1
|
Raghavendra U, Gudigar A, Paul A, Goutham TS, Inamdar MA, Hegde A, Devi A, Ooi CP, Deo RC, Barua PD, Molinari F, Ciaccio EJ, Acharya UR. Brain tumor detection and screening using artificial intelligence techniques: Current trends and future perspectives. Comput Biol Med 2023; 163:107063. [PMID: 37329621 DOI: 10.1016/j.compbiomed.2023.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/19/2023]
Abstract
A brain tumor is an abnormal mass of tissue located inside the skull. In addition to putting pressure on the healthy parts of the brain, it can lead to significant health problems. Depending on the region of the brain tumor, it can cause a wide range of health issues. As malignant brain tumors grow rapidly, the mortality rate of individuals with this cancer can increase substantially with each passing week. Hence it is vital to detect these tumors early so that preventive measures can be taken at the initial stages. Computer-aided diagnostic (CAD) systems, in coordination with artificial intelligence (AI) techniques, have a vital role in the early detection of this disorder. In this review, we studied 124 research articles published from 2000 to 2022. Here, the challenges faced by CAD systems based on different modalities are highlighted along with the current requirements of this domain and future prospects in this area of research.
Collapse
Affiliation(s)
- U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Aritra Paul
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - T S Goutham
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mahesh Anil Inamdar
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ajay Hegde
- Consultant Neurosurgeon Manipal Hospitals, Sarjapur Road, Bangalore, India
| | - Aruna Devi
- School of Education and Tertiary Access, University of the Sunshine Coast, Caboolture Campus, Australia
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore, 599494, Singapore
| | - Ravinesh C Deo
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, QLD, 4300, Australia
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW, 2010, Australia; School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Filippo Molinari
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Torino, Italy
| | - Edward J Ciaccio
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - U Rajendra Acharya
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, QLD, 4300, Australia; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| |
Collapse
|
2
|
Srinivasan S, Bai PSM, Mathivanan SK, Muthukumaran V, Babu JC, Vilcekova L. Grade Classification of Tumors from Brain Magnetic Resonance Images Using a Deep Learning Technique. Diagnostics (Basel) 2023; 13:diagnostics13061153. [PMID: 36980463 PMCID: PMC10046932 DOI: 10.3390/diagnostics13061153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
To improve the accuracy of tumor identification, it is necessary to develop a reliable automated diagnostic method. In order to precisely categorize brain tumors, researchers developed a variety of segmentation algorithms. Segmentation of brain images is generally recognized as one of the most challenging tasks in medical image processing. In this article, a novel automated detection and classification method was proposed. The proposed approach consisted of many phases, including pre-processing MRI images, segmenting images, extracting features, and classifying images. During the pre-processing portion of an MRI scan, an adaptive filter was utilized to eliminate background noise. For feature extraction, the local-binary grey level co-occurrence matrix (LBGLCM) was used, and for image segmentation, enhanced fuzzy c-means clustering (EFCMC) was used. After extracting the scan features, we used a deep learning model to classify MRI images into two groups: glioma and normal. The classifications were created using a convolutional recurrent neural network (CRNN). The proposed technique improved brain image classification from a defined input dataset. MRI scans from the REMBRANDT dataset, which consisted of 620 testing and 2480 training sets, were used for the research. The data demonstrate that the newly proposed method outperformed its predecessors. The proposed CRNN strategy was compared against BP, U-Net, and ResNet, which are three of the most prevalent classification approaches currently being used. For brain tumor classification, the proposed system outcomes were 98.17% accuracy, 91.34% specificity, and 98.79% sensitivity.
Collapse
Affiliation(s)
- Saravanan Srinivasan
- Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India
| | | | - Sandeep Kumar Mathivanan
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Venkatesan Muthukumaran
- Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Jyothi Chinna Babu
- Department of Electronics and Communications Engineering, Annamacharya Institute of Technology and Sciences, Rajampet 516126, India
| | - Lucia Vilcekova
- Faculty of Management, Comenius University Bratislava, Odbojarov 10, 820 05 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
3
|
Anaya-Isaza A, Mera-Jiménez L, Verdugo-Alejo L, Sarasti L. Optimizing MRI-based brain tumor classification and detection using AI: A comparative analysis of neural networks, transfer learning, data augmentation, and the cross-transformer network. Eur J Radiol Open 2023; 10:100484. [PMID: 36950474 PMCID: PMC10027502 DOI: 10.1016/j.ejro.2023.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
Early detection and diagnosis of brain tumors are crucial to taking adequate preventive measures, as with most cancers. On the other hand, artificial intelligence (AI) has grown exponentially, even in such complex environments as medicine. Here it's proposed a framework to explore state-of-the-art deep learning architectures for brain tumor classification and detection. An own development called Cross-Transformer is also included, which consists of three scalar products that combine self-care model keys, queries, and values. Initially, we focused on the classification of three types of tumors: glioma, meningioma, and pituitary. With the Figshare brain tumor dataset was trained the InceptionResNetV2, InceptionV3, DenseNet121, Xception, ResNet50V2, VGG19, and EfficientNetB7 networks. Over 97 % of classifications were accurate in this experiment, which provided a network's performance overview. Subsequently, we focused on tumor detection using the Brain MRI Images for Brain Tumor Detection and The Cancer Genome Atlas Low-Grade Glioma database. The development encompasses learning transfer, data augmentation, as well as image acquisition sequences; T1-weighted images (T1WI), T1-weighted post-gadolinium (T1-Gd), and Fluid-Attenuated Inversion Recovery (FLAIR). Based on the results, using learning transfer and data augmentation increased accuracy by up to 6 %, with a p-value below the significance level of 0.05. As well, the FLAIR sequence was the most efficient for detection. As an alternative, our proposed model proved to be the most effective in terms of training time, using approximately half the time of the second fastest network.
Collapse
|
4
|
Krishnakumar S, Manivannan K. Detection of meningioma tumor images using Modified Empirical Mode Decomposition (MEMD) and convolutional neural networks. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-222172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The meningioma brain tumor detection is more important than the other tumor detection such as Glioma and Glioblastoma, due to its high severity level. The tumor pixel density of meningioma tumor is high and it leads to sudden death if it is not detected timely. The meningioma images are detected using Modified Empirical Mode Decomposition- Convolutional Neural Networks (MEMD-CNN) classification approach. This method has the following stages data augmentation, spatial-frequency transformation, feature computations, classifications and segmentation. The brain image samples are increased using data augmentation process for improving the meningioma detection rate. The data augmented images are spatially transformed into frequency format using MEMD transformation method. Then, the external empirical mode features are computed from this transformed image and they are fed into CNN architecture to classify the source brain image into either meningioma or non-meningioma. The pixels belonging tumor category are segmented using morphological opening-closing functions. The meningioma detection system obtains 99.4% of Meningioma Classification Rate (MCR) and 99.3% of Non-Meningioma Classification Rate (NMCR) on the meningioma and non-meningioma images. This MEMD-CNN technique for meningioma identification attains 98.93% of SET, 99.13% of SPT, 99.18% of MSA, 99.14% of PR and 99.13% of FS. From the statistical comparative analysis of the proposed MEMD-CNN system with other conventional detection systems, the proposed method provides optimum tumor segmentation results.
Collapse
Affiliation(s)
- S. Krishnakumar
- Department of Electronics and Communication Engineering, Theni Kammavar Sangam College of Technology, Theni, Tamilnadu, India
| | - K. Manivannan
- Department of Computer Science and Engineering, PSNA College of Engineering and Technology, Dindigul, Tamilnadu, India
| |
Collapse
|