1
|
Kumar P, Das AK, Halder S. Statistical heart rate variability analysis for healthy person: Influence of gender and body posture. J Electrocardiol 2023; 79:81-88. [PMID: 37003104 DOI: 10.1016/j.jelectrocard.2023.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Short-term ECG-derived heart rate variability can assess autonomic function non-invasively. The purpose of this study is to investigate the influence of body posture and gender on parasympathetic-sympathetic balance by utilising electrocardiogram (ECG). A total of sixty participants including thirty males (95% CI: 23.34-26.32 years old) and thirty females (95% CI: 23.33-26.07 years old) voluntarily executed three sets of 5-min ECG recordings in supine, sitting and standing posture. A nonparametric Friedman test followed by Bonferroni post-hoc test was carried out to find the statistical differences between the group. A significant difference was observed for RR mean, low frequency (LF), high frequency (HF), ratio LF/HF and the ratio long term variability to short term variability (SD2/SD1) for p < 0.01 while respiration rate (Resp Rate), standard deviation of heart rate (STD_HR), long term variability (SD2), approximate entropy (ApEn), correlation dimension (CD) are non-significant (p > 0.01) for supine, sitting and standing. HRV indices such as standard deviation of NN (SDNN), HRV triangular index (HRVi), and triangular interpolation of NN interval (TINN) are statistically not significant for males but there are significant differences for females at a significance level 1%. Relative reliability and relatedness were evaluated through the interclass coefficient (ICC) and spearman correlation coefficient. The experimental results advocate that there is a posture-specific difference in HRV indices while the correlational studies suggest no such significant differences.
Collapse
|
2
|
Ilić AŽ, de Luka SR, Popović TB, Debeljak-Martačić J, Kojadinović M, Ćirković S, Ristić-Djurović JL, Trbovich AM. Distinct fatty acid redistribution and textural changes in the brain tissue upon the static magnetic field exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103853. [PMID: 35318121 DOI: 10.1016/j.etap.2022.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
We observed different outcomes upon the subacute exposure to the 128 mT highly homogeneous static magnetic field (SMF) when its orientation was (i) aligned with the vertical component of the geomagnetic field; (ii) in the opposite direction. We employed the fatty acids (FA) composition and digital image analyses (DIA) to provide insights into the underlying processes and examine the possible weak SMF effects. Swiss-Webster male mice were whole-body exposed for 1 h/day over five days. Brain tissue's thin liquid chromatography resulted in brain FA composition, indicating a possible sequence of changes due to the SMF exposure. Quantitative DIA accurately assessed different image parameters. Delicate textural changes were revealed in the group where pathohistological or biochemical alterations have not been detected. DIA-based biological markers seem to be very promising for studying delicate tissue changes, which results from the high sensitivity and wide availability of DIA.
Collapse
Affiliation(s)
- Andjelija Ž Ilić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun, Belgrade, Serbia
| | - Silvio R de Luka
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, Dr. Subotića 9, 11000 Belgrade, Serbia
| | - Tamara B Popović
- Institute for Medical Research, University of Belgrade, Centre of Excellence in Nutrition and Metabolism, Tadeuša Košćuška 1, Belgrade 11000, Serbia
| | - Jasmina Debeljak-Martačić
- Institute for Medical Research, University of Belgrade, Centre of Excellence in Nutrition and Metabolism, Tadeuša Košćuška 1, Belgrade 11000, Serbia
| | - Milica Kojadinović
- Institute for Medical Research, University of Belgrade, Centre of Excellence in Nutrition and Metabolism, Tadeuša Košćuška 1, Belgrade 11000, Serbia
| | - Saša Ćirković
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun, Belgrade, Serbia
| | - Jasna L Ristić-Djurović
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Zemun, Belgrade, Serbia
| | - Alexander M Trbovich
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, Dr. Subotića 9, 11000 Belgrade, Serbia.
| |
Collapse
|
3
|
Hammour GM, Mandic DP. Hearables: Making Sense from Motion Artefacts in Ear-EEG for Real-Life Human Activity Classification. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6889-6893. [PMID: 34892689 DOI: 10.1109/embc46164.2021.9629886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ear-worn devices are rapidly gaining popularity as they provide the means for measuring vital signals in an unobtrusive, 24/7 wearable and discrete fashion. Naturally, these devices are prone to motion artefacts when used in out-of-lab environments, various movements and activities cause relative movement between user's skin and the electrodes. Historically, these artefacts are seen as nuisance resulting in discarding the segments of signal wherever such artefacts are present. In this work, we make use of such artefacts to classify different daily activities that include sitting, speaking aloud, chewing and walking. To this end, multiple classification techniques are employed to identify these activities using 8 features calculated from the electrode and microphone signal embedded in a generic multimodal in-ear sensor. The results show an overall training accuracy of 93% and 90% and a testing accuracy of 85% and 80% when using a KNN and a 2-layer neural network respectively, thus providing a much needed, simple and reliable framework for real-life human activity classification.
Collapse
|
4
|
Wan Z, Tang J, Ren L, Xiao Y, Liu S. Optimization Techniques to Deeply Mine the Transcriptomic Profile of the Sub-Genomes in Hybrid Fish Lineage. Front Genet 2019; 10:911. [PMID: 31737028 PMCID: PMC6833921 DOI: 10.3389/fgene.2019.00911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
It has been shown that reciprocal cross allodiploid lineage with sub-genomes derived from the cross of Megalobrama amblycephala (BSB) × Culter alburnus (TC) generates the variations in phenotypes and genotypes, but it is still a challenge to deeply mine biological information in the transcriptomic profile of this lineage owing to its genomic complexity and lack of efficient data mining methods. In this paper, we establish an optimization model by non-negative matrix factorization approach for deeply mining the transcriptomic profile of the sub-genomes in hybrid fish lineage. A new so-called spectral conjugate gradient algorithm is developed to solve a sequence of large-scale subproblems such that the original complicated model can be efficiently solved. It is shown that the proposed method can provide a satisfactory result of taxonomy for the hybrid fish lineage such that their genetic characteristics are revealed, even for the samples with larger detection errors. Particularly, highly expressed shared genes are found for each class of the fish. The hybrid progeny of TC and BSB displays significant hybrid characteristics. The third generation of TC-BSB hybrid progeny (BTF3 and TBF3) shows larger trait separation.
Collapse
Affiliation(s)
- Zhong Wan
- School of Mathematics and Statistics, Central South University, Changsha, China
| | - Jiayi Tang
- School of Mathematics and Statistics, Central South University, Changsha, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| |
Collapse
|
5
|
Adjei T, von Rosenberg W, Nakamura T, Chanwimalueang T, Mandic DP. The ClassA Framework: HRV Based Assessment of SNS and PNS Dynamics Without LF-HF Controversies. Front Physiol 2019; 10:505. [PMID: 31133868 PMCID: PMC6511892 DOI: 10.3389/fphys.2019.00505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/09/2019] [Indexed: 11/25/2022] Open
Abstract
The powers of the low frequency (LF) and high frequency (HF) components of heart rate variability (HRV) have become the de facto standard metrics in the assessment of the stress response, and the related activities of the sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS). However, the widely adopted physiological interpretations of the LF and HF components in SNS /PNS balance are now questioned, which puts under serious scrutiny stress assessments which employ the LF and HF components. To avoid these controversies, we here introduce the novel Classification Angle (ClassA) framework, which yields a family of metrics which quantify cardiac dynamics in three-dimensions. This is achieved using a finite-difference plot of HRV, which displays successive rates of change of HRV, and is demonstrated to provide sufficient degrees of freedom to determine cardiac deceleration and/or acceleration. The robustness and accuracy of the novel ClassA framework is verified using HRV signals from ten males, recorded during standardized stress tests, consisting of rest, mental arithmetic, meditation, exercise and further meditation. Comparative statistical testing demonstrates that unlike the existing LF-HF metrics, the ClassA metrics are capable of distinguishing both the physical and mental stress epochs from the epochs of no stress, with statistical significance (Bonferroni corrected p-value ≤ 0.025); HF was able to distinguish physical stress from no stress, but was not able to identify mental stress. The ClassA results also indicated that at moderate levels of stress, the extent of parasympathetic withdrawal was greater than the extent of sympathetic activation. Finally, the analyses and the experimental results provide conclusive evidence that the proposed nonlinear approach to quantify cardiac activity from HRV resolves three critical obstacles to current HRV stress assessments: (i) it is not based on controversial assumptions of balance between the LF and HF powers; (ii) its temporal resolution when estimating parasympathetic dominance is as little as 10 s of HRV data, while only 60 s to estimate sympathetic dominance; (iii) unlike LF and HF analyses, the ClassA framework does not require the prohibitive assumption of signal stationarity. The ClassA framework is unique in offering HRV based stress analysis in three-dimensions.
Collapse
Affiliation(s)
- Tricia Adjei
- Communications and Signal Processing, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Wilhelm von Rosenberg
- Communications and Signal Processing, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Takashi Nakamura
- Communications and Signal Processing, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Theerasak Chanwimalueang
- Department of Biomedical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Danilo P Mandic
- Communications and Signal Processing, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Adjei T, Xue J, Mandic DP. The Female Heart: Sex Differences in the Dynamics of ECG in Response to Stress. Front Physiol 2018; 9:1616. [PMID: 30546313 PMCID: PMC6279887 DOI: 10.3389/fphys.2018.01616] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
Sex differences in the study of the human physiological response to mental stress are often erroneously ignored. To this end, we set out to show that our understanding of the stress response is fundamentally altered once sex differences are taken into account. This is achieved by comparing the heart rate variability (HRV) signals acquired during mental maths tests from ten females and ten males of similar maths ability; all females were in the follicular phase of their menstrual cycle. For rigor, the HRV signals from this pilot study were analyzed using temporal, spectral and nonlinear signal processing techniques, which all revealed significant statistical differences between the sexes, with the stress-induced increases in the heart rates from the males being significantly larger than those from the females (p-value = 4.4 × 10−4). In addition, mental stress produced an overall increase in the power of the low frequency component of HRV in the males, but caused an overall decrease in the females. The stress-induced changes in the power of the high frequency component were even more profound; it greatly decreased in the males, but increased in the females. We also show that mental stress was followed by the expected decrease in sample entropy, a nonlinear measure of signal regularity, computed from the males' HRV signals, while overall, stress manifested in an increase in the sample entropy computed from the females' HRV signals. This finding is significant, since mental stress is commonly understood to be manifested in the decreased entropy of HRV signals. The significant difference (p-value = 2.1 × 10−9) between the changes in the entropies from the males and females highlights the pitfalls in ignoring sex in the formation of a physiological hypothesis. Furthermore, it has been argued that estrogen attenuates the effect of catecholamine stress hormones; the findings from this investigation suggest for the first time that the conventionally cited cardiac changes, attributed to the fight-or-flight stress response, are not universally applicable to females. Instead, this pilot study provides an alternative interpretation of cardiac responses to stress in females, which indicates a closer alignment to the evolutionary tend-and-befriend response.
Collapse
Affiliation(s)
- Tricia Adjei
- Communications and Signal Processing, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Jingwen Xue
- Communications and Signal Processing, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Danilo P Mandic
- Communications and Signal Processing, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|