• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4681887)   Today's Articles (2)
For: Jekova I, Krasteva V, Leber R, Schmid R, Twerenbold R, Müller C, Reichlin T, Abächerli R. Inter-lead correlation analysis for automated detection of cable reversals in 12/16-lead ECG. Comput Methods Programs Biomed 2016;134:31-41. [PMID: 27480730 DOI: 10.1016/j.cmpb.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/12/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Number Cited by Other Article(s)
1
Kim KG, Lee BT. Graph structure based data augmentation method. Biomed Eng Lett 2025;15:283-289. [PMID: 40026890 PMCID: PMC11871153 DOI: 10.1007/s13534-024-00446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 03/05/2025]  Open
2
Huang Y, Wang M, Li YG, Cai W. A lightweight deep learning approach for detecting electrocardiographic lead misplacement. Physiol Meas 2024;45:055006. [PMID: 38663434 DOI: 10.1088/1361-6579/ad43ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
3
Paul A, Jacob JR. Electrocardiographic lead reversals. Indian Pacing Electrophysiol J 2023;23:205-213. [PMID: 37739313 PMCID: PMC10685096 DOI: 10.1016/j.ipej.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/20/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]  Open
4
Rjoob K, Bond R, Finlay D, McGilligan V, Leslie SJ, Rababah A, Guldenring D, Iftikhar A, Knoery C, McShane A, Peace A. Machine learning techniques for detecting electrode misplacement and interchanges when recording ECGs: A systematic review and meta-analysis. J Electrocardiol 2020;62:116-123. [DOI: 10.1016/j.jelectrocard.2020.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/17/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
5
False Alarm Reduction in Self-Care by Personalized Automatic Detection of ECG Electrode Cable Interchanges. Int J Telemed Appl 2020;2020:9175673. [PMID: 32411214 PMCID: PMC7212315 DOI: 10.1155/2020/9175673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/30/2019] [Indexed: 11/18/2022]  Open
6
Krasteva V, Jekova I, Schmid R. Simulating Arbitrary Electrode Reversals in Standard 12-lead ECG. SENSORS (BASEL, SWITZERLAND) 2019;19:E2920. [PMID: 31266252 PMCID: PMC6651562 DOI: 10.3390/s19132920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 12/02/2022]
7
Li F, Chen K, Ling J, Zhan Y, Manogaran G. Automatic diagnosis of cardiac arrhythmia in electrocardiograms via multigranulation computing. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
8
Liu W, Zhang M, Zhang Y, Liao Y, Huang Q, Chang S, Wang H, He J. Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection. IEEE J Biomed Health Inform 2018;22:1434-1444. [DOI: 10.1109/jbhi.2017.2771768] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
9
Liu W, Huang Q, Chang S, Wang H, He J. Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2018.05.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA