1
|
Kani MAJM, Parvathy MS, Banu SM, Kareem MSA. Classification of skin lesion images using modified Inception V3 model with transfer learning and augmentation techniques. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-221386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this article, a methodological approach to classifying malignant melanoma in dermoscopy images is presented. Early treatment of skin cancer increases the patient’s survival rate. The classification of melanoma skin cancer in the early stages is decided by dermatologists to treat the patient appropriately. Dermatologists need more time to diagnose affected skin lesions due to high resemblance between melanoma and benign. In this paper, a deep learning based Computer-Aided Diagnosis (CAD) system is developed to accurately classify skin lesions with a high classification rate. A new architecture has been framed to classify the skin lesion diseases using the Inception v3 model as a baseline architecture. The extracted features from the Inception Net are then flattened and are given to the DenseNet block to extracts more fine grained features of the lesion disease. The International Skin Imaging Collaboration (ISIC) archive datasets contains 3307 dermoscopy images which includes both benign and malignant skin images. The dataset images are trained using the proposed architecture with the learning rate of 0.0001, batch size 64 using various optimizer. The performance of the proposed model has also been evaluated using confusion matrix and ROC-AUC curves. The experimental results show that the proposed model attains a highest accuracy rate of 91.29 % compared to other state-of-the-art methods like ResNet, VGG-16, DenseNet, MobileNet. A confusion matrix and ROC curve are used to evaluate the performance analysis of skin images. The classification accuracy, sensitivity, specificity, testing accuracy, and AUC values were obtained at 90.33%, 82.87%, 91.29%, 87.12%, and 87.40% .
Collapse
Affiliation(s)
- Mohamed Ali Jinna Mathina Kani
- Computer Science and Engineering, Sethu Institute of Technology Affiliated to Anna University, Pulloor, Kariyapatti, Tamilnadu, India
| | - Meenakshi Sundaram Parvathy
- Computer Science and Engineering, Sethu Institute of Technology Affiliated to Anna University, Pulloor, Kariyapatti, Tamilnadu, India
| | | | | |
Collapse
|
2
|
Skin lesion classification of dermoscopic images using machine learning and convolutional neural network. Sci Rep 2022; 12:18134. [PMID: 36307467 PMCID: PMC9616944 DOI: 10.1038/s41598-022-22644-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
Detecting dangerous illnesses connected to the skin organ, particularly malignancy, requires the identification of pigmented skin lesions. Image detection techniques and computer classification capabilities can boost skin cancer detection accuracy. The dataset used for this research work is based on the HAM10000 dataset which consists of 10015 images. The proposed work has chosen a subset of the dataset and performed augmentation. A model with data augmentation tends to learn more distinguishing characteristics and features rather than a model without data augmentation. Involving data augmentation can improve the accuracy of the model. But that model cannot give significant results with the testing data until it is robust. The k-fold cross-validation technique makes the model robust which has been implemented in the proposed work. We have analyzed the classification accuracy of the Machine Learning algorithms and Convolutional Neural Network models. We have concluded that Convolutional Neural Network provides better accuracy compared to other machine learning algorithms implemented in the proposed work. In the proposed system, as the highest, we obtained an accuracy of 95.18% with the CNN model. The proposed work helps early identification of seven classes of skin disease and can be validated and treated appropriately by medical practitioners.
Collapse
|
3
|
Abstract
Any cancer type is one of the leading death causes around the world. Skin cancer is a condition where malignant cells are formed in the tissues of the skin, such as melanoma, known as the most aggressive and deadly skin cancer type. The mortality rates of melanoma are associated with its high potential for metastasis in later stages, spreading to other body sites such as the lungs, bones, or the brain. Thus, early detection and diagnosis are closely related to survival rates. Computer Aided Design (CAD) systems carry out a pre-diagnosis of a skin lesion based on clinical criteria or global patterns associated with its structure. A CAD system is essentially composed by three modules: (i) lesion segmentation, (ii) feature extraction, and (iii) classification. In this work, a methodology is proposed for a CAD system development that detects global patterns using texture descriptors based on statistical measurements that allow melanoma detection from dermoscopic images. Image analysis was carried out using spatial domain methods, statistical measurements were used for feature extraction, and a classifier based on cellular automata (ACA) was used for classification. The proposed model was applied to dermoscopic images obtained from the PH2 database, and it was compared with other models using accuracy, sensitivity, and specificity as metrics. With the proposed model, values of 0.978, 0.944, and 0.987 of accuracy, sensitivity and specificity, respectively, were obtained. The results of the evaluated metrics show that the proposed method is more effective than other state-of-the-art methods for melanoma detection in dermoscopic images.
Collapse
|
4
|
Kassem MA, Hosny KM, Damaševičius R, Eltoukhy MM. Machine Learning and Deep Learning Methods for Skin Lesion Classification and Diagnosis: A Systematic Review. Diagnostics (Basel) 2021; 11:1390. [PMID: 34441324 PMCID: PMC8391467 DOI: 10.3390/diagnostics11081390] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/04/2022] Open
Abstract
Computer-aided systems for skin lesion diagnosis is a growing area of research. Recently, researchers have shown an increasing interest in developing computer-aided diagnosis systems. This paper aims to review, synthesize and evaluate the quality of evidence for the diagnostic accuracy of computer-aided systems. This study discusses the papers published in the last five years in ScienceDirect, IEEE, and SpringerLink databases. It includes 53 articles using traditional machine learning methods and 49 articles using deep learning methods. The studies are compared based on their contributions, the methods used and the achieved results. The work identified the main challenges of evaluating skin lesion segmentation and classification methods such as small datasets, ad hoc image selection and racial bias.
Collapse
Affiliation(s)
- Mohamed A. Kassem
- Department of Robotics and Intelligent Machines, Faculty of Artificial Intelligence, Kaferelshiekh University, Kaferelshiekh 33511, Egypt;
| | - Khalid M. Hosny
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt
| | - Robertas Damaševičius
- Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania
| | - Mohamed Meselhy Eltoukhy
- Computer Science Department, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
5
|
Akan H, Yıldız MZ. Development of new descriptor for melanoma detection on dermoscopic images. Med Biol Eng Comput 2020; 58:2711-2723. [PMID: 32865764 DOI: 10.1007/s11517-020-02248-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/18/2020] [Indexed: 11/29/2022]
Abstract
Early detection of melanoma has critical importance for the success of the treatment. However, a successful early diagnosis is only possible with the existence of discriminative features. In this study, a new descriptor based on the number of colors was developed in order to successfully diagnose lesions of melanoma. The number of colors is the main feature in the identification of melanoma-type skin lesions. The user must select a threshold value when calculating the number of colors of the lesion. The incorrect threshold value selection of non-expert users disrupts the aforementioned feature and also leads to significant diagnostic errors. In this study, it was revealed that color counting threshold values have a significant effect on the distinctiveness of the number of colors. In the three dermoscopic databases, color counting threshold values that provide the maximum distinctiveness on melanoma and benign lesions were determined as 0 and 0.123 respectively. By using these color counting threshold values, the number of colors for each sample in the data sets was calculated separately. Following that, a novel attribute called the number of color difference was defined as a function of color counting threshold values. Experiments using only the proposed new descriptor yielded 52.7% higher f-measure and 84.5% higher true-positive performance than the number of colors used in the literature. The results obtained in this study revealed the importance of accurately determining the number of colors the lesions had and states that the applied color counting threshold significantly influences the classification results. Thereby, a new method is proposed for determining the critical color counting threshold. We claim that the classical ABCD rule should be improved by our new descriptor. Graphical abstract Fig. 1 Selection of threshold has vital effect on skin lesion classification. A new method to select the correct threshold value and a new attribute for correct classification were developed.
