1
|
Iadarola G, Mengarelli A, Crippa P, Fioretti S, Spinsante S. A Review on Assisted Living Using Wearable Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:7439. [PMID: 39685975 DOI: 10.3390/s24237439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Forecasts about the aging trend of the world population agree on identifying increased life expectancy as a serious risk factor for the financial sustainability of social healthcare systems if not properly supported by innovative care management policies. Such policies should include the integration within traditional healthcare services of assistive technologies as tools for prolonging healthy and independent living at home, but also for introducing innovations in clinical practice such as long-term and remote health monitoring. For their part, solutions for active and assisted living have now reached a high degree of technological maturity, thanks to the considerable amount of research work carried out in recent years to develop highly reliable and energy-efficient wearable sensors capable of enabling the development of systems to monitor activity and physiological parameters over time, and in a minimally invasive manner. This work reviews the role of wearable sensors in the design and development of assisted living solutions, focusing on human activity recognition by joint use of onboard electromyography sensors and inertial measurement units and on the acquisition of parameters related to overall physical and psychological conditions, such as heart activity and skin conductance.
Collapse
Affiliation(s)
- Grazia Iadarola
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Alessandro Mengarelli
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Paolo Crippa
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Sandro Fioretti
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Susanna Spinsante
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
2
|
Jung S, de l’Escalopier N, Oudre L, Truong C, Dorveaux E, Gorintin L, Ricard D. A Machine Learning Pipeline for Gait Analysis in a Semi Free-Living Environment. SENSORS (BASEL, SWITZERLAND) 2023; 23:4000. [PMID: 37112339 PMCID: PMC10145775 DOI: 10.3390/s23084000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
This paper presents a novel approach to creating a graphical summary of a subject's activity during a protocol in a Semi Free-Living Environment. Thanks to this new visualization, human behavior, in particular locomotion, can now be condensed into an easy-to-read and user-friendly output. As time series collected while monitoring patients in Semi Free-Living Environments are often long and complex, our contribution relies on an innovative pipeline of signal processing methods and machine learning algorithms. Once learned, the graphical representation is able to sum up all activities present in the data and can quickly be applied to newly acquired time series. In a nutshell, raw data from inertial measurement units are first segmented into homogeneous regimes with an adaptive change-point detection procedure, then each segment is automatically labeled. Then, features are extracted from each regime, and lastly, a score is computed using these features. The final visual summary is constructed from the scores of the activities and their comparisons to healthy models. This graphical output is a detailed, adaptive, and structured visualization that helps better understand the salient events in a complex gait protocol.
Collapse
Affiliation(s)
- Sylvain Jung
- Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, F-91190 Gif-sur-Yvette, France
- Université Sorbonne Paris Nord, L2TI, UR 3043, F-93430 Villetaneuse, France
- AbilyCare, 130 Rue de Lourmel, F-75015 Paris, France
- ENGIE Lab CRIGEN, F-93249 Stains, France
| | - Nicolas de l’Escalopier
- Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, F-75006 Paris, France
- Service de Neurologie, Service de Santé des Armées, HIA Percy, F-92190 Clamart, France
| | - Laurent Oudre
- Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, F-91190 Gif-sur-Yvette, France
| | - Charles Truong
- Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, F-91190 Gif-sur-Yvette, France
| | - Eric Dorveaux
- AbilyCare, 130 Rue de Lourmel, F-75015 Paris, France
| | - Louis Gorintin
- Novakamp, 10-12 Avenue du Bosquet, F-95560 Baillet en France, France
| | - Damien Ricard
- Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli, F-75006 Paris, France
- Service de Neurologie, Service de Santé des Armées, HIA Percy, F-92190 Clamart, France
- Ecole du Val-de-Grâce, Service de Santé des Armées, F-75005 Paris, France
| |
Collapse
|
3
|
