1
|
Shao Z, Zhang X, Xu Y, Zhu W, Shi X, Li L. Internal flow field analysis of a dendritic pore scaffold for bone tissue engineering. Comput Methods Biomech Biomed Engin 2024:1-11. [PMID: 38943424 DOI: 10.1080/10255842.2024.2372612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
The effective reconstruction of osteochondral biomimetic structures is a key factor in guiding the regeneration of full-thickness osteochondral defects. Due to the avascular nature of hyaline cartilage, the greatest challenge in constructing this scaffold lies in both utilizing the biomimetic structure to promote vascular differentiation for nutrient delivery to hyaline cartilage, thereby enhancing the efficiency of osteochondral reconstruction, and effectively blocking vascular ingrowth into the cartilage layer to prevent cartilage mineralization. However, the intrinsic relationship between the planning of the microporous pipe network and the flow resistance in the biomimetic structure, and the mechanism of promoting cell adhesion to achieve vascular differentiation and inhibiting cell adhesion to block the growth of blood vessels are still unclear. Inspired by the structure of tree trunks, this study designed a biomimetic tree-like tubular network structure for osteochondral scaffolds based on Murray's law. Utilizing computational fluid dynamics, the study investigated the influence of the branching angle of micro-pores on the flow velocity, pressure distribution, and scaffold permeability within the scaffold. The results indicate that when the differentiation angle exceeds 50 degrees, the highest flow velocity occurs at the confluence of tributaries at the ninth fractal position, forming a barrier layer. This structure effectively guides vascular growth, enhances nutrient transport capacity, increases flow velocity to promote cell adhesion, and inhibits cell infiltration into the cartilage layer.
Collapse
Affiliation(s)
- Zongheng Shao
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Xujing Zhang
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Yan Xu
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Wenbo Zhu
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Xintong Shi
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Liangduo Li
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
2
|
Li J, Yang Y, Sun Z, Peng K, Liu K, Xu P, Li J, Wei X, He X. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis. Mater Today Bio 2024; 24:100934. [PMID: 38234458 PMCID: PMC10792490 DOI: 10.1016/j.mtbio.2023.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
A porous structure is essential for bone implants because it increases the bone ingrowth space and improves mechanical and biological properties. The biomimetically designed porous Voronoi scaffold can reconstruct the structure and function of cancellous bone; however, its comprehensive properties need to be investigated further. In this study, algorithms based on scaling factors were used to design the Voronoi scaffolds. Classic approaches, such as computer-aided design and the implicit surface method, have been used to design Diamond, Gyroid, and I-WP scaffolds as controls. All scaffolds were prepared by selective laser melting of titanium alloys and three-dimensional printing. Mechanical tests, finite element analysis, and in vitro and in vivo experiments were performed to investigate the biomechanical, cytologic, and osteogenic performance of the scaffolds, while computational fluid dynamics simulations were used to explore the underlying mechanisms. Diamond scaffolds have a better loading capacity, and the mechanical behaviors and fluid flow of Voronoi scaffolds are similar to those of the human trabecular bone. Cells showed more proliferation and distribution on the Diamond and Voronoi scaffolds and exhibited evident differentiation on Gyroid and Voronoi scaffolds. Bone formation was apparent on the inner part of the Gyroid, the outer part of the I-WP, and the entire Diamond and Voronoi scaffolds. The hydrodynamic properties and stimulus response of cells influenced by the porous structure account for the varied biological performance of the scaffolds. The Voronoi scaffolds with bionic mechanical behavior and an appropriate hydrodynamic response exhibit evident cell growth and osteogenesis, making them preferable for porous structural bone implants.
Collapse
Affiliation(s)
- Jialiang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Yubing Yang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Kan Peng
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Kaixin Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Jun Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Xinyu Wei
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
3
|
Singh S, Yadav SK, Meena VK, Vashisth P, Kalyanasundaram D. Orthopedic Scaffolds: Evaluation of Structural Strength and Permeability of Fluid Flow via an Open Cell Neovius Structure for Bone Tissue Engineering. ACS Biomater Sci Eng 2023; 9:5900-5911. [PMID: 37702616 DOI: 10.1021/acsbiomaterials.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The ability of bone to regenerate itself through mechanobiological responses is its dynamic property. Mechanical cues from a neighboring environment produce the structural strain to promote blood flow and bone marrow mobility that in turn aids the bone regeneration process. Occurrences of these phenomena are crucial for the success of metallic scaffolds implanted in the host bone tissue. Thus, permeability and fluid flow-induced wall shear stress (WSS) are two parameters that directly influence cell bioactivities inside a scaffold and are crucial for effective bone tissue regeneration. Given that the scaffolds shall be implanted in the body, permeability assessment was carried out using non-Newtonian fluid. In this work, the triply periodic minimal surface scaffolds with Neovius architectures were fabricated by using selective laser melting technology. The estimation of fluid flow was carried out using computational fluid dynamics (CFD) analysis with a non-Newtonian blood fluid model. Further, the structural strength of various open cell Neovius lattices was evaluated using a static compression test, and in vitro cell culture using Alamar blue assay was evaluated. Results revealed that the values of intrinsic blood flow permeability of the three-dimensional (3D)-printed open cell porous scaffold with Neovius architecture were of the same order of magnitude as those of human bone, ranging from 0.0025 × 10-9 to 0.0152 × 10-9 m2. The structural elastic modulus and compressive strength of NOCL40, NOCL50, and NOCL60 lattices range from 3.27 to 3.71 GPa and 194 to 205 MPa, respectively. All of the values are comparable to the human bone, thus making these lattices a suitable alternative for orthopedic applications.
Collapse
Affiliation(s)
- Sonu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil Kumar Yadav
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Vijay Kumar Meena
- Central Scientific Instruments Organization, Council of Scientific & Industrial Research, Chandigarh 160030, India
| | - Priya Vashisth
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Dinesh Kalyanasundaram
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
4
|
Kong D, Wang Q, Huang J, Zhang Z, Wang X, Han Q, Shi Y, Ji R, Li Y. Design and manufacturing of biomimetic scaffolds for bone repair inspired by bone trabeculae. Comput Biol Med 2023; 165:107369. [PMID: 37625259 DOI: 10.1016/j.compbiomed.2023.107369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023]
Abstract
Porous scaffold (PorS) implants, particularly those that mimic the structural features of natural cancellous bone (NCanB), are increasingly essential for the treatment of large-area bone defects. However, the mechanical properties of NCanB-based bionic bone scaffold (BioS) and its performance as a bone repair material have not been fully explored. This study investigates the effect of bionic structure parameters on the mechanical properties and bone reconstruction performance of BioS. Using laser powder bed fusion (L-PBF) technology, different BioS with various structural parameters were created and evaluated using Micro-CT, compression testing, Finite Element (FE) Simulation, and computational fluid dynamics (CFD), and compared to commonly used clinical PorS. Assess the capacity of the BioS scaffold to support and enhance bone reconstruction following implantation through the evaluation of its mechanical properties, permeability, and fluid shear stress (FSS). BioS-85-90 and BioS-80-50 showed suitable mechanical properties, performed well in FE simulation of implantation, demonstrated outstanding abilities for osteoinductive ingrowth and bone tissue differentiation, and proved to be reliable materials for the reconstruction of bone defects. Therefore, BioS shows significant potential for clinical application as a bone reconstruction material, providing a solid foundation for the integration of tissue engineering and bionic design.
Collapse
Affiliation(s)
- Deyin Kong
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Qing Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Jiangeng Huang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Zhihui Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, China; Liaoning Academy of Materials, Shenyang 110167, China.
| | - Xiebin Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Qing Han
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Yanbin Shi
- School of Mechanical & Automotive Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ran Ji
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Yiling Li
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| |
Collapse
|
5
|
Azizi P, Drobek C, Budday S, Seitz H. Simulating the mechanical stimulation of cells on a porous hydrogel scaffold using an FSI model to predict cell differentiation. Front Bioeng Biotechnol 2023; 11:1249867. [PMID: 37799813 PMCID: PMC10549991 DOI: 10.3389/fbioe.2023.1249867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
3D-structured hydrogel scaffolds are frequently used in tissue engineering applications as they can provide a supportive and biocompatible environment for the growth and regeneration of new tissue. Hydrogel scaffolds seeded with human mesenchymal stem cells (MSCs) can be mechanically stimulated in bioreactors to promote the formation of cartilage or bone tissue. Although in vitro and in vivo experiments are necessary to understand the biological response of cells and tissues to mechanical stimulation, in silico methods are cost-effective and powerful approaches that can support these experimental investigations. In this study, we simulated the fluid-structure interaction (FSI) to predict cell differentiation on the entire surface of a 3D-structured hydrogel scaffold seeded with cells due to dynamic compressive load stimulation. The computational FSI model made it possible to simultaneously investigate the influence of both mechanical deformation and flow of the culture medium on the cells on the scaffold surface during stimulation. The transient one-way FSI model thus opens up significantly more possibilities for predicting cell differentiation in mechanically stimulated scaffolds than previous static microscale computational approaches used in mechanobiology. In a first parameter study, the impact of the amplitude of a sinusoidal compression ranging from 1% to 10% on the phenotype of cells seeded on a porous hydrogel scaffold was analyzed. The simulation results show that the number of cells differentiating into bone tissue gradually decreases with increasing compression amplitude, while differentiation into cartilage cells initially multiplied with increasing compression amplitude in the range of 2% up to 7% and then decreased. Fibrous cell differentiation was predicted from a compression of 5% and increased moderately up to a compression of 10%. At high compression amplitudes of 9% and 10%, negligible areas on the scaffold surface experienced high stimuli where no cell differentiation could occur. In summary, this study shows that simulation of the FSI system is a versatile approach in computational mechanobiology that can be used to study the effects of, for example, different scaffold designs and stimulation parameters on cell differentiation in mechanically stimulated 3D-structured scaffolds.
Collapse
Affiliation(s)
- Pedram Azizi
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Christoph Drobek
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Silvia Budday
- Department of Mechanical Engineering, Institute of Applied Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hermann Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Lu T, Sun Z, Jia C, Ren J, Li J, Ma Z, Zhang J, Li J, Zhang T, Zang Q, Yang B, Yang P, Wang D, Li H, Qin J, He X. Roles of irregularity of pore morphology in osteogenesis of Voronoi scaffolds: From the perspectives of MSC adhesion and mechano-regulated osteoblast differentiation. J Biomech 2023; 151:111542. [PMID: 36958090 DOI: 10.1016/j.jbiomech.2023.111542] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Bone scaffolds designed based on the Voronoi-tessellation algorithm have been increasingly studied owing to their structural similarity with natural cancellous bone. The irregularity of pore morphology (IPM) influences the osteogenesis efficiency of Voronoi scaffolds since it may alter the static and hydromechanical microenvironments for the initial adhesion and mechano-regulated osteoblast differentiation (MrOD) of mesenchymal stem cells (MSCs). In this work, animal experiments were conducted to explore the relationship between IPM and osteogenesis efficiency in Voronoi scaffolds. A computational fluid dynamics (CFD) analysis based on discrete phase models was performed to predict the efficiency of MSC adhesion in different IPMs. Another combined finite element and CFD analysis based on the mechano-regulation algorithm was performed to predict the influence of IPM on the MrOD of the adhesive MSCs. The results showed that the osteogenesis efficiency of the Voronoi scaffolds increased as the IPM rose from low to moderate and then dropped as the IPM further rose. Same trends were also found in the MSC adhesion and MrOD, which caused by the changes of strain tensors on the strut surface and the tortuosity and fluid velocity of the fluid pathway. Moderate IPM induced the highest osteogenesis efficiency owing to its highest efficiencies of MSC adhesion and MrOD. This work identified the optimal IPM for the osteogenesis of Voronoi scaffolds and clarified its biomechanical mechanisms from the adhesion and mechano-regulated differentiation of MSCs, which is of great importance for guiding Voronoi scaffold design when it is used for bone defect repair.