Collapse
Affiliation(s)
- Hasan Akan
- Duzce Vocational School, Duzce University, Düzce, Turkey.
| | | |
Collapse
|
6
|
Jayalakshmi D., Dheeba J.. Border Detection in Skin Lesion Images Using an Improved Clustering Algorithm. INTERNATIONAL JOURNAL OF E-COLLABORATION 2020. [DOI: 10.4018/ijec.2020100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The incidence of skin cancer has been increasing in recent years and it can become dangerous if not detected early. Computer-aided diagnosis systems can help the dermatologists in assisting with skin cancer detection by examining the features more critically. In this article, a detailed review of pre-processing and segmentation methods is done on skin lesion images by investigating existing and prevalent segmentation methods for the diagnosis of skin cancer. The pre-processing stage is divided into two phases, in the first phase, a median filter is used to remove the artifact; and in the second phase, an improved K-means clustering with outlier removal (KMOR) algorithm is suggested. The proposed method was tested in a publicly available Danderm database. The improved cluster-based algorithm gives an accuracy of 92.8% with a sensitivity of 93% and specificity of 90% with an AUC value of 0.90435. From the experimental results, it is evident that the clustering algorithm has performed well in detecting the border of the lesion and is suitable for pre-processing dermoscopic images.
Collapse
Affiliation(s)
| | - Dheeba J.
- Vellore Institute of Technology, India
| |
Collapse
|
7
|
Simplification of neural networks for skin lesion image segmentation using color channel pruning. Comput Med Imaging Graph 2020; 82:101729. [PMID: 32442735 DOI: 10.1016/j.compmedimag.2020.101729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/02/2019] [Accepted: 04/04/2020] [Indexed: 11/24/2022]
Abstract
Automatic analysis of skin abnormality is an effective way for medical experts to facilitate diagnosis procedures and improve their capabilities. Efficient and accurate methods for analysis of the skin abnormalities such as convolutional neural networks (CNNs) are typically complex. Hence, the implementation of such complex structures in portable medical instruments is not feasible due to power and resource limitations. CNNs can extract features from the skin abnormality images automatically. To reduce the burden of the network for feature extraction, which can lead to the network simplicity, proper input color channels could be selected. In this paper, a pruning framework is proposed to simplify these complex structures through the selection of most informative color channels and simplification of the network. Moreover, hardware requirements of different network structures are identified to analyze the complexity of different networks. Experimental results are conducted for segmentation of images from two publicly available datasets of both dermoscopy and non-dermoscopy images. Simulation results show that using the proposed color channel selection method, simple and efficient neural network structures can be applied for segmentation of skin abnormalities.
Collapse
|
8
|
Multiple abnormality detection for automatic medical image diagnosis using bifurcated convolutional neural network. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101792] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
A High-Accuracy Mathematical Morphology and Multilayer Perceptron-Based Approach for Melanoma Detection. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10031098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
According to the World Health Organization (WHO), melanoma is the most severe type of skin cancer and is the leading cause of death from skin cancer worldwide. Certain features of melanoma include size, shape, color, or texture changes of a mole. In this work, a novel, robust and efficient method for the detection and classification of melanoma in simple and dermatological images is proposed. It is achieved by using HSV (Hue, Saturation, Value) color space along with mathematical morphology and a Gaussian filter to detect the region of interest and estimate four descriptors: symmetry, edge, color, and size. Although these descriptors have been used for several years, the way they are computed for this proposal is one of the things that enhances the results. Subsequently, a multilayer perceptron is employed to classify between malignant and benign melanoma. Three datasets of simple and dermatological images commonly used in the literature were employed to train and evaluate the performance of the proposed method. According to k-fold cross-validation, the method outperforms three state-of-art works, achieving an accuracy of 98.5% and 98.6%, a sensitivity of 96.68% and 98.05%, and a specificity of 98.15%, and 98.01%, in simple and dermatological images, respectively. The results have proven that its use as an assistive device for the detection of melanoma would improve reliability levels compared to conventional methods.
Collapse
|
10
|
Moradi N, Mahdavi-Amiri N. Kernel sparse representation based model for skin lesions segmentation and classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 182:105038. [PMID: 31437709 DOI: 10.1016/j.cmpb.2019.105038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Melanoma is a dangerous kind of skin disease with a high death rate, and its prevalence has increased rapidly in recent years. Diagnosis of melanoma in a primary phase can be helpful for its cure. Due to costs for dermatology, we need an automatic system to diagnose melanoma through lesion images. METHODS Here, we propose a sparse representation based method for segmentation and classification of lesion images. The main idea of our framework is based on a kernel sparse representation, which produces discriminative sparse codes to represent features in a high-dimensional feature space. Our novel formulation for discriminative kernel sparse coding jointly learns a kernel-based dictionary and a linear classifier. We also present an adaptive K-SVD algorithm for kernel dictionary and classifier learning. RESULTS We test our approach for both segmentation and classification tasks. The evaluation results on both dermoscopic and digital datasets demonstrate our approach to be competitive as compared to the available state-of-the-art methods, with the advantage of not needing any pre-processing. CONCLUSIONS Our method is insensitive to noise and image conditions and can be used effectively for challenging skin lesions. Our approach is so extensive to be adapted to various medical image segmentations.