Zhou B, Feng N, Wang H, Lu Y, Wei C, Jiang D, Li Z. Non-invasive dual attention TCN for electromyography and motion data fusion in lower limb ambulation prediction. J Neural Eng 2022; 19. [PMID: 35970137 DOI: 10.1088/1741-2552/ac89b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/15/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Recent technological advances show the feasibility of fusing surface electromyography (sEMG) signals and movement data to predict lower limb ambulation intentions. However, since the invasive fusion of different signals is a major impediment to improving predictive performance, searching for a non-invasive fusion mechanism for lower limb ambulation pattern recognition based on different modal features is crucial. APPROACH We propose an end-to-end sequence prediction model with non-invasive dual attention temporal convolutional networks (NIDA-TCN) as a core to elegantly address the essential deficiencies of traditional decision models with heterogeneous signal fusion. Notably, the NIDA-TCN is a weighted fusion of sEMG and inertial measurement units (IMU) with time-dependent effective hidden information in the temporal and channel dimensions using TCN and self-attentive mechanisms. The new model can better discriminate between walking, jumping, downstairs, and upstairs four lower limb activities of daily living (ADL). MAIN RESULTS The results of this study show that the NIDA-TCN models produce predictions that significantly outperform both frame-wise and TCN models in terms of accuracy, sensitivity, precision, F1 score, and stability. Particularly, the NIDA-TCN with sequence decision fusion (NIDA-TCN-SDF) models, have maximum accuracy and stability increments of 3.37% and 4.95% relative to the frame-wise model, respectively, without manual feature-encoding and complex model parameters. SIGNIFICANCE It is concluded that the results demonstrate the validity and feasibility of the NIDA-TCN-SDF models to ensure the prediction of daily lower limb ambulation activities, paving the way to the development of fused heterogeneous signal decoding with better prediction performance.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Mechanical Engineering and Automation, Northeastern University, NO. 3-11, Wenhua Road, Heping District, ShenYang, 110819, CHINA
| | - Naishi Feng
- Department of Mechanical Engineering and Automation, Northeastern University, NO. 3-11, Wenhua Road, Heping District, Shenyang, 110819, CHINA
| | - Hong Wang
- Department of Mechanical Engineering and Automation, Northeastern University, NO. 3-11, Wenhua Road, Heping District, ShenYang, 110819, CHINA
| | - Yanzheng Lu
- Department of Mechanical Engineering and Automation, Northeastern University, NO. 3-11, Wenhua Road, Heping District, ShenYang, 110819, CHINA
| | - Chunfeng Wei
- Department of Mechanical Engineering and Automation, Northeastern University, NO. 3-11, Wenhua Road, Heping District, ShenYang, 110819, CHINA
| | - Daqi Jiang
- Department of Mechanical, Engineering and Automation, Northeastern University, NO. 3-11, Wenhua Road, Heping District, Shenyang , 110819, CHINA
| | - Ziyang Li
- Department of Mechanical Engineering and Automation, Northeastern University, NO. 3-11, Wenhua Road, Heping District, ShenYang, 110819, CHINA
| |
Collapse
|
4
|
Nouredanesh M, Ojeda L, Alexander NB, Godfrey A, Schwenk M, Melek W, Tung J. Automated Detection of Older Adults’ Naturally-Occurring Compensatory Balance Reactions: Translation From Laboratory to Free-Living Conditions. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022. [DOI: 10.1109/jtehm.2022.3163967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mina Nouredanesh
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Lauro Ojeda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Neil B. Alexander
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alan Godfrey
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, U.K
| | - Michael Schwenk
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - William Melek
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - James Tung
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
5
|
Jung S, Oudre L, Truong C, Dorveaux E, Gorintin L, Vayatis N, Ricard D. Adaptive Change-Point Detection for Studying Human Locomotion. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:2020-2024. [PMID: 34891684 DOI: 10.1109/embc46164.2021.9629775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents an innovative method to analyze inertial signals recorded in a semi-controlled environment. It uses an adaptive and supervised change point detection procedure to decompose the signals into homogeneous segments, allowing a refined analysis of the successive phases within a gait protocol. Thanks to a training procedure, the algorithm can be applied to a wide range of protocols and handles different levels of granularity. The method is tested on a cohort of 15 healthy subjects performing a complex protocol composed of different activities and shows promising results for the automated and adaptive study of human gait and activity.Clinical relevance- A new approach to study human activity and locomotion in Free-Living Environments FLEs through an adaptive change-point detection which isolates homogeneous phases.
