenge to effective fECG monitoring. This is mainly due to the low amplitude of the fetal versus maternal electrocardiogram and to the non-stationarity of the recorded signals. In this review, we highlight key developments in advanced signal processing algorithms for non-invasive fECG extraction and the available open access resources (databases and source code). In particular, we highlight the advantages and limitations of these algorithms as well as key parameters that must be set to ensure their optimal performance. Improving or combining the current or developing new advanced signal processing methods may enable morphological analysis of the fetal electrocardiogram, which today is only possible using the invasive scalp electrocardiography method.
Collapse
|
5
|
Martinek R, Kahankova R, Jezewski J, Jaros R, Mohylova J, Fajkus M, Nedoma J, Janku P, Nazeran H. Comparative Effectiveness of ICA and PCA in Extraction of Fetal ECG From Abdominal Signals: Toward Non-invasive Fetal Monitoring. Front Physiol 2018; 9:648. [PMID: 29899707 PMCID: PMC5988877 DOI: 10.3389/fphys.2018.00648] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/11/2018] [Indexed: 01/15/2023] Open
Abstract
Non-adaptive signal processing methods have been successfully applied to extract fetal electrocardiograms (fECGs) from maternal abdominal electrocardiograms (aECGs); and initial tests to evaluate the efficacy of these methods have been carried out by using synthetic data. Nevertheless, performance evaluation of such methods using real data is a much more challenging task and has neither been fully undertaken nor reported in the literature. Therefore, in this investigation, we aimed to compare the effectiveness of two popular non-adaptive methods (the ICA and PCA) to explore the non-invasive (NI) extraction (separation) of fECGs, also known as NI-fECGs from aECGs. The performance of these well-known methods was enhanced by an adaptive algorithm, compensating amplitude difference and time shift between the estimated components. We used real signals compiled in 12 recordings (real01-real12). Five of the recordings were from the publicly available database (PhysioNet-Abdominal and Direct Fetal Electrocardiogram Database), which included data recorded by multiple abdominal electrodes. Seven more recordings were acquired by measurements performed at the Institute of Medical Technology and Equipment, Zabrze, Poland. Therefore, in total we used 60 min of data (i.e., around 88,000 R waves) for our experiments. This dataset covers different gestational ages, fetal positions, fetal positions, maternal body mass indices (BMI), etc. Such a unique heterogeneous dataset of sufficient length combining continuous Fetal Scalp Electrode (FSE) acquired and abdominal ECG recordings allows for robust testing of the applied ICA and PCA methods. The performance of these signal separation methods was then comprehensively evaluated by comparing the fetal Heart Rate (fHR) values determined from the extracted fECGs with those calculated from the fECG signals recorded directly by means of a reference FSE. Additionally, we tested the possibility of non-invasive ST analysis (NI-STAN) by determining the T/QRS ratio. Our results demonstrated that even though these advanced signal processing methods are suitable for the non-invasive estimation and monitoring of the fHR information from maternal aECG signals, their utility for further morphological analysis of the extracted fECG signals remains questionable and warrants further work.
Collapse
Affiliation(s)
- Radek Martinek
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia
| | - Radana Kahankova
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia
| | - Janusz Jezewski
- Institute of Medical Technology and Equipment ITAM, Zabrze, Poland
| | - Rene Jaros
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia
| | - Jitka Mohylova
- Department of General Electrical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia
| | - Marcel Fajkus
- Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia
| | - Jan Nedoma
- Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia
| | - Petr Janku
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Homer Nazeran
- Department of Electrical and Computer Engineering, University of Texas El Paso, El Paso, TX, United States
| |
Collapse
|
6
|
Abstract
This paper presents a novel method for extracting the fetal ECG (FECG) from a single-lead abdominal signal. A dynamical model for a modified abdominal signal is proposed, in which both the maternal ECG (MECG) and the FECG are modeled, and then a parallel marginalized particle filter (par-MPF) is used for tracking the abdominal signal. Finally, the FECG and MECG are simultaneously separated. Several experiments are conducted using both simulated and clinical signals. The results indicate that the method proposed in this paper effectively extracts the FECG and outperforms other Bayesian filtering algorithms.
Collapse
|
7
|
Martinek R, Kahankova R, Nazeran H, Konecny J, Jezewski J, Janku P, Bilik P, Zidek J, Nedoma J, Fajkus M. Non-Invasive Fetal Monitoring: A Maternal Surface ECG Electrode Placement-Based Novel Approach for Optimization of Adaptive Filter Control Parameters Using the LMS and RLS Algorithms. SENSORS 2017; 17:s17051154. [PMID: 28534810 PMCID: PMC5470900 DOI: 10.3390/s17051154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 11/16/2022]
Abstract
This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters (such as step size μ and filter order N) of LMS and RLS adaptive filters used for noninvasive fetal monitoring. The optimization algorithm is driven by considering the ECG electrode positions on the maternal body surface in improving the performance of these adaptive filters. The main criterion for optimal parameter selection was the Signal-to-Noise Ratio (SNR). We conducted experiments using signals supplied by the latest version of our LabVIEW-Based Multi-Channel Non-Invasive Abdominal Maternal-Fetal Electrocardiogram Signal Generator, which provides the flexibility and capability of modeling the principal distribution of maternal/fetal ECGs in the human body. Our novel algorithm enabled us to find the optimal settings of the adaptive filters based on maternal surface ECG electrode placements. The experimental results further confirmed the theoretical assumption that the optimal settings of these adaptive filters are dependent on the ECG electrode positions on the maternal body, and therefore, we were able to achieve far better results than without the use of optimization. These improvements in turn could lead to a more accurate detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to establish recommendations for standard electrode placement and find the optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing. Ultimately, diagnostic-grade fetal ECG signals would ensure the reliable detection of fetal hypoxia.
Collapse
Affiliation(s)
- Radek Martinek
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70833 Ostrava, Czech Republic.
| | - Radana Kahankova
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70833 Ostrava, Czech Republic.
| | - Homer Nazeran
- Department of Electrical and Computer Engineering, University of Texas El Paso, 500 W University Ave, El Paso, TX 79968, USA.
| | - Jaromir Konecny
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70833 Ostrava, Czech Republic.
| | - Janusz Jezewski
- Institute of Medical Technology and Equipment ITAM, 118 Roosevelt Str., 41-800 Zabrze, Poland.
| | - Petr Janku
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Jihlavska 20, 625 00 Brno, Czech Republic.
| | - Petr Bilik
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70833 Ostrava, Czech Republic.
| | - Jan Zidek
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70833 Ostrava, Czech Republic.
| | - Jan Nedoma
- Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70833 Ostrava, Czech Republic.
| | - Marcel Fajkus
- Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70833 Ostrava, Czech Republic.
| |
Collapse
|