Collapse
Affiliation(s)
- Nooshin Moradi
- Faculty of Mathematical Sciences, Sharif University of Technology, Tehran, Iran.
| | - Nezam Mahdavi-Amiri
- Faculty of Mathematical Sciences, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
11
|
Chatterjee S, Dey D, Munshi S. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 178:201-218. [PMID: 31416550 DOI: 10.1016/j.cmpb.2019.06.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/03/2019] [Accepted: 06/15/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Skin cancer is the commonest form of cancer in the worldwide population. Non-invasive and non-contact imaging modalities are being used for the screening of melanoma and other cutaneous malignancies to endorse early detection and prevention of the disease. Traditionally it has been a problem for medical personnel to differentiate melanoma, dysplastic nevi and basal cell carcinoma (BCC) diseases from one another due to the confusing appearance and similarity in the characteristics of the pigmented lesions. The paper reports an integrated method developed for identifying these skin diseases from the dermoscopic images. METHODS The proposed integrated computer-aided method has been employed for the identification of each of these diseases using recursive feature elimination (RFE) based layered structured multiclass image classification technique. Prior to the classification, different quantitative features have been extracted by analyzing the shape, the border irregularity, the texture and the color of the skin lesions, using different image processing tools. Primarily, a combination of gray level co-occurrence matrix (GLCM) and a proposed fractal-based regional texture analysis (FRTA) algorithm has been used for the quantification of textural information. The performance of the framework has been evaluated using a layered structure classification model using support vector machine (SVM) classifier with radial basis function (RBF). RESULTS The performance of the morphological skin lesion segmentation algorithm has been evaluated by estimating the pixel level sensitivity (Sen) of 0.9172, 0.9788 specificity (Spec), 0.9521 accuracy (ACU), along with the image similarity measuring indices as Jaccard similarity index (JSI) of 0.8562 and Dice similarity coefficient (DSC) of 0.9142 with respect to the corresponding ground truth (GT) images. The quantitative features extracted from the proposed feature extraction algorithms have been employed for the proposed multi-class skin disease identification. The proposed layered structure identifies all the three classes of skin diseases with a highly acceptable classification accuracy of 98.99%, 97.54% and 99.65% for melanoma, dysplastic nevi and BCC respectively. CONCLUSION To overcome the difficulties of proper diagnosis of diseases based on visual evaluation, the proposed integrated system plays an important role by quantifying the effective features and identifying the diseases with higher degree of accuracy. This combined approach of quantitative and qualitative analysis not only increases the diagnostic accuracy, but also provides some important information not obtainable from qualitative assessment alone.
Collapse
Affiliation(s)
| | - Debangshu Dey
- Electrical Engineering Department, Jadavpur University, Kolkata-700032, India
| | - Sugata Munshi
- Electrical Engineering Department, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
12
|
Pathan S, Gopalakrishna Prabhu K, Siddalingaswamy P. Automated detection of melanocytes related pigmented skin lesions: A clinical framework. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Nguyen PAA, Wang YC, Jack Li YC. The role of informatics in improving patient care. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 163:A1. [PMID: 30119861 DOI: 10.1016/j.cmpb.2018.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Phung-Anh Alex Nguyen
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Yao-Chin Wang
- Graduate Institute of Biomedical Informatics, College of Medicine Science and Technology, Taipei Medical University, Taipei, Taiwan;; Department of Emergency, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Yu-Chuan Jack Li
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan;; Graduate Institute of Biomedical Informatics, College of Medicine Science and Technology, Taipei Medical University, Taipei, Taiwan;; Chair, Dept. of Dermatology, Wan Fang Hospital, Taipei, Taiwan.
| |
Collapse
|