Collapse
|
6
|
Fall risk assessment in the wild: A critical examination of wearable sensor use in free-living conditions. Gait Posture 2021; 85:178-190. [PMID: 33601319 DOI: 10.1016/j.gaitpost.2020.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/12/2020] [Accepted: 04/04/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Despite advances in laboratory-based supervised fall risk assessment methods (FRAs), falls still remain a major public health problem. This can be due to the alteration of behavior in laboratory due to the awareness of being observed (i.e., Hawthorne effect), the multifactorial complex etiology of falls, and our limited understanding of human behaviour in natural environments, or in the' wild'. To address these imitations, a growing body of literature has focused on free-living wearable-sensor-based FRAs. The objective of this narrative literature review is to discuss papers investigating natural data collected by wearable sensors for a duration of at least 24 h to identify fall-prone older adults. METHODS Databases (Scopus, PubMed and Google Scholar) were searched for studies based on a rigorous search strategy. RESULTS Twenty-four journal papers were selected, in which inertial sensors were the only wearable system employed for FRA in the wild. Gait was the most-investigated activity; but sitting, standing, lying, transitions and gait events, such as turns and missteps, were also explored. A multitude of free-living fall predictors (FLFPs), e.g., the quantity of daily steps, were extracted from activity bouts and events. FLFPs were further categorized into discrete domains (e.g., pace, complexity) defined by conceptual or data-driven models. Heterogeneity was found within the reviewed studies, which includes variance in: terminology (e.g., quantity vs macro), hyperparameters to define/estimate FLFPs, models and domains, and data processing approaches (e.g., the cut-off thresholds to define an ambulatory bout). These inconsistencies led to different results for similar FLFPs, limiting the ability to interpret and compare the evidence. CONCLUSION Free-living FRA is a promising avenue for fall prevention. Achieving a harmonized model is necessary to systematically address the inconsistencies in the field and identify FLFPs with the highest predictive values for falls to eventually address intervention programs and fall prevention.
Collapse
|
7
|
Nouredanesh M, Gordt K, Schwenk M, Tung J. Automated Detection of Multidirectional Compensatory Balance Reactions: A Step Towards Tracking Naturally Occurring Near Falls. IEEE Trans Neural Syst Rehabil Eng 2019; 28:478-487. [PMID: 31794400 DOI: 10.1109/tnsre.2019.2956487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Falls are the leading cause of fatal and non-fatal injuries among seniors with serious and costly consequences. Laboratory evidence supports the view that impaired ability to execute compensatory balance reactions (CBRs) or near-falls is linked to an increased risk of falling. Therefore, as an alternative to the commonly used fall risk assessment methods examining spatial-temporal parameters of gait, this study focuses on the development of machine learning-based models to detect multidirectional CBRs using wearable inertial measurement units (IMUs). Random forest models were developed based upon the data captured by five wearable IMUs to 1) detect CBRs during normal gait, and 2) identify the type of CBR (eight different classes). A perturbation treadmill (PT) was employed to systematically elicit CBRs (i.e. PT-CBRs) during walking in different directions (e.g slip-like, trip-like, and medio-lateral) and amplitudes (e.g., low-, high-amplitude). We hypothesized that these PT-CBRs could simulate naturally-occurring CBRs (N-CBRs). Proof-of-concept testing in 9 young, healthy adults demonstrated accuracies of 96.60% and 80.64% for the PT-CBR detection and type identification models, respectively. Performance of the detection model was tested against a published dataset (IMUFD) simulating N-CBRs, including the most common types observed in older adults in long-term care facilities, which achieved sensitivity of 100%, but poor specificity. Adding normal gait data from IMUFD for training improved specificity, indicating treadmill walking alone is insufficient exemplar data. Perturbation treadmill combined with overground walking data is a suitable paradigm to collect training datasets of involuntary CBR events. These findings suggest that accurate detection of naturally-occurring CBRs is feasible, and supports further investigation of implementing a wearable sensor system to track naturally-occurring CBRs as a novel means of fall risk assessment.
Collapse
|