Collapse
Affiliation(s)
- Teng Lu
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhongwei Sun
- Department of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Cunwei Jia
- Department of Medical Imaging, School of Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Jiakun Ren
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, China
| | - Jie Li
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhiyuan Ma
- Department of Material Research, National Institution Corporation of Additive Manufacturing, Xi'an, Shaanxi Province, China
| | - Jing Zhang
- Department of Research and Development, ZSFab, Inc., Boston, MA, USA
| | - Jialiang Li
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ting Zhang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Quanjin Zang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Baohui Yang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Pinglin Yang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Dong Wang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Haopeng Li
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jie Qin
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
7
|
Belda R, Megías R, Marco M, Vercher-Martínez A, Giner E. Numerical analysis of the influence of triply periodic minimal surface structures morphometry on the mechanical response. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107342. [PMID: 36693291 DOI: 10.1016/j.cmpb.2023.107342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Design of bone scaffolds requires a combination of material and geometry to fulfil requirements of mechanical properties, porosity and pore size. Triply Periodic Minimal Surface (TPMS) structures have gained attention due to their similarities to cancellous bone. In this work, we aim at exploring relationships between morphometry and mechanical properties for TPMS configurations. METHODS Eight TPMS structures are defined considering six porosity levels and their morphometry is characterized. The stiffness matrix of each structure is assessed and related to morphometry through a statistical analysis. RESULTS An orthotropic mechanical behavior has been derived from the numerical homogenization. Properties decay exponentially for decreasing volume fraction. Through volume fraction variation, TPMS mechanical properties can be selected to match bone properties in a range of 0.2% to 70% of the bulk material properties. CONCLUSIONS The comparison between cancellous bone and TPMS morphometry, considering a unit cell size of 1.5 mm, reveals that the configurations analyzed in this work match the requirements of volume fraction, mean thickness and pore size. However, the TPMS studied in this work differ from cancellous bone anisotropy. The results in this paper provide a framework to select the proper TPMS configuration and its geometry for patient-specific applications.
Collapse
Affiliation(s)
- Ricardo Belda
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, 28911, Madrid, Spain; Institute of Mechanical and Biomechanical Engineering - I2MB, Department of Mechanical Engineering and Materials, Universitat Politècnica de València, Camino de Vera, Valencia 46022, Spain.
| | - Raquel Megías
- Institute of Mechanical and Biomechanical Engineering - I2MB, Department of Mechanical Engineering and Materials, Universitat Politècnica de València, Camino de Vera, Valencia 46022, Spain
| | - Miguel Marco
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, 28911, Madrid, Spain
| | - Ana Vercher-Martínez
- Institute of Mechanical and Biomechanical Engineering - I2MB, Department of Mechanical Engineering and Materials, Universitat Politècnica de València, Camino de Vera, Valencia 46022, Spain
| | - Eugenio Giner
- Institute of Mechanical and Biomechanical Engineering - I2MB, Department of Mechanical Engineering and Materials, Universitat Politècnica de València, Camino de Vera, Valencia 46022, Spain
| |
Collapse
|
8
|
Osteogenesis of Human iPSC-Derived MSCs by PLLA/SF Nanofiber Scaffolds Loaded with Extracellular Matrix. J Tissue Eng Regen Med 2023. [DOI: 10.1155/2023/5280613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone defects that arise from trauma, skeletal diseases, or tumor resections have become the commonest and most thorny problems in orthopedic clinics. Recently, biocomposite materials used as artificial bone repair materials have provided a promising approach for bone regeneration. In this study, poly (l-lactide acid) (PLLA) and silk fibroin (SF) were used to fabricate nanofiber scaffolds by electrospinning technology. In order to simulate a biomimetic osteoblast microenvironment, decellularized extracellular matrix from osteoblasts was loaded into the biocomposite scaffolds (O-ECM/PLLA/SF). It was found that the O-ECM/PLLA/SF scaffolds were nontoxic for L929 cells and had good cytocompatibility. Their effects on mesenchymal stem cells derived from human-induced pluripotent stem cell (iPSC-MSC) behavior were investigated. As a result, the scaffolds with the addition of O-ECM showed enhanced alizarin red S (ARS) activity. In addition, higher expression of osteogenic gene markers such as runt-related transcription factor 2 (Runx2), collagen type I (Col-1), and osteocalcin (OCN) as well as upregulated expression of osteogenic marker protein osteopontin (OPN) and Col-1 further substantiated the applicability of O-ECM/PLLA/SF scaffolds for osteogenesis. Furthermore, the in vivo study also indicated maximal new bone formation in the skull defect model of Sprague Dawley (SD) rats treated with the O-ECM/PLLA/SF carried by human iPSC-MSCs. Hence, this study suggests that O-ECM/PLLA/SF scaffolds have a potential application in bone tissue engineering.
Collapse
|
9
|
Zhao Z, Li J, Yao D, Wei Y. Mechanical and permeability properties of porous scaffolds developed by a Voronoi tessellation for bone tissue engineering. J Mater Chem B 2022; 10:9699-9712. [PMID: 36398681 DOI: 10.1039/d2tb01478e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Irregular porous structures for guided bone regeneration applications have gained increasing attention as they are similar to human bone and more suitable for bone tissue growth. However, pore irregularity as a critical characteristic has been poorly explored. This study proposed a method for parametrically designing porous scaffolds based on a Voronoi tessellation which were manufactured by selective laser sintering (SLS) using the polyamide 12 (PA12) material. The deformation mechanism and energy absorption properties of the prepared Voronoi scaffolds were investigated by quasi-static compression experiments. The results demonstrated that the Voronoi scaffold underwent bending deformation subsequent to transverse expansion under compression, and the Voronoi scaffold simultaneously had been indicated to be effective in improving the carrying capacity and energy absorption performance. Subsequently, computational fluid dynamics (CFD) and cell proliferation tests were introduced to comprehensively assess the influence of the scaffolds on cell growth. CFD analysis showed that the permeability of the surveyed scaffolds is between 3.65 × 10-8 and 12.05 × 10-8 m2 similar to that of natural cancellous bone. The cell test expressed that the scaffold exhibits good cell activity, which can be used to promote cell adhesion and migration with superior potential for development and application.
Collapse
Affiliation(s)
- Ze Zhao
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| | - Junchao Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| | - Dingrou Yao
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| | - Yuan Wei
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
10
|
Fluid Flow Analysis of Integrated Porous Bone Scaffold and Cancellous Bone at Different Skeletal Sites: In Silico Study. Transp Porous Media 2022. [DOI: 10.1007/s11242-022-01849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Wang X, Chen J, Guan Y, Sun L, Kang Y. Internal flow field analysis of heterogeneous porous scaffold for bone tissue engineering. Comput Methods Biomech Biomed Engin 2022; 26:807-819. [PMID: 35723938 DOI: 10.1080/10255842.2022.2089025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The internal pore structure of the porous scaffold for bone tissue engineering and the pressure and velocity distributions of its flow field affect the attachment, proliferation and differentiation of osteoblasts. The permeability of the porous scaffold determines its ability to transport cellular nutrients and metabolites. Therefore, studying the fluid flow characteristics of the porous scaffold plays a vital role in its biological applications. Heterogeneous porous scaffolds (HPS) with irregular internal pore structure have more bionic characteristics of natural structure than uniform porous scaffolds with regular internal pore structure. In order to comprehensively grasp the biological properties of HPS, this article designed HPS with different porosities based on the Voronoi generation method and random theory, and then used computational fluid dynamics (CFD)software to conduct fluid flow simulations. The velocity and pressure distribution rules of the internal flow field of HPS with different porosities were obtained by CFD simulation analysis, and the relationship between the porosity and the distribution rules was studied. Furthermore, the permeabilities of HPS with different porosities were calculated based on Darcy's law, and the influence rule of porosity on the permeability was obtained.
Collapse
Affiliation(s)
- Xiaokang Wang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, China
| | - Jigang Chen
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, China.,Aviation Key Laboratory of Science and Technology on Generic Technology of Aviation Self-Lubricating Spherical Plain Bearing, Yanshan University, Qinhuangdao, China
| | - Yabin Guan
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, China
| | - Li Sun
- School of Arts and Design, Yanshan University, Qinhuangdao, China
| | - Yongxing Kang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, China
| |
Collapse
|
12
|
Karaman D, Ghahramanzadeh Asl H. Biomechanical behavior of diamond lattice scaffolds obtained by two different design approaches with similar porosity; a numerical investigation with FEM and CFD analysis. Proc Inst Mech Eng H 2022; 236:794-810. [DOI: 10.1177/09544119221091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Scaffolds provide a suitable environment for the bone tissue to maintain its self-healing ability and help new bone-cell formation by creating structures with similar mechanical properties to the surrounding tissue. In the modeling of the scaffolds, an optimum environment is tried to be provided by changing the geometrical properties of the cell architecture such as porosity, pore size, and specific surface area. For this purpose, different design approaches have been used in studies to change these properties. This study aims to determine whether scaffolds with similar porosities modeled by different design approaches exhibit distinct biomechanical behaviors or not. By using the Diamond lattice architecture, two different design approaches were constituted. The first approach has constant wall thickness and variable cell size, whereas the second approach contains variable wall thickness and constant cell size. The usage of different design approaches affected the amount of specific surface area in models with similar porosity. Mechanical compression tests were conducted via finite element analysis, while the permeability performance of configurations with similar porosities (50%, 60%, 70%, 80%, and 90%) was evaluated by using computational fluid dynamics. The mechanical results revealed that the structural strength decreased with increasing porosity. Since their higher specific surface area causes lower pressure drops, the second group exhibits better permeability. In addition, it was found that to evaluate the wall shear stresses occurring on the scaffold surfaces properly, it is essential to consider the stress distributions within the scaffold rather than the maximum values.
Collapse
Affiliation(s)
- Derya Karaman
- Department of Mechanical Engineering, Engineering Faculty, Karadeniz Technical University, Trabzon, Turkey
| | - Hojjat Ghahramanzadeh Asl
- Department of Mechanical Engineering, Engineering Faculty, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
13
|
Zhao F, Xiong Y, Ito K, van Rietbergen B, Hofmann S. Porous Geometry Guided Micro-mechanical Environment Within Scaffolds for Cell Mechanobiology Study in Bone Tissue Engineering. Front Bioeng Biotechnol 2021; 9:736489. [PMID: 34595161 PMCID: PMC8476750 DOI: 10.3389/fbioe.2021.736489] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Mechanobiology research is for understanding the role of mechanics in cell physiology and pathology. It will have implications for studying bone physiology and pathology and to guide the strategy for regenerating both the structural and functional features of bone. Mechanobiological studies in vitro apply a dynamic micro-mechanical environment to cells via bioreactors. Porous scaffolds are commonly used for housing the cells in a three-dimensional (3D) culturing environment. Such scaffolds usually have different pore geometries (e.g. with different pore shapes, pore dimensions and porosities). These pore geometries can affect the internal micro-mechanical environment that the cells experience when loaded in the bioreactor. Therefore, to adjust the applied micro-mechanical environment on cells, researchers can tune either the applied load and/or the design of the scaffold pore geometries. This review will provide information on how the micro-mechanical environment (e.g. fluid-induced wall shear stress and mechanical strain) is affected by various scaffold pore geometries within different bioreactors. It shall allow researchers to estimate/quantify the micro-mechanical environment according to the already known pore geometry information, or to find a suitable pore geometry according to the desirable micro-mechanical environment to be applied. Finally, as future work, artificial intelligent - assisted techniques, which can achieve an automatic design of solid porous scaffold geometry for tuning/optimising the micro-mechanical environment are suggested